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The role of sequestosome 1/p62 protein in amyotrophic 
lateral sclerosis and frontotemporal dementia pathogenesis

Amyotrophic Lateral Sclerosis and 
Frontotemporal Lobar Degeneration 
Amyotrophic lateral sclerosis (ALS), the most common form 
of motor neuron disease, is a severe neurodegenerative dis-
order marked by progressive muscle weakness and paralysis 
caused by selective loss of motor neurons in the brain and 
spinal cord. The average survival time post-diagnosis is 2–3 
years, with death most commonly caused by respiratory 
failure (Zarei et al., 2015). ALS can be classified as either 
sporadic, with no previously reported family history of the 
disease, or as familial. Frontotemporal lobar degeneration 
(FTLD), the third most common cause of dementia (Bang et 
al., 2015), is an umbrella term that encompasses a range of 
diseases marked by progressive loss of neurons in either one 
or both the frontal and temporal lobes (Mann et al., 1993; 
Rosen et al., 2002). FTLD patients generally present with 
behavioral and personality changes, and similarly to ALS, 
can be classified as either familial or sporadic (Seelaar et al., 
2011). Originally considered unrelated diseases the two dis-
eases are now thought to exist on a disease continuum due 
to pathological, genetic and clinical overlap (Neumann et al., 
2006; Vance et al., 2006; Hasegawa et al., 2008; Lillo et al., 
2012; Majounie et al., 2012). 

While the main symptom of ALS is progressive muscle 
paralysis, up to 50% of patients will also develop cognitive 
impairment, and up to 15% of ALS patients meet the FTLD 
diagnostic criteria (Lomen-Hoerth et al., 2003; Ringholz et 
al., 2005). Conversely, up to 40% of FTLD patients exhib-
it ALS symptoms, while 15% meet the diagnostic criteria 
for ALS (Lomen-Hoerth et al., 2002). Additionally there is 
overlap in protein pathology. Pathological protein inclusions 

containing TAR DNA-binding protein 43 (TDP-43) or tau 
have been identified in both ALS and FTLD patients (Lippa 
et al., 2000; Morris et al., 2001; Yang et al., 2003; Neumann et 
al., 2006; Behrouzi et al., 2016). On a genetic level, while mu-
tations in the superoxide dismutase 1 (SOD1) gene appear to 
be unique to ALS and mutations in MAPT (coding for tau) 
are identified only in FTLD patients (Bennion Callister and 
Pickering-Brown, 2014), commonly associated genes have 
been identified. For example, the hexanucleotide repeat ex-
pansion in chromosome 9 open reading frame 72 (C9ORF72) 
is the most common genetic cause of both ALS and FTLD, 
having been identified in 30–40% of familial ALS and up to 
25% of FTLD cases (DeJesus-Hernandez et al., 2011; Renton 
et al., 2011). Repeat expansions have also been identified in 
sporadic ALS and FTLD (Renton et al., 2011; Majounie et 
al., 2012). 

Other genes implicated in both diseases include those cod-
ing for the autophagy receptors (ARs) sequestosome 1/p62 
protein (SQSTM1/p62), optinuerin (OPTN), valosin-con-
taining protein (VCP) and ubiquilin 2 (UBQLN2) (Synofzik 
et al., 2012; Le Ber et al., 2013; Kwok et al., 2014; Deng et 
al., 2017; Blauwendraat et al., 2018; Pottier et al., 2018), the 
function of these ARs is to sequester and remove old or dam-
aged proteins and organelles via the autophagy-lysosome 
system. In addition to variants in ARs, mutations in tank-
bingling kinase (TBK1), a kinase that modifies OPTN and 
SQSTM1/p62 function, have also been identified in ALS and 
FTLD (Freischmidt et al., 2015; Le Ber et al., 2015; Cui et al., 
2018; McCombe et al., 2018). We searched for the terms p62 
and SQSTM1 in combination with neurodegeneration, amy-
otrophic lateral sclerosis, frontotemporal degeneration, ALS 
and FTD. Searches were carried out on September 1st, 2019. 
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Sequestosome 1/p62 Protein in Amyotrophic 
Lateral Sclerosis and Frontotemporal Lobar 
Degeneration 
SQSTM1/p62, henceforth referred to as p62, is a scaffold pro-
tein that has roles in various signaling pathways and protein 
degradation. Loss of p62 enhances the rate of neurodegen-
eration in a number of disease models; p62 knockout mice 
exhibited increased accumulation of hyperphosphorylated 
tau and subsequent neurodegeneration (Babu et al., 2008), 
while absence of p62 in SOD1H46R mice lead to increased 
motor neuron degeneration (Hadano et al., 2016), enhanced 
α-synuclein pathology in a Lewy body disease mouse model 
(Tanji et al., 2015), and exacerbated motor phenotypes and 
neuropathological outcomes in a Spinal and bulbar muscular 
atrophy mouse model (Doi et al., 2013). 

Mutations in the SQSTM1 gene are commonly identified in 
Paget’s disease of bone (PDB) (Laurin et al., 2002; Falchetti et 
al., 2004; Hocking et al., 2004), but have more recently been 
identified in both ALS and FTLD patients (Fecto et al., 2011; 
Rubino et al., 2012; Hirano et al., 2013; Le Ber et al., 2013; 
Chen et al., 2014; Bartolome et al., 2017; Blauwendraat et al., 
2018). Unlike mutations associated with PDB, which cluster 
within the C-terminal ubiquitin-associated (UBA) domain, 
ALS and FTLD-associated mutations affect various domains 
throughout the entire protein (Additional Table 1). Further 
evidence of p62 involvement in ALS and FTLD is the obser-
vation of p62-positive inclusions in patient samples (Arai 
et al., 2003; Mann et al., 2013). While the role of ALS and 
FTLD-associated p62 variants and their contribution to dis-
ease onset and progression remains unclear, recent research 
demonstrates that pathogenic p62 mutant proteins alter sig-
naling pathways involved in cell survival and differentiation.

p62 structure and function
The functions of p62 are executed through protein-protein 
interactions, facilitated by various domains (Figure 1). The 
role of p62 as an autophagy receptor is mediated through 
several domains; p62 first binds to ubiquitinated substrates 
via its UBA domain and subsequently binds to the auto-
phagosome membrane-protein LC3 via its LC3-interacting 
region (LIR) (Pankiv et al., 2007). The PB1 domain of p62 
mediates self-oligomerisation, which can play an important 
role in the degradation of specific substrates by either mac-
roautophagy (Jain et al., 2010; Itakura and Mizushima, 2011) 
or the ubiquitin-proteasome system (UPS) (Seibenhener et 
al., 2004).

p62 also regulates several signaling pathways important 
for neuronal health, namely those that activate the tran-
scription factors Nrf2 and nuclear factor kappa B (NF-κB). 
The Nrf2 pathway is the main response to oxidative stress 
in neurons and knockdown of Nrf2 leaves cells susceptible 
to neurotoxic insult (Ishii et al., 2000; Mimoto et al., 2012). 
Under normal conditions Kelch-like receptor protein 1 
(Keap1) binds to and inhibits the action of the transcription 
factor, Nrf2. Upon cellular exposure to stress conditions, 
p62 expression is increased and p62 binds to Keap1 via the 
Keap1-interacting region (KIR) (Ishii et al., 2000; Copple et 
al., 2010; Jain et al., 2010; Lau et al., 2010). This promotes 
translocation of  Nrf2 to the nucleus and subsequently tran-
scription of antioxidant and protective genes such as Heme 
Oxygenase 1 and NAD(P)H quinone oxidase 1 (Itoh et al., 

1997; Dinkova-Kostova et al., 2002; Kobayashi et al., 2004, 
2006). The other main signaling pathway that p62 regulates 
is NF-κB, which is pathologically upregulated in ALS (Frakes 
et al., 2014). The role of p62 in this pathway has mainly been 
characterized with respect to mutations that cause PDB, a 
chronic and progressive skeletal disorder that involves in-
creased osteoclastic bone resorption and deposition, leading 
to focal lesions of increased bone turnover. PDB-associated 
mutations primarily affect the UBA domain of p62, as either 
missense or truncating mutations that result in the remov-
al of most or the entire domain. Very few PDB-associated 
mutations have been identified outside of the UBA domain, 
however those that have are located within approximately 50 
residues of the UBA domain (Rea et al., 2014). PDB research 
shows that overexpressed mutant p62 proteins do not inhibit 
NF-κB, in contrast to over-expression of wild type p62 (Rea 
et al., 2006, 2009). The effect of increased NF-κB signaling 
due to SQSTM1/p62 mutations in an ALS and FTLD context 
could increase the production of pro-inflammatory cyto-
kines with adverse effects on neuronal health (Shih et al., 
2015).

It is important to note that p62 has been shown to be in-
volved in positive regulation of NF-κB. Thus, p62 has a dual 
role in NF-κB regulation that may be dependent on p62 
concentration or may be temporally regulated. The overall 
effect of these mutations on PDB pathogenesis is still under 
investigation, however there is strong evidence to suggest 
they contribute significantly to the disease, as patients with 
SQSTM1 mutations experience greater disease severity com-
pared to patients without (Visconti et al., 2010; Rea et al., 
2014). The main effect of SQSTM1/p62 mutations appears 
to be on autophagy (Hocking et al., 2004; Daroszewska et 
al., 2011) and NF-κB signaling (Najat et al., 2009; Rea et al., 
2009), both of which play a role in the pathogenesis of ALS 
and FTLD.

p62 and proteostasis
The cell utilizes two systems to degrade misfolded or dam-
aged proteins; the UPS and macroautophagy, or simply au-
tophagy. The UPS degrades short-lived proteins, while auto-
phagy degrades long-lived or aggregated proteins, bacteria, 
and organelles, both systems have the ability to degrade mis-
folded proteins, and both systems recognize ubiquitin as a 
marker for degradation. A major hallmark of ALS and FTLD 
is the accumulation of misfolded, ubiquitinated proteins in 
damaged neurons (Leigh et al., 1991; Bucciantini et al., 2002; 
Strong et al., 2005; Mackenzie and Neumann, 2016), indicat-
ing a role for malfunctioning protein degradation systems 
in pathogenesis. The accumulation of protein aggregates are 
linked with cell death (Giordana et al., 2010; Ticozzi et al., 
2010; Brettschneider et al., 2014). p62 is a cargo protein for 
both systems (Seibenhener et al., 2004). 

p62 and aggregate/inclusion body formation
p62 has been identified as a major component of aggre-
gates from a number of neurodegenerative diseases; from 
neurofibrillary tangles in Alzheimer’s disease (Kuusisto et 
al., 2001a, 2002), and ubiquitin-positive inclusions in Par-
kinson’s disease (Kuusisto et al., 2003), FTLD (Kuusisto et 
al., 2002), and dementia with Lewy bodies (Kuusisto et al., 
2001a), to SOD1 aggregates in ALS (Gal et al., 2007), and 
even Mallory bodies in hepatocytes (Zatloukal et al., 2002). 
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While the presence of toxic protein aggregates inevitably 
leads to further damage to cellular organelles and subsequent 
cell death, it is possible that protein aggregate formation is 
an attempt at cellular protection. p62 was found to selec-
tively form aggregates with mutant SOD1, but not wild-type 
SOD1, and these aggregates were not found to be directly 
toxic to the cell (Gal et al., 2007). Likewise, p62 was observed 
to form a shell around mutant huntingtin, and interference 
with p62 function lead to increased cell death (Bjorkoy et al., 
2005). Depletion of p62 in spinal muscular bulbar atrophy 
mouse models exacerbated motor phenotypes via accumu-
lation of toxic mutant androgen receptor protein, whereas 
increased p62 expression induced cytoprotective inclusion 
formation and subsequent improved phenotype (Doi et al., 
2013). In SOD1H46R mice, p62 suppression lead to an increase 
in insoluble mutant SOD1 and ubiquitinated proteins (Ha-
dano et al., 2016). 

It is not clear whether p62 initiates aggregate formation, 
however it does appear to bind to toxic misfolded proteins 
in an attempt to isolate them from the cell, a process that is 
enhanced by substrate ubiquitination (Zatloukal et al., 2002; 
Gal et al., 2007). Thus, p62 may play a protective role in pre-
venting further cell damage by toxic misfolded proteins, as 
cells that retain this p62 function exhibit increased surviv-
ability over cells that do not (Nakaso et al., 2004; Bjorkoy et 
al., 2005; Gal et al., 2007; Komatsu et al., 2007). On one hand 
p62 may bind to aggregates in order to prevent further accu-
mulation of misfolded proteins to the aggregate (Zatloukal 
et al., 2002), or more likely, binds toxic proteins and holds 
them in a less active state in order to prevent them from 
causing further damage to the cell in their unbound form 
until clearance is possible.

p62, the ubiquitin proteasome system and 
neurodegeneration
The UPS facilitates the degradation of K48- and K63-linked 
polyubiquitinated substrates that are shuttled to the pro-
teasome by cargo proteins (Seibenhener et al., 2004). UPS 
dysfunction is a hallmark of a number of neurodegenerative 
diseases (Keller et al., 2000; Seo et al., 2004; Bukhatwa et 
al., 2010), including ALS and FTLD (Bendotti et al., 2012; 
Kabashi et al., 2012; Myeku et al., 2016). Accumulation 
of UPS-specific substrates and proteins involved in UPS 
function into cellular inclusions provides evidence of UPS 
dysfunction (Farrawell et al., 2018). Further, aggregation 
of ALS-associated proteins leads to an accumulation of 
UPS-specific substrates, indicating that protein aggregation 
directly impedes UPS function (Farrawell et al., 2018) and 
deletion of a proteasome subunit, Rpt3, but not the critical 
autophagy protein Atg7, was sufficient to cause an ALS-like 
phenotype in mice (Tashiro et al., 2012). Thus, proteasome 
function may be critical to ALS and FTLD pathogenesis.

p62 is a cargo protein that shuttles the Alzheimer’s and FT-
LD-associated protein tau to the proteasome for degradation 
(Babu et al., 2005). Through the PB1 domain p62 directly 
interacts with the 26S proteasome (Seibenhener et al., 2004; 
Cohen-Kaplan et al., 2016), whereas the UBA domain of p62 
recognizes ubiquitinated substrates. Thus it is possible that a 
mutation affecting either domain may impede p62-mediated 
degradation of substrates via the proteasome. Mutations to 
the UBA domain of p62, some of which have been identified 
in ALS and FTLD patients, reduce or abolish p62 ubiqui-

tin-binding (Cavey et al., 2005; Garner et al., 2011). Thus, 
shuttling of ubiquitinated substrates to the UPS or autoph-
agy is likely to be impeded. Intriguingly, either a loss of p62 
(Seibenhener et al., 2004) or an increase in p62 (Korolchuk 
et al., 2009) can abrogate UPS function, and both p62 sup-
pression and overexpression can cause accelerated disease 
onset and shortened lifespan in ALS-mouse models (Hadano 
et al., 2016; Mitsui et al., 2018). Together, these studies indi-
cate a fine balance between p62 levels and both UPS function 
and disease pathogenesis. Upon proteasomal inhibition, p62 
expression and autophagic activity is upregulated as a com-
pensatory mechanism (Kuusisto et al., 2001b; Myeku and 
Figueiredo-Pereira, 2011; Choe  et al., 2014; Fraiberg et al., 
2017; Sha et al., 2018). ALS and FTLD-associated SQSTM1 
mutations that affect the cargo function of p62, or perhaps 
p62 protein levels, may contribute to disease pathogenesis by 
upsetting this balance. 

p62, autophagy and neurodegeneration
Basal autophagy is vital for maintaining neuronal health, 
and suppression of basal autophagy is sufficient to cause 
neurodegeneration in mice (Hara et al., 2006; Komatsu et 
al., 2006). Deficiencies in autophagy have been implicated in 
several neurodegenerative diseases; including FTLD (Gotzl 
et al., 2016), ALS (Xie et al., 2015), Alzheimer’s disease (Nix-
on et al., 2005), Huntingtin’s disease (Shibata et al., 2006; 
Fu et al., 2017), spinocerebellar ataxia type 7 (Alves et al., 
2014) and across several tauopathies including corticobasal 
degeneration, and progressive supranuclear palsy (Lin et 
al., 2003; Piras et al., 2016). Inhibition of autophagy leads to 
accumulation of a number of proteins involved in neurode-
generative diseases including hyperphosphorylated tau (Babu 
et al., 2008; Tang et al., 2013), α-synuclein (Minakaki et al., 
2018), and TDP-43 (Brady et al., 2011), and accelerates dis-
ease onset in SOD1G93A mice (Rudnick et al., 2017). In con-
trast, pharmacological enhancement of autophagy in several 
mouse models has proven effective at enhancing clearance 
of mutant SOD1 (Perera et al., 2018), as well as TDP-43 
and FUS-positive inclusions (Brady et al., 2011; Wang et al., 
2012; Cheng et al., 2015). 

The formation of polyubiquitinated-inclusion bodies 
and their subsequent removal by autophagy are dependent 
on p62 (Pankiv et al., 2007), this includes the clearance of 
mutant SOD1 via autophagy, which is facilitated by p62 
binding to mutant SOD1 (Gal et al., 2009). p62 itself is de-
graded by autophagy, but not the proteasome (Myeku and 
Figueiredo-Pereira 2011), and as such autophagy inhibition 
leads to an accumulation of p62 (Bjorkoy et al., 2009). This 
is problematic, as increased p62 can delay the delivery of 
ubiquitinated substrates to the proteasome, eventually com-
promising the UPS (Korolchuk et al., 2009). Unlike the abil-
ity of autophagy to compensate for a UPS failure, the UPS is 
unable to compensate for a failure in autophagy. The effect of 
p62-overexpression on protein degradation was demonstrat-
ed in p62-overexpressing SOD1H46R mice. These mice had 
accelerated disease onset and reduced turnover of SOD1H46R 

by either the UPS or autophagy (Mitsui et al., 2018). How-
ever, p62-ablation in the same mouse model lead to a wors-
ened disease phenotype and shortened lifespan (Hadano et 
al., 2016). This highlights that alterations in p62 levels may 
affect protein degradation, overall autophagic flux, and ALS 
and FTLD disease progression. 
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Due to the significant role of p62 in autophagy, SQSTM1 
mutations that may affect p62 function are of interest in ALS 
and FTLD. A number of mutations affecting the PB1 domain 
of p62 have been identified in both ALS and FTLD patients 
(Le Ber et al., 2013; Chen et al., 2014; Yang et al., 2015), and 
deletion of the PB1 domain prevents p62 binding to mutant 
SOD1 (Gal et al., 2009). p62 utilizes its PB1 domain to fa-
cilitate self-oligomerization during autophagy (Itakura and 
Mizushima, 2011). Due to the proximity of functional bind-
ing sites, p62 is not always able to bind multiple substrates at 
once. One such example is Keap1, a Nrf2 inhibitory protein 
that is degraded by autophagy in a p62-dependent manner. 
Due to the proximity of the Keap1-interacting region and 
the LC3-interacting region, one p62 monomer bound to LC3 
will bind to another p62 monomer that is bound to Keap1, 
and in this way facilitates Keap1 degradation via autophagy 
(Jain et al., 2010). Mutations affecting the PB1 domain of p62 
may affect functions other than dimerization; an FTLD-asso-
ciated p62 variant, p.R110C, located just outside of the PB1 
domain, is unable to promote Nrf2 signaling in line with p62 
wild-type, and is associated with increased NF-κB signaling, 
while having no observed effect on dimerization (Foster et 
al., 2019), thus indicating further roles for the PB1 domain 
in p62 function. p62 can bind to LC3 on the isolation mem-
brane through the LIR as well as ubiquitinated cargo through 
the UBA domain (Wurzer et al., 2015). Mutations affecting 
the LIR of p62 have been identified in ALS patients, p.D337E, 
and p.L341V (Chen et al., 2014). In vivo analyses demonstrat-
ed that a reduction in p62 LC3-binding ability leads to p62 
accumulation in ubiquitinated-inclusions, yet the mutant p62 
proteins were unable to be degraded by autophagy (Ichimu-
ra et al., 2008). Further, removal of the UBA domain or the 
LIR domain of p62 reduces the ability of p62 to clear TDP-
43 aggregates (Brady et al., 2011). Thus, mutations to the LIR 
or UBA domains of p62, or the PB1 domain, which is also 
essential for autophagy, may contribute to ALS and FTLD 
pathology through a build-up of aggregated TDP-43.  

However, upregulation of autophagy does not provide a 
simple solution to reducing disease progression. Inhibition of 
autophagy in SOD1G93A mice lead to increased survival time 
via reduced glial inflammation (Rudnick et al., 2017), while 
upregulated autophagy increased symptom progression and 
motor neuron degeneration via increased mitochondrial 
depletion and increased apoptosis in the same mouse model 
(Zhang et al., 2011; Perera et al., 2018). Overexpression of 
p62 in SOD1H46R mice lead to accelerated disease onset (Mit-
sui et al., 2018), indicating a fine balance between over- and 
underactive autophagy and p62 levels. 

Additionally, p62 plays a role in the interplay between au-
tophagy and the UPS. Of note, proteotoxic stress caused by 
proteasome inhibition can activate autophagy through p62 
phosphorylation, however increased p62 levels can lead to 
delayed delivery of ubiquitinated substrates to the protea-
some, causing UPS impairment despite an intact proteasome 
(Liu et al., 2016). This indicates that p62 variants that lead to 
abrogated p62 function may simultaneously affect both au-
tophagy and the UPS by upsetting the interplay between the 
two. For a more in depth review of the interplay between the 
UPS and autophagy (Liu et al., 2016). 

p62 and mitophagy
Fragmentation and changes to mitochondrial morphology 

have been extensively documented in ALS (Sasaki and Iwata, 
2007; Jin et al., 2013), and are linked with aberrant oxidative 
metabolism and greater production of reactive oxygen spe-
cies (ROS) (Mattiazzi et al., 2002; Jin et al., 2013). Clearance 
of mitochondria occurs by a form of autophagy known as 
mitophagy. Defects in mitophagy are observed in ALS, and 
lysosomal defects were observed along with accumulation 
of damaged mitochondria in motor neurons of SOD1G93A 
mice (Xie et al., 2015). The role of p62 in the removal of 
dysfunctional mitochondria is controversial. While some 
studies indