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Effect of β‑1,3/1,6‑glucan on gut microbiota 
of yellow‑feathered broilers
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Abstract 

β-1,3/1,6-glucan as a prebiotic improves immune performance in animals. These functions are closely related to the 
effect of β-1,3/1,6-glucan on gut microbiota structure. However, the effect of β-1,3/1,6-glucan on the gut microbiota 
structure of broilers is unclear. The aim of this study was to confirm the effects of β-1,3/1,6-glucan on the cecal micro-
flora structure of yellow-feathered broilers. This study monitored the antimicrobial resistance (AMR) level of Escherichia 
coli in feces of yellow-feathered broilers by standard broth dilution method and mastered the AMR level of chickens 
selected. The effects of β-1,3/1,6-glucan on gut microbiota were investigated by 16S rRNA sequencing. The results 
showed that the number of isolated multidrug-resistant E. coli strains accounted for 98.41%. At 14, 21, and 28 days of 
age, supplemented of 0.2%, 0.1%, and 0.1% β-1,3/1,6-glucan in yellow-feathered broiler diets significantly altered gut 
microbial composition, and beneficial bacteria Alistipes, Bacteroides and Faecalibacterium were significantly increased. 
These findings provide guidance and recommendations for β-1,3/1,6-glucan as a broiler feed additive to improve the 
growth of broilers.
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Introduction
Antibiotics used in animal breeding are one of the impor-
tant sources of environmental antibiotics pollution. The 
increasing concentration of antibiotics in the environ-
ment makes bacteria evolve more extensive antimicrobial 
resistance (AMR) and further changes the composition 
of the microbial community (Danner et  al. 2019). Anti-
biotics in livestock and poultry feeding processes can 
cause gut microbiota disorder and hinder animals’ aver-
age growth and metabolism (Lillehoj et  al. 2018). The 
European Union, the United States and China imposed 

a complete ban of all anti-biotics in animal feed to pro-
mote growth in January 2006, January 2017 and October 
2020, respectively (Salim et al. 2018). In promoting non-
antibiotic breeding, finding suitable antibiotic substitutes 
is an essential link in the feeding mode of reducing the 
use of antibiotics. Currently, a number of possible alter-
natives to AGP are used, including acidifiers, probiotics, 
enzymes, algae and herbal products, microflora enhanc-
ers, and immuno-modulators (Salim et  al. 2018; Seidavi 
et al. 2021).

β-glucan is considered a natural prebiotic with vari-
ous biological functions, such as antioxidant, free radi-
cal scavenging, anti-tumor, anti-cancer, and immune 
activation, competing with pathogenic microorgan-
isms for binding sites in intestinal epithelial cells to 
prevent inflammation (Baldassano et  al. 2017; De 
Marco et al. 2021; Mo et al. 2017; Virginio et al. 2021; 
Xu et al. 2009). The main chain of β-1,3/1,6-glucan is a 
linear skeleton with β-1,3 bonds, and the side chain is 
a highly branched β-1,6 bond (Baldassano et al. 2017). 
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It is commonly found in the cell walls of yeast, bacte-
ria, fungi, algae, and plants (Baldassano et  al. 2017). 
β-1,3/1,6-glucan was proved to be a source of sub-
stances with immune-stimulating properties in yeast 
cells in 1955 (Louis et al. 1955). It is a green, healthy, 
safe, and effective immune adjuvant (Bobadilla et  al. 
2013; Wu et  al. 2016). β-1,3/1,6-glucan can reduce 
the colonization of Salmonella in the intestinal tract, 
relieve the level of intestinal and visceral organ injury 
caused by Salmonella infection, promote the number 
of probiotics such as Bifidobacterium and Lactobacil-
lus, and also have a significant immune effect against 
parasitic and viral diseases (Horst et  al. 2019; Shao 
et al. 2016). β-1,3/1,6-glucan is an essential component 
of a prebiotic-rich diet that promotes the growth and 
metabolism of the gastrointestinal microbiota (Horst 
et al. 2019; Shao et al. 2016).

