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The relationship between robustness and evolvability is a long-standing question

in evolution. Heat shock protein 90 (HSP90), a molecular chaperone, has been

identified as a potential capacitor for evolution, since it allows for the accumu-

lation and release of cryptic genetic variation, and also for the regulation of

novel genetic variation through transposon activity. However, to date, it is

unknown whether Hsp90 expression is regulated upon demand (i.e. when the

release of cryptic genetic variation is most needed). Here, we show that Hsp90

has reduced transcription under conditions where the mobilization of genetic

variation could be advantageous. We designed a situation that indicates a stress-

ful environment but avoids the direct effects of stress, by placing untreated (focal)

red flour beetles, Tribolium castaneum, into groups together with wounded con-

specifics, and found a consistent reduction in expression of two Hsp90 genes

(Hsp83 and Hsp90) in focal beetles. We moreover observed a social transfer of

immunity in this non-eusocial insect: there was increased activity of the pheno-

loxidase enzyme and downregulation of the immune regulator, imd. Our

study poses the exciting question of whether evolvability might be regulated

through the use of information derived from the social environment.
1. Introduction
Darwinian selection acts on phenotypes, but adaptive evolution results from

changes in the genotypic composition of a population [1,2]. However, phenotypes

often develop in a remarkably robust manner, even when facing environmental or

genetic perturbations, a phenomenon known as canalization [3]. A central ques-

tion in evolutionary biology is therefore what the links are between phenotype

and genotype, and whether these links are constant or open to modifications

[4–7]. Heat shock proteins (HSPs) are important mediators between the genotype

and the phenotype; they are essential molecular chaperones, controlling the fold-

ing and degradation of proteins [8–10]. During periods of stress, competition for

HSPs by damaged proteins reduces their availability. Genetic diversity in the

population that codes for differences in protein sequences, which may normally

be masked by HSPs (i.e. cryptic genetic variation), may then be translated into

phenotypic differences upon which selection could act [11,12]. Via this buffering

hypothesis, HSP90, which mainly interacts with signal transducers and develop-

mental regulators [13], can be envisaged as an evolutionary capacitor, allowing

genetic variation to be hidden from, or visible to, selection [13,14]. It is noteworthy

that the cryptic genetic variation contains not just random variants; they could be,

or have been, successful under certain ecological conditions. So whether the

release of cryptic variation in a stressful environment is negative or positive is

also dependent on the environment. A second hypothesis for how HSP90 could

affect evolvability is through the suppression of transposons: under HSP90

depletion novel genetic diversity might be produced by the mutagenic effect of

transposons [15]. Both the buffering and transposon suppression hypotheses

place HSPs as key regulators of robustness and evolvability. However, there are

differences in these two hypotheses: while the integration of transposons is a
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random mutagenic effect, the release of cryptic genetic vari-

ation has the potential to generate phenotypes that might

already have proved successful under certain environments.

Wild Drosophila melanogaster populations show natural

variation in the amino acid sequence and expression of the

Hsp90 gene Hsp83 [16,17], which suggests that HSP90 function

itself might be subject to evolutionary adaptation [18,19].

Moreover, Hsp90 expression is upregulated when animals

are directly subjected to ecologically relevant stressors [14], a

situation that is in itself predicted to lead to a reduction of avail-

able HSP90 protein, due to increased competition among its

binding partners for this chaperone (capacitor hypothesis; for

review see [20]). It is difficult to disentangle this hypothesized

consequence of reduced HSP90 availability (and thus the

release of cryptic genetic variation) from the direct stressor

effects, which would be necessary to support this important

aspect of the capacitor hypothesis [13]. To our knowledge, it

is unknown whether Hsp90 expression could also be regulated

by ecologically relevant cues acting as an anticipated environ-

mental stress, but independently of a direct stressor effect. Why

might this be important? In a risky environment, a reduction of

Hsp90 expression may be beneficial by mobilizing genetic

variability, translating into more variable offspring whereby

some might achieve higher fitness under adverse conditions,

affording the parents a bet-hedging strategy.

Here, we tested whether Hsp90 expression can be regulated

by environmental cues by performing two experiments in the

red flour beetle, Tribolium castaneum. The first was designed

to test whether cohabitation for 6, 12 or 18 h of focal unmanipu-

lated beetles with wounded beetles resulted in regulation of

Hsp83. We predicted a downregulation of Hsp83 so as to

mobilize genetic variability. We also measured the expression

of well-described stress genes (Hsp68, CytP450) to monitor

the stress level of the focal beetles. Hsp68 is a gene of the

Hsp70 gene family and is normally involved in the acute

stress response (e.g. wounding and heat stress [21]). The

CytP450 gene family has many functions, one of which is

related to the stress response in T. castaneum [21]. We further

hypothesized that wounding of conspecifics might lead to

social transfer of immunity (i.e. enhanced immunity of group

members), as has previously been shown in terms of enhanced

protection against parasites in eusocial insects [22–24], but has

not, to our knowledge, been found in relation to only wounding.

Therefore, we investigated immune gene expression (Att2, Col1,

Thau, Imd [21]), and additionally an individual trait and a social

immune trait, haemolymph phenoloxidase (PO) and quinones

secreted into the environment, respectively. In the first exper-

iment, we used mixed sex cohabitation groups. Therefore, to

ensure that the results we observed in the first experiment

were not explained by responses to mating, in the second exper-

iment we used a similar experimental set-up focusing on one

cohabitation duration (18 h), and tested both mated and virgin

beetles for stress and immune gene expression.
2. Material and methods
(a) The model system and production of experimental

individuals
The red flour beetle, T. castaneum, is a well-established model

system to investigate behaviour, genetics, ecology and immu-

nology [25]. Here, we used the Cro1 strain, which was collected
in Croatia in 2010 [26] and allowed to adapt to laboratory conditions

for at least 20 generations prior to the start of our experiments. Stock

animals were maintained as non-overlapping generations in

organic white flour type 550 supplemented with 5% yeast at 308C
and 70% humidity in a 12 L : 12 D cycle. Experimental individuals

were kept under similar environmental conditions, except where

stated otherwise. Experimental individuals were produced by

allowing approximately 500 two-week-old adults to lay eggs in

flour with 5% yeast for 24 h. The eggs were removed from the

flour by sieving with a mesh size of 280 mm and maintained in a

plastic box in 100 g of flour with 5% yeast for 10 days. After this

time, the larvae were removed from the flour by sieving and indivi-

dualized in 96-well plates, each containing 0.08 g flour with 5%

yeast. The plates were sealed with clear tape, through which air

holes were punctured for each well. Individualization was not

done at an earlier stage because the eggs and early instar larvae

are difficult to manipulate without damaging them.

(b) Nomenclature of HSP90 genes
For abbreviations of the HSP90 genes and proteins, we used

the following typographic rules: HSP90 refers to the protein

in vertebrates and invertebrates, Hsp90 refers to the gene

family of HSP90, and Hsp83 refers to a specific gene of the

Hsp90 gene family.

(c) Experiment 1: Hsp90 gene expression and immunity
in the presence of wounded conspecifics

(i) Experimental design
One week after adult eclosion, we randomly assigned beetles to

one of four treatment groups. Each group consisted of 24 focal

beetles and 24 non-focal marked beetles in 4.8 g of flour per

glass jar (diameter 85 mm), which corresponds to a density of

one beetle per 2.68 mm2. The non-focal beetles were marked on

the pronotum with a small dot of white enamel paint. The four

treatments were as follows, with the order of focal beetle/non-

focal marked beetle (the abbreviation for the treatment group

name is given in parentheses): (i) naive/naive (NN) was used

as our control group; (ii) naive/wounded (NW); (iii) wounded/

naive (WN); (iv) wounded/wounded (WW) (for experimental

set-up, see electronic supplementary material, figure S1). Directly

before cohabitation, beetles were wounded by pricking with a

sterile dissection needle (diameter 10 mm) between the pronotum

and occiput as described in [27]. Each treatment group was repli-

cated four times for three different cohabitation periods: 6, 12

and 18 h (see electronic supplementary material, figure S1). It is

known that immune and stress gene modulation occurs quickly,

and therefore we looked at the acute response phase, as also exam-

ined by Behrens et al. [28] and Altincicek et al. [21]. To test whether

the environment affected HSPs, stress and immunity, we quanti-

fied the gene expression of a set of relevant genes. Furthermore,

we examined changes in the immune system by measuring the

activity of the enzyme PO. We also measured the levels of an exter-

nal immune defence: hydroquinone and benzoquinone levels in

the flour. Tribolium castaneum exhibits intraspecific cannibalism

[29]; however for this and the following experiment, all animals

that were used in the cohabitation assay survived the cohabitation

without any cannibalism.

(ii) Expression of immunity and stress-related genes
To examine whether there were gene expression changes in

immunity upon our cohabitation assay, we chose to test the

expression of Imd, which plays a signal transduction role in the

immune deficiency (imd) pathway in insects (for review, see

[30]). We also tested expression of the two antimicrobial peptides

(AMPs) Attacin2 (Att2) and Coleoptericin1 (Col1), as well as
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Thaumatin1 (Thau). AMPs are small cationic peptides that insert

into and disrupt microbial membranes, thereby killing and clear-

ing pathogens [31]. After infection, they are synthesized de novo

and then released into the insect haemolymph by haemocytes

and to a greater extent the fat body [31,32]. They have previously

been found to be upregulated in response to bacteria as well

as wounding in T. castaneum [21,28]. The antifungal protein

Thaumatin1 is also strongly upregulated upon infection or

sepsis [18]. To test whether there were gene expression changes

in stress-related genes, we examined cytochrome P450 (CytP450),

Hsp90 (experiment 2 only), Hsp83 and Hsp68 [21,33–35]. HSPs

are a well-known class of proteins involved in the stress response

of insects, which act mostly as chaperones [9,10,13]. Hsp68 and

CytP450 were also shown to be differently regulated upon differ-

ent stressors (e.g. heat or wounding) in T. castaneum [21]. For each

time point and experiment, 10 randomly chosen focal beetles of

each group and replicate were pooled into a 1.5 ml microcentri-

fuge tube and frozen in liquid nitrogen. For total RNA

extraction, frozen beetles were homogenized over liquid nitrogen

with a sterile pestle, then 500 ml of Trizol (Ambion RNA) were

added to each sample. The samples were further lysed by incu-

bation at room temperature for 10 min with vortexing every

2 min. After centrifugation (18 000g at 48C, 5 min), the super-

natant was transferred to a new tube, and 100 ml chloroform

was added and incubated at room temperature for an additional

15 min. The samples were centrifuged for 15 min at 11 500g and

48C, and the upper aqueous phase was transferred to a new tube.

For purification of the total RNA from the aqueous phase, we

used the SV Total RNA Isolation System (Promega) according

to the manufacturers’ protocol, which included a DNase diges-

tion step. After purification, the RNA concentration was

measured using a NanoPhotometer Pearl (Implen, Germany).

Next, 100 ng purified total RNA from each sample was used in

a reverse transcription reaction using the SuperScript III

(Invitrogen by Life Technologies GmbH) with random hexamer

primers according to the manufacturer’s protocol. The resulting

cDNA was used undiluted for RT-qPCR analyses using

immune and stress gene-specific primers (see electronic sup-

plementary material, table S1), which were designed so that

when the gene contained more than one exon, the primer crossed

an intron–exon boundary. The amplification efficiencies (E) of

the primers were determined with five dilutions (undiluted, 1 :

10, 1 : 100, 1 : 1000, 1 : 10 000) of template cDNA, where E ¼
1021/slope (see electronic supplementary material, table S1).

RT-qPCR was performed in a 96-well plate format, with a total

reaction volume of 15 ml in each well. From each cDNA

sample, two technical replicate qPCR reactions were performed

using the Kapa Sybr Fast qPCR Mastermix for LightCycler

480 (Peqlab Biotechnologie GmbH) according to the manu-

facturer’s instructions. The reaction was run on a LightCycler

480 (Roche) using the following protocol: 958C for 5 min, fol-

lowed by 40 cycles of annealing and amplification at 608C for

1 min and denaturation at 958C for 15 s. As a final step, the pro-

ducts were heated up to 958C with continuous fluorescence

measurements to obtain the melting curves, and subsequently

cooled to 408C. The resulting Cp values were calculated with

the LightCycler 480 software using the second derivative maxi-

mum method [36] and expression differences between groups

were calculated according to Pfaffl [37]:

rE ¼
Etarget

DCp target ðcontrol�sampleÞ

Ereference
DCp reference ðcontrol�sampleÞ :

There relative fold expression differences (rE) between NN

(control) was tested in turn against each of the other three treat-

ment groups (sample) (i.e. NW, WN and WW). E indicates

efficiency, target indicates the gene of interest (e.g. Hsp83) and

reference indicates the geometric mean of two reference genes,

rp49 and rpL13a (see electronic supplementary material, table S1).
(iii) Individual immunity: phenoloxidase activity
PO activity is an important enzyme in insect immunity and is cor-

related with responses to infection, invasion and wounding [38].

This enzyme is synthesized in haemocytes as an inactive zymogen,

pro-phenoloxidase (proPO), which can be activated by proteolytic

cleavage [39]. We quantified the activity (Vmax) of PO to determine

the immune system’s activity. Therefore, five focal beetles from

each jar of every treatment and replicate were randomly sampled

after cohabitation for the respective time periods. The haemo-

lymph was collected by puncturing the pleural membrane

between the pronotum and occiput with a sterile hypodermic

needle. The out-flowing droplet of haemolymph was collected in

a sterile, pre-chilled glass capillary and transferred into 20 ml of

pre-chilled Bis–Tris buffer [40]. To ensure that every sample con-

tained a concentration of 0.05 ml haemolymph to 20 ml Bis–Tris

buffer, we measured the volume of haemolymph extracted from

each beetle (the volume was between approx. 0.05–0.1 ml per

beetle) and subsequently adjusted the amount of Bis–Tris accord-

ingly. Due to handling error, seven of the 240 samples were lost. To

determine PO activity, 50 ml of distilled water and 50 ml Bis–Tris

were added to a 96-well flat-bottomed plate with 20 ml of

the haemolymph/Bis–Tris mixture. As a negative control, we

added 20 ml Bis–Tris buffer without haemolymph. After adding

50 ml of L-Dopa (4 mg ml21
L-Dopa dissolved in Bis–Tris)

(Sigma-Aldrich), the absorbance was measured on a Tecan Infinite

M200 plate reader at 490 nm and 378C, with readings taken once

every minute for 90 min. PO activity was measured as

the 15 min window in the enzyme reaction when the enzyme

kinetics showed a linear change in absorbance (Vmax). PO activity

thereafter was calculated as Vmax (sample) 2 Vmax (blank).

(iv) External immunity: hydroquinone and benzoquinone levels
in the flour

A phenomenon shared by eusocial insects and the group-living

flour beetles is the alteration of the environment by the secretion

of defensive chemical compounds [41–43]. Tribolium castaneum as

well as Tribolium confusum secrete quinones (benzoquinone and

hydroquinone) into their surroundings to protect their environ-

ment against pathogens [42,43]. Quinones have broad

antimicrobial functions and can be regarded as an external

immune trait [44]. We quantified the hydroquinone and benzoqui-

none levels that the beetles had secreted into the flour at 6, 12 and

18 h after cohabitation. Once the beetles had been removed from the

flour, it was stored at 78C in the dark for four weeks [44]. Storing the

used flour under these conditions modifies the quinones into

benzo- and hydroquinones, which can then be measured using a

UV spectrophotometer plate reader assay at the given light spectra

[44]. From each jar, 0.2 g flour was transferred to a 1.5 ml microcen-

trifuge tube containing 600 ml acetonitrile and kept at 48C for 24 h.

The tubes were then centrifuged for 5 min at 48C and 11 000g. We

then transferred 120 ml of the supernatant from each sample to a

96-well quartz plate (Hellma, Müllheim, Germany) and the peak

height of hydroquinone and benzoquinone was measured in a

Tecan Infinite M200 plate reader at 246 nm and 274 nm, respect-

ively. A sample of flour that had not been exposed to beetles was

used as a negative control, therefore the absorbance value for

both quinones was determined by subtracting the corresponding

value for the negative control.

(d) Experiment 2: the effect of cohabitation on Hsp90
gene expression in relation to sex and mating
status

(i) Experimental design
Here, we used male and female adult beetles that were either

virgin or allowed to mate before cohabitation. Therefore, when
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the individualized larvae (as described above) became pupae, we

determined the sex of each and thereafter individualized them

again in new 96-well plates. One week after adult eclosion, half

of the beetles were randomly allocated to the virgin treatment

and therefore remained in the 96-well plates. The other half of

the beetles were allocated to the mating treatment group,

whereby 24 male and 24 female randomly selected virgin beetles

were placed together for 24 h in a jar filled with 4.8 g flour with

5% yeast (see electronic supplementary material, figure S2, for

the experimental set-up). We produced 12 replicate jars in this

manner. This treatment allowed the beetles to mate in a group

setting, similarly to experiment 1. We did not observe individual

matings, therefore this set-up does not guarantee that every

beetle had mated. However, given that T. castaneum is highly

polygamous, males can mate with up to seven virgin females
in 15 min [45], males often mount immediately after making con-

tact with a female [46], and that males and females were

cohabited for 24 h, it is likely that all of the beetles had copulated

during this period. After 24 h of being allowed to mate, the bee-

tles from the 12 jars were pooled together, and males and females

were separated from each other. We then produced eight single-

sex treatment groups: four groups consisted of the beetles that

had been allowed to mate (i.e. (i) mated female NN, (ii) mated

female NW, (iii) mated male NN and (iv) mated male NW) and

four treatment groups consisted of virgins (i.e. (v) virgin

female NN, (vi) virgin female NW, (vii) virgin male NN and

(viii) virgin male NW) (electronic supplementary material,

figure S2). The marking and wounding of the beetles was done

as described for experiment 1. Each single-sex group consisted

of 10 focal beetles and 10 marked beetles in a small Petri dish



Table 1. The effects of focal treatment (naive or wounded), cohabitant
treatment (naive or wounded) and time of cohabitation (6, 12 or 18 h) on
PO activity of focal beetles. p-values less than 0.05 are in italic type.

tested effect d.f. F-ratio p-value

focal treatment 1,36.22 1.042 0.314

cohabitant treatment 1,36.22 9.917 0.003

time 2,36.22 0.120 0.896

focal treatment � cohabitant

treatment

1,36.22 11.83 0.002

focal treatment � time 2,36.22 2.861 0.070

cohabitant treatment � time 2,36.22 1.555 0.225

focal treatment � cohabitant

treatment � time

2,36.22 1.200 0.313
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After this time, we measured internal personal immunity as (a) PO activity of
haemolymph; each bar is the mean of all animals (n ¼ 20) used (i.e.
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electronic supplementary material, figure S1). All error bars show 1 s.e.
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(diameter 60 mm) with 2 g of flour and 5% yeast, and each group

was replicated seven times. The density was similar to experiment

1, allowing the same interaction space (2.68 mm2). The cohabitation

time was 18 h. For this experiment, we examined only gene

expression, and it was performed as described for experiment 1.

(e) Statistical analyses
The PO and quinone data were analysed using JMP v. 9.0.0 for

Macintosh. For PO activity in experiment 1, we performed a

mixed-effects model (REML), with the response variable as Box–

Cox transformed PO activity (n ¼ 233 animals), and the fixed

factors as time (6, 12 or 18 h), focal animal treatment (naive or

wounded) and non-focal animal treatment (naive or wounded),

including all of the possible interaction terms. The jar in which

the animals had been held for cohabitation was included as a

random factor (n ¼ 48 jars). The quinone data could not be trans-

formed to a normal distribution and had unequal variances. We

therefore performed non-parametric Kruskal–Wallis tests for

each of the quinones, and tested time (6, 12 or 18 h) and treatment

(treatment groups 1–4) as fixed factors in separate models for

each quinone (n ¼ 47; one NN sample (6 h) did not contain measur-

able amounts of quinones). The response variables were the

hydroquinone or the benzoquinone levels.

The expression levels of each gene was calculated with RELATIVE

EXPRESSION SOFTWARE TOOL (REST 2009 [47]), based on the primer

efficiencies (see electronic supplementary material, table S1) and

overall maximal/minimal Cp values providing the variance of

each primer product across all samples and pairwise comparisons

against the control treatment (NN). REST performs a pairwise fixed

reallocation randomization test to examine whether there are sig-

nificant differences between the two groups. We allowed 2000

random reallocations of the observed Cp values to the two

groups being tested; REST notes the expression ratio change for

each reallocation, and the proportion of these effects gives the

p-value assuming a two-sided test [47]. In our figures, we present

the mean and standard errors as calculated according to the REST

software (i.e. the results of the 2000 random reallocations). To cor-

rect for multiple comparisons, we used the false discovery rate

(Benjamini Hochberg correction [48]).
3. Results and discussion
(a) Hsp90 downregulation in the presence of wounded

conspecifics
We analysed the expression of the Hsp90 gene, Hsp83, in

focal animals that were naive but had been cohabited with
wounded conspecifics (NW; figure 1). After both 12 and

18 h of cohabitation, Hsp83 expression was significantly

decreased compared with the control group (figure 1),

which were naive focal beetles that had been placed into

groups with naive beetles (NN). As additional controls, we

tested beetles that were wounded themselves and placed

together with naive or wounded beetles (WN and WW,

respectively). Hsp83 expression was also significantly

decreased in the WW group after 12 h of cohabitation, but

not in the WN group (figure 1), indicating that wounding

as such did not result in any decrease of Hsp83 expression



Table 2. Test for the main effect of time of cohabitation on benzoquinone and hydroquinone levels in the flour, as well as the individual comparisons between
time points for each measured quinone. p-values less than 0.05 are in italic type.

benzoquinone (A246 nm) hydroquinone (A274 nm)

tested effect d.f. x2-value z-value p-value d.f. x2-value z-value p-value

time (main effect) 2 30.05 ,0.0001 2 30.14 ,0.0001

6 versus 12 h 4.724 ,0.0001 4.724 ,0.0001

6 versus 18 h 4.724 ,0.0001 4.724 ,0.0001

12 versus 18 h 0.283 0.7777 20.528 0.598

Table 3. Test, within time of cohabitation, for the effect of combinations of individual and cohabitation treatments (i.e. whether there is a difference between
NN, NW, WN and WW) on quinone levels in the flour. The p-value less than 0.05 is in italic type; none of the groups were statistically significantly different from
the control group (NN) in multiple comparisons.

benzoquinone (A246 nm) hydroquinone (A274 nm)

tested effect d.f. x2-value p-value d.f. x2-value p-value

treatment (6 h) 3 6.040 0.110 3 1.454 0.693

treatment (12 h) 3 9.383 0.025* 3 5.757 0.124

treatment (18 h) 3 3.640 0.303 3 5.052 0.168
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(group WN). Wounding-associated direct stress might argu-

ably rather shift the Hsp83 expression level upwards, such

that the overall result depends on the proportion of wounded

beetles in the surrounding environment in combination with

individual wounding.

Since we did not wound the focal beetles directly, we did

not expect any direct physiological effect on stress genes.

The expression of the stress-related gene Cytochrome P450
(CytP450) was, as predicted, unchanged in focal NW beetles

(figure 1). By contrast, Heat shock protein 68 (Hsp68), which is

a gene of the stress-inducible HSP 70 group [21], showed a

trend for downregulation at 12 h post-cohabitation in NW as

well as in WW beetles, whereas WN beetles showed Hsp68
upregulation potentially as a direct result of wounding.
(b) Social transfer of immunity
As predicted, the immune effector genes Attacin 2, Coleopter-
icin 1 and Thaumatin1 (Thau) were upregulated as a direct

result of wounding (groups WN and WW; figure 1). Consist-

ent with social transfer of immunity, NW showed a significant

but weak upregulation of Att2. We moreover observed a

weak downregulation of the key immune regulator Immune
deficiency (Imd) at 12 h. It is noteworthy that Imd mutant

D. melanogaster show higher resistance against UV stress

based on suppression of apoptosis [49].

Enzymatic activity of PO, a key component of insect

immune defence [50] showed that there was a significant inter-

action between the focal and the cohabitant treatment (table 1

and figure 2a). Individual contrasts showed that as predicted,

the focal animals that were wounded themselves (WN and

WW) had higher PO than the NN group (NN versus WN:

t ¼ 23.134, p ¼ 0.0034; NN versus WW: t ¼ 22.953, p ¼
0.0055), but of particular interest was the fact that NW beetles

had increased PO compared with NN (t ¼ 24.654, p ,

0.0001), illustrating that being kept with wounded conspecifics
is sufficient for unwounded beetles to increase activity of an

immune enzyme. Indeed, there was also an overall increase

in PO when individuals were kept with wounded conspecifics

(table 1). Taken together, the immune gene expression and PO

data show a clear signal of social transfer of immunity to the

non-wounded beetles. This effect is noteworthy, since it is, to

our knowledge, the first demonstration of such an effect of

social transfer of immunity (i.e. increased immunity in naive

beetles after living with wounded conspecifics) in an insect

that is not eusocial, but instead lives in large aggregations of

related and unrelated animals.

In addition to internal (personal) immunity [24], adult

flour beetles release quinone secretions into the surrounding

environment, thereby controlling environmental microbiota

[44,51,52]. Since the molecular pathways of internal immu-

nity (PO) and external immunity (quinones) interact with

one another [44], we hypothesized that PO and quinones

might be correlated. Moreover, T. castaneum could secrete qui-

nones into the flour upon wounding and thereby transfer the

information of the wounding. The levels of benzoquinone

(figure 2b) and hydroquinone (figure 2c) in the flour in

which the beetles had been cohabiting increased with time:

a significant increase occurred between 6 and 12 h of cohabi-

tation and no further increase occurred between 12 and 18 h

(table 2). Unlike the internal immune traits, there was no

effect of cohabitation treatment on the quinones (table 3).

This suggests that information about wounding, and thereby

the effects of the social environment on Hsp83 expres-

sion and immunity, are probably not a consequence of

quantitative changes in environmental quinone levels.

(c) The downregulation of Hsp90 genes is independent
of sex and mating status

Up to this point, we used mixed-sex groups, therefore we

reasoned that one explanation for the effects of cohabitation
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could have been that wounding influences mating behaviour,

and it is this that affected Hsp83 expression. Moreover, Hsp83
expression might differ between males and females. To disen-

tangle mating effects from cohabitation effects, we performed

a second experiment where we tested males and females sep-

arately and used focal animals that had been allowed to mate

or had been kept as virgins prior to the cohabitation treat-

ment (see electronic supplementary material, figure S2). We

concentrated on the 18 h time point, where Hsp83 expression

differences were previously found to be strongest (figure 1),

and two treatment groups: NN and NW. In addition to

Hsp83, which codes for the more well-known cytosolic

protein of the HSP90 group and is the homologue of
Drosophila Hsp83 [35,53,54], we included the more recently

described paralogue Hsp90, which codes for an endoplas-

matic reticulum-based HSP90 protein [34]. We predicted

that Hsp90 would behave similarly to Hsp83. Our data con-

firm and support the results of the first experiment,

showing a persistent and highly significant reduction of

Hsp83 expression in both males and females from the NW

group relative to the NN group, which was independent of

mating (figure 3). Intriguingly, Hsp90 showed exactly the

same pattern as Hsp83. The increased statistical power of

this experiment showed that the downregulation of Imd due

to social transfer of immunity was restricted to females.

Furthermore, we confirmed the downregulation of Hsp68.
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Interestingly, it has previously been hypothesized that such

HSP70 proteins might also serve a capacitor function [11].

4. Conclusion
Taken together, we found persistent downregulation of two

Hsp90 group genes in animals where the only treatment was to

place them in a group with wounded conspecifics. We could

exclude that this effect resulted from changed mating behaviour

of the wounded conspecifics, and thus consider it likely that it

might represent an adaptive response to the perceived riskiness

of the environment. The observed reduction (by 50% or less) is

moderate and well within the range that was shown to be bio-

logically relevant in terms of release of cryptic genetic variation

both in the laboratory and in natural populations of Drosophila
[13,16,18]. Our studies provide an important proof of principle

that Hsp90 gene expression, and therefore potentially evolv-

ability, could be regulated by an organism in response to

environmental cues. It is noteworthy that we recently also

observed a trend for reduced expression of Hsp83 across gener-

ations as a consequence of trans-generational immune priming

in the same beetle species [55]. Finally, linking Hsp90 expression
to social cues derived from wounding represents an ecologically

relevant situation [56], since wounding can be associated with

infection and thus potentially situations that demand for fast

coevolutionary change. This is reminiscent of arguments for the

benefit of sexual reproduction for host–parasite coevolution

[57]. It remains to be shown how the relevant signals are per-

ceived by the organism, and whether the reduced expression of

HSPs facilitates adaptation in this species, be it through the release

of cryptic genetic variation or the mobilization of transposons.
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