Gut microbiota is a vast microbial ecosystem and 
complex ecosystem, easily affected by many factors, 
such as the environment, age, diet, and feed additive 
(Chen et  al. 2020; Fassarella et  al. 2021). Gut micro-
biota participate in vital physiological processes, such 
as energy homeostasis, metabolism, intestinal epi-
thelial health, immune activity and neural develop-
ment (Barko et al. 2018). Jayachandran et al. reported 
that the gut microbiota might realize the immu-
nomodulatory effect of β-glucan as the mediator of 
the immune response (Jayachandran et  al. 2018). At 
present, the research on β-glucan and gut microbiota 
mainly include rats (Aoe et  al. 2019), mice (Shi et  al. 
2020), fish (Harris et al. 2020), dogs (Van et al. 2020), 
weaned piglets (Metzler-Zebeli et al. 2011), and calves 
(Virginio et  al. 2021), which have not been reported 
in broilers. Among them, β-glucan distinctly raised 
the number of Lactobacilli and Bifidobacteria in the 
colon of weaned pigs, and also increased the concen-
tration of butyrate in the stomach, cecum and colon, 
which may be beneficial to the intestinal development 
of weaned pigs (Metzler-Zebeli et  al. 2011). β-glucan 
significantly increased acetic acid and butyrate con-
centrations in cecum of rats. The abundance of Bacte-
roidetes in cecum was significantly increased, and the 
abundance of Firmicutes in cecum was significantly 
decreased, which was helpful to induce secreted IgA 
to neutralize the toxins produced by microorganisms 
(Aoe et al. 2019).

In this study, the AMR of yellow-feathered broilers 
was monitored. The effects of β-1,3/1,6-glucan on the 
gut microbiota of broilers from hatching to 28 days of 
age were studied. This experiment analyzed the effect 
of β-1,3/1,6-glucan as a substitute antibody product 
in improving the gut microbial composition by 16S 
rRNA.

Materials and methods
Animals and sampling
This study was conducted on a farm in Huangzhong 
County, Qinghai Province. 240 1-day-old yellow-feath-
ered broilers (male) with similar genetic and growth 
status were randomly divided into four groups with 
four replicates per group and 15 broilers per repli-
cate. The broilers were housed in 16 cages with a size of 
150 cm × 80 cm × 38 cm (15 broilers each). The negative 
control group (Y) was fed a basal diet. In the antibiotic 
group (T), 0.02% tylosin (Ringpu, China, with a purity of 
10%) was added to the basal diet. β-1,3/1,6-glucan groups 
1 and 2 (G1, G2) were supplemented with 0.1% and 0.2% 
β-1,3/1,6-glucan (Xingzhongcheng, China, from yeast) in 
basal diet, respectively. The composition and nutritional 
level of the basal diet are shown in Table 1.

The broilers had free access to feed and water dur-
ing the experiment. We used incandescent lamps, 
which were slightly higher at 40  lx for the first week. 
After the second week, the light intensity gradually 
decreased and was 25  lx. The light was 24  h a day in 
the first week, then decreased to 0.5  h a day until the 
26th day, and then kept for 17 h a day. The room tem-
perature is controlled to be 35–33  ℃ on the 1st–7th 
day, 32.5–29.5 ℃ on the 8th–14th day, and 29–24 ℃ on 
the 15th–28th day. The humidity of the chicken house 
shall be kept between 60–70%, and the chicken house 

Table 1  Ingredient composition and analysed nutrient contents 
of the basal diet

Multi mineral content per kilogram of broiler: Copper 8 mg, Iron 60 mg, zinc 
60 mg, manganese 60 mg, Selenium 0.15 mg and Iodine 0.35 mg. Nutritional 
levels are calculated values

Composition Proportion% Nutritional level

Corn 56.81 Dry matter 84.36%

Soybean meal 28.00 Metabolic energy 11.84 (MJ/kg)

Soybean oil 2.00 Crude protein 19.55%

Wheat bran 5.30 Crude fat 4.47%

Yeast powder 3.00 Crude fiber 3.81%

Stone powder 1.96 Ash content 2.80%

Calcium hydrogen 
phosphate

1.10 Calcium 1.09%

Sodium Chloride 0.30 Phosphorus 0.64%

Methionine 0.23 Methionine 0.55%

Lysine 0.35 Lysine 1.45%

Threonine 0.08 Threonine 0.86%

Sodium sulphate 0.10

Broiler multi mineral 0.12

50% choline chloride 0.10

Baking soda 0.05

Premix 0.50

Total 100.00
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shall be disinfected and cleaned regularly according to 
the routine immunization procedure. Use 0.1% bromo-
geramine solution to sterilize chickens, once a week, 
spray steriliza-tion. One yellow-feathered broiler was 
randomly selected from each replicate of each group 
for fresh feces collection at 7, 14, 21, and 28  days of 
age, respectively. One yellow-feathered broiler was ran-
domly selected from each replicate of each group at 
14, 21, and 28  days of age. After the chicks were dis-
sected, the cecal contents were collected with sterile 
cotton swabs and put into a 5 ml sterile centrifuge tube. 
Refrigerate in a liquid nitrogen tank after sealing.

Identification of Escherichia coli isolates and antimicrobial 
susceptibility testing
A total of 64 fresh fecal samples were collected at 7, 14, 
21, and 28 days of age using Cary-Blair transport medium 
to isolate of Escherichia coli. Matrix-assisted laser des-
orption ionization-time-of-flight mass spectrometry 
(Bruker MALDI Biotyper System, Germany) was used for 
strain identification. AMR of E. coli strains was detected 
by the broth dilution method. The isolation and identi-
fication of E. coli strains and AMR detection methods 
were described in previous studies (Tang et al. 2021).

DNA extraction, sequencing, and data analysis
According to the manufacturer’s instructions, the micro-
bial genomic DNA was extracted from cecum con-
tents of yellow-feathered broilers using the QIAamp 
DNA Stool Mini Kit (QIAGEN, US). The concentration 
of DNA in the extracted samples was detected with a 
NanoDrop 2000 spectrophotometer (ThermoFisher, 
US). The extracted DNA samples above were submitted 
to Shanghai Majorbio Bio-pharm Technology Co, Ltd 
for sequence analysis. The V3–V4 region of the bacte-
rial 16S rRNA gene was amplified from each genomic 
DNA sample by using the primers 338F (5′-ACT CCT 
ACG GGA GCA GCA-3′)—806R (5′-GGA CTA CHV 
GGG TWT CTA ATT-3′). Sequencing libraries were 
then constructed using TruSeqTM DNA Sample Prep 
Kit and sequenced on an Illumina MiSeq 300 platform. 
After sample splitting of PE reads obtained by MiSeq 
sequencing, double-ended reads were firstly controlled 
and filtered according to sequencing quality and, at the 
same time, spliced according to the overlapping relation-
ship between double-ended reads to obtain optimized 
data after quality control spliced. Then, sequence denois-
ing methods (DADA2/Deblur) were used to process the 
optimized data, and Amplicon Sequence Variant (ASV) 
was used to represent the sequence and abundance 
information.

Statistical analysis and visualization
All statistical analyses were performed by SPSS 23.0 
(IBM, US) using an unpaired two-tailed Student’s t-test. 
Data are presented as the mean ± SEM. Results were 
considered significant when P < 0.05. Based on the repre-
sentative sequences and abundance information of ASV, 
taxonomic analysis, community diversity analysis, spe-
cies difference analysis, correlation analysis, and a series 
of statistical or visual analyses can be carried out. Alpha 
diversity indices (Chao and Shannon) via QIIME soft-
ware (Version 1.7.0) and shown with R software (Version 
2.15.3) (Lawley & Tannock 2017). Principal coordinate 
analysis (PCoA) was performed to analyze the beta diver-
sity. Circos and Pie charts were generated to show taxa 
distribution at the phylum and genus levels.

Results
Isolation of E. coli and antimicrobial susceptibility
63 strains of E. coli were isolated and identified from 64 
stool samples collected in this research, with an isolation 
rate of 98.44%. 63 of the E. coli strains to 13 antibiotics 
are shown in Fig. 1a and Fig. 1b. In terms of the MIC dis-
tribution (Fig. 1c), the MIC values of the antibiotics ampi-
cillin (AMP), amoxicillin/clavulanate potassium (AMC), 
cefotaxime (CTX), ceftiofur (CEF), gentamicin (GEN), 
tetracycline (TET), ciprofloxacin (CIP), sulfamethoxazole 
(T/S) and florfenicol (FFC) were highly resistant to these 
antibiotics. AMP, AMC, CEF, TET, and CIP showed the 
highest AMR rates of over 90%, followed by CTX, T/S, 
and FFC, at 85.71%, 85.71%, 88.89%, while GEN exhib-
ited AMR rates greater than 70%. Among the isolates, 
strains with multidrug resistance (MDR) accounted for 
98.41% of the total isolates. In addition, their AMR rates 
for amikacin (AMK), colistin (CS) and tigecycline (TIG) 
were 11.11%, 4.76% and 1.59%, respectively. All tested E. 
coli strains were sensitive to meropenem (MEM). These 
results indicate that the AMR of chicken-derived E. coli 
in this region is profound.

As shown in Fig. 2 and Table 2, there were 18 types of 
AMR spectrum of 63 strains. AMP-AMC-CTX-GEN-
CEF-CIP-T/S-TET-FFC was the most AMR phenotype 
of 31 strains (49.21%). There were 3 strains (4.76%) of 8 
classes of antibiotics, 38 strains (60.32%) of 7 classes of 
antibiotics, 12 strains (19.05%) of 6 classes of antibiotics, 
7 strains (11.11%) of 5 classes of antibiotics. It shows that 
the MDR of E. coli in this chicken farm is numerous, and 
there are many kinds of AMR profiles.

16S amplicon sequencing
2,500,002 optimized 16S amplicon sequences with 
1,034,571,892  bp and an average length of 414  bp were 
obtained from 48 cecal content samples. As shown in 
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Fig.  3a, gentle rank-abundance curves at the ASV level 
indicate that species are evenly distributed in the sample 
community. As shown in Fig. 3b, the dilution curve under 
the sobs index of ASV level reflects that the amount of 

sequencing data of the submitted samples are reasonable. 
The coverage index of all sequencing samples was more 
significant than 0.99, indicating that the sequencing results 
were reliable. As shown in Venn Fig. 3c, d, e, the number of 

Fig. 1  The susceptibility test results of 63 strains of E. coli to 13 antibiotics. a AMR rates of Escherichia coli. b The distribution of multidrug-resistant 
strains. c MIC distributions of 13 antibiotics in isolated E. coli strains. MIC minimum inhibitory concentration, MDR multidrug resistance, AMP 
ampicillin, AMC amoxicillin/clavulanate potassium, CTX cefotaxime, CEF ceftiofur, AMK amikacin, GEN gentamicin, TET tetracycline, TIG tigecycline, 
MEM meropenem, CS colistin, CIP ciprofloxacin, T/S sulfamethoxazole, FFC florfenicol
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ASVs shared by the four groups at 14 days of age, 21 days of 
age, and 28 days of age were 109, 119, and 133, respectively, 
indicating that the bacterial species similarity in cecal con-
tents of yellow-feathered broilers increased, possibly due to 
the gradual stability of gut microbiota with the increase of 
age.

β‑1,3/1,6‑glucan administration altered broilers gut 
microbiota
The alpha-diversity indicated that the Chao index had 
a downward trend from the control group to the G1 
group in 14  days (P < 0.05) (Fig.  4a, b), and there was 
an upward trend from 21  days (P < 0.05) (Fig.  4c, d) in 

G1 G2 T Y G1 G2 T Y G1 G2 T Y G1 G2 T Y

ResistantIntermediateSensitive
CEF
CTX
GEN
AMC
AMP
TET
CIP
FFC
T/S
TIG
MEM
CS
AMK

7d 14d 21d 28d
Fig. 2  AMR profiles of 63 E. coli strains. AMP ampicillin, AMC amoxicillin/clavulanate potassium, CTX cefotaxime, CEF ceftiofur, AMK amikacin, GEN 
gentamicin, TET tetracycline, TIG tigecycline, MEM meropenem, CS colistin, CIP ciprofloxacin, T/S sulfamethoxazole, FFC florfenicol

Table 2  The AMR patterns of 63 of E. coli strains

ID Antibiotic-resistant pattern Number Percentage

1 AMP-AMC-CTX-GEN-CEF-CIP-T/S-TET-FFC 31 49.21

2 AMP-AMC-CTX-CEF-CIP-T/S-TET-FFC 4 6.35

3 AMP-AMC-CTX-GEN-CEF-CIP-TET-FFC 4 6.35

4 AMP-AMC-CTX-CEF-CIP-TET-FFC 3 4.76

5 AMP-CTX-GEN-CEF-CIP-T/S-TET-FFC 3 4.76

6 AMP-AMC-GEN-CEF-CIP-T/S-TET-FFC 2 3.17

7 AMP-AMC-CTX-AMK-GEN-CEF-CIP-T/S-TET 2 3.17

8 AMP-AMC-CTX-AMK-GEN-CEF-CIP-T/S-TET-FFC 2 3.17

9 AMP-AMC-CTX-AMK-GEN-CS-CEF-CIP-T/S-TET-FFC 2 3.17

10 AMP-AMC-CIP-T/S-TET-FFC 2 3.17

11 AMP-AMC-CTX-CEF-CIP-T/S-TET-TIG-FFC 1 1.59

12 AMP-AMC-CTX-GEN-CS-CEF-CIP-T/S-TET-FFC 1 1.59

13 AMP-AMC-GEN-CEF-CIP-FFC 1 1.59

14 AMC-CTX-AMK-GEN-CIP-T/S-TET 1 1.59

15 AMP-AMC-CEF-CIP-T/S-TET 1 1.59

16 AMP-AMC-CIP-T/S-TET 1 1.59

17 AMP-AMC-T/S-TET 1 1.59

18 AMP-AMC-TET 1 1.59
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yellow-feathered broilers cecum. The beta-diversity 
showed significant differences in cecal contents micro-
biota community at 14, 21, and 28 days of age (Fig. 5a). 
The beta-diversity showed significant changes in the 
microbial community members of cecal contents from 
the control group to T, G1, and G2 groups (Fig. 5b, c, d). 
Especially in the G1 group, its clustering is far from all 
other groups. In broilers cecum, T groups were closer 
to the control group. In 21 days, the G2 group was as far 
away from the control group as the G1 group.

Next, we analyzed broilers’ microbiota composition 
in the cecum of broilers in the Y, T, G1, and G2 groups. 
Taxonomic analysis showed that the dominant bacte-
ria phyla were Firmicutes and Bacteriodetes, accounting 
for more than 93.43% of the total sequences in all sam-
ples (Fig. 6). Compared to the control group, the relative 
abundance of Firmicutes in the T group and G1 group 
were increased by 13.64% (P < 0.05) and 12.60% (P < 0.05) 
in 14 days of broilers, respectively (Fig. 6a). However, the 

relative abundance of Bacteriodetes in the T group and 
G1 group was decreased by 14.47% (P < 0.05) and 16.94% 
(P < 0.05) in 21 days samples relative to the control group, 
respectively (Fig. 6b). Firmicutes were less by 20.17%, and 
Bacteriodetes increased by 18.65%, abundant in 28  days 
samples of the G2 group compared to the control group 
(P < 0.05) (Fig. 6c).

At the genus level, cecal contents samples were 
dominated by Alistipes (13.07%), Bacteroides 
(10.66%), Ruminococcus_torques_group (10.46%), 
unclassified_f__Lachnospiraceae (7.86%), Faecalibacte-
rium (6.13%), and Lactobacillus (5.31%) (Fig. 7). Among 
the top 5 taxa, at 14 days of age, compared with the con-
trol group, Faecalibacterium had a downward trend in 
the T group, and it significantly rose in the G1 and G2 
groups (P < 0.05). unclassified_f__Lachnospiraceae had an 
extremely significant decline in the G2 group compared 
with the control group at 14 days of age (P < 0.05). At the 
21  days of age, the T group had a significant increase 
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in Bacteroides and unclassified_f__Lachnospiraceae 
(P < 0.05), and the latter significantly rose in G1 and G2 
group (P < 0.05) compared with the control group. At 
the 21 days of age, the T group had a significant decline 
in Alistipes (P < 0.05), Ruminococcus_torques_group 
(P < 0.05), and Faecalibacterium (P < 0.05), and Rumino-
coccus_torques_group significantly decline in G1 group 
(P < 0.05) compared with the control group. At 28  days 
of age, compared with the control group, the contents of 
Alistipes and Bacteroides in the G1 group were signifi-
cantly increased and decreased (P < 0.05). At 28  days of 
age, compared with the control group, the G2 group had 
a significant increase in Ruminococcus_torques_group 
and unclassified_f__Lachnospiraceae and it significantly 
declines in Bacteroides (P < 0.05).

Bacterial taxa differentially represented in broilers cecum 
microbiota
Broiler cecum bacterial features were analyzed by 
using lefse. Hierarchically clustered heat map for the 

significantly different bacterial genera in cecal contents 
of 14 day old broiler, 21 day old broilers and 28 day old 
broilers (Fig. 8). The abundance of these significantly dif-
ferent features was shown on the heat map. At 14  days 
of age (Fig.  8a), Bifidobacterium and Lactobacillus sig-
nificantly increased in the T group compared with other 
groups (Y, G1, G2). At 21  days of age (Fig.  8b), Mega-
monas and Enorma had a significant increase in the 
G2 group compared with other groups (Y, T, G1), Bac-
teroides, and Helicobacter had a significant increase in 
the T group compared with other groups (Y, G1, G2). 
At 28  days of age (Fig.  8c), Ruminococcus_torques_
group, Desulfovibrio, Defluviitaleaceae_UCG_011, and 
unclassified_f__Lachnospiraceae in the G2 group were 
significantly higher than other groups (T, Y, G1).

Discussion
β-1,3/1,6-glucan can improve the immune level of the 
body, increase the expression of immune factors in intes-
tinal and other damaged parts, and alleviate the damage 
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to the body after pathogen infection (Bobadilla et  al. 
2013; Wu et al. 2016). The β-glucan regulating gut micro-
biota is a potential method to reduce disease suscepti-
bility and improve growth performance in piglets (Luo 
et al. 2019). In this study, we detected the AMR of yellow-
feathered broilers to 13 antibiotics from birth to day 28 
and found that broilers in this study were highly resistant 
to multiple antibiotics. There was no difference in AMR 
among different groups.

The structure of gut microbiota is critical to intesti-
nal function (David et al. 2014). The composition of gut 
microbes is influenced by factors such as antibiotic treat-
ment and diet (Clemente et  al. 2018; Dixit et  al. 2021). 
At 14 and 21 days, 0.1% and 0.2% β-1,3/1,6-glucan sup-
plementation increased cecal microflora diversity, 
respectively. At 28  days, supplementation of 0.1% and 
0.2% β-1,3/1,6-glucan increased cecal microflora diver-
sity, but no significant difference. The results showed 
that different glucan contents had different effects on 
the gut microbiota diversity of broilers at different ages. 
Fassarella et  al. found that β-glucan had no significant 

difference in the alpha diversity of gut microbiota in early 
pigs, and a PCoA analysis showed that β-glucan had a 
significant effect on feces samples before weaning (Hugo 
et  al. 2020). Velikonja et  al. showed that different daily 
intakes of glucan (6 g vs. 3 g per day) had different effects 
on gut microbiota diversity (Velikonja et al. 2019). These 
results are similar to our findings. The addition of dif-
ferent glucan levels (0.1% and 0.2%) has different effects 
on the gut microbiota diversity of chicks. However, our 
study discovers that adding different levels of β-1,3/1,6-
glucan may have the opposite effect on the diversity of 
gut microbiota.

The interaction between diet-microorganism-host is 
closely related to body health and disease (Clemente 
et  al. 2018). Dysbiosis of the gut microbiota can lead 
to diseases as diverse as inflammatory bowel disease 
(IBD), systemic inflammatory arthritis, and multiple 
sclerosis (Clemente et  al. 2018; Velikonja et  al. 2019). 
In this study, the dominant bacteria in the cecal con-
tents of chicks were Alistipes, Bacteroides, Ruminococ-
cus_torques_group, unclassified_f__Lachnospiraceae, 
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Faecalibacterium and Lactobacillus. Studies have shown 
that Alistipes produce short-chain fatty acids and reduce 
intestinal inflammation, which may have a protective 
effect on many diseases, including liver fibrosis, coli-
tis, cancer immunotherapy, and cardiovascular disease 
(Parker et  al. 2020). Bacteroidetes and Faecalibacterium 
have been positively correlated with human health and 
are considered health-promoting gut microbiota (Wang 
et al. 2020). Bacteroides encodes polysaccharide binding 
proteins in the outer membrane through polysaccharide 

utilization sites (PUL) to capture polysaccharides and 
decompose polysaccharides into oligosaccharides to 
promote the utilization and uptake of dietary polysac-
charides by Bacteroides (Tamura et  al. 2017). Faecali-
bacterium facilitates the utilization of acetate in the 
intestine (Virginio Junior et al. 2021). Acetate is used as 
an energy source for the liver and peripheral tissues and 
as a signal molecule in gluconeogenesis and lipogenesis 
(Zambell et al. 2003). Ruminococcus_torques_group and 
unclassified_f__Lachnospiraceae belong to Firmicutes 
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(Bassanini et al. 2019). Ruminococcus_torques aggravates 
the symptoms of neurodegenerative disease amyotrophic 
lateral sclerosis (Blacher et  al. 2019). Mucosa-associ-
ated bacteria Ruminococcus_torques are significantly 
increased in the intestinal epithelial cells of IBD, such as 
ulcerative colitis and Crohn’s disease (Png et  al. 2010). 

Although members of Lachnospiraceae are among the 
primary producers of short-chain fatty acids, the differ-
ent taxonomic groups of Lachnospiraceae have also been 
associated with different enteral and parenteral diseases 
(Vacca et al. 2020). Metabolic syndrome, obesity, diabe-
tes, liver disease, and IBD are all inflammatory diseases 
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associated with the Lachnospiraceae family or specific 
taxonomic groups of Lachnospiraceae (Vacca et al. 2020; 
Zeng et al. 2016). In addition, they appear to be associ-
ated with major depressive disorder and multiple scle-
rosis syndrome (Cheung et  al. 2019; Vacca et  al. 2020). 
Meanwhile, the increased abundance of Lachnospiraceae 
was associated with aging (Odamaki et al. 2016).

This study found that adding 0.2% β-1,3/1,6-glucan to 
the diet of 14  days of age yellow-feathered broilers can 
significantly improve the abundance of Faecalibacterium 
that promote intestinal health and significantly reduce 
the abundance of unclassified_f__Lachnospiraceae asso-
ciated with host aging and many diseases. Supplementa-
tion of 0.1% β-1,3/1,6-glucan in diets of yellow-feathered 
broilers at 21 days of age significantly reduced the abun-
dance of Ruminococcus_torques_group, which is asso-
ciated with host enteritis and neurological diseases. 
Supplementation of 0.1% β-1,3/1,6-glucan at 28  days of 
age significantly increased the abundance of Alistipes, 
which promotes intestinal nutrition and protection. 
Huali et al. reported that β-glucan significantly increased 
the abundance of Bacteroidetes and Faecalibacterium. 
On the contrary, the abundance of Lachnospiraceae 
and Ruminococcus significantly decreased, similar to 
the results in this study (Wang et  al. 2020). Hugo et  al. 
found significant differences in Ruminococcus in feces 
when β-glucan dietary intervention was administered at 
the pre-weaning stage, highlighting the potential regula-
tory role of the microbiota on dietary fiber (Hugo et al. 
2020). Angelis et al. reported that after the intervention 
of a barley glucan diet on the human body, the abun-
dance of Ruminococcus increased, and the abundance of 
other Firmicutes such as Faecalibacterium decreased (De 
Angelis et  al. 2015). These results indicate that dietary 
supplementation of β-glucan can regulate the gut micro-
biota structure, and the source and amount of β-glucan 
can significantly affect sensitive bacteria. In this study, 
the supplementation of 0.1% and 0.2% β-1,3/1,6-glucan 
in diets of yellow-feathered broilers had different effects 
on the cecal microflora structure of broilers at different 
ages. Supplementation of 0.2%, 0.1%, and 0.1% β-1,3/1,6-
glucan in the diets of yellow-feathered broilers at 14, 21, 
and 28  days of age had significant effects on the main-
tenance of gut microbiota structure that was more con-
ducive to intestinal nutrient absorption and immune 
resistance.

In this study, we found that yellow-feathered broil-
ers from hatching to the 28th day were highly AMR to 
9 commonly used antibiotics. At 14, 21, and 28  days of 
age, yellow-feathered broilers supplemented with 0.2%, 
0.1%, and 0.1% β-1,3/1,6-glucan significantly changed 
the gut microbiota composition and beneficial bacte-
ria such a beneficial bacteria Alistipes, Bacteroides and 

Faecalibacterium significantly increased. These results 
demonstrate that β-1,3/1,6-glucan as an antibiotic sub-
stitute can improve gut microbiota composition, which is 
helpful for the promotion and application of alternative 
antibiotic products.
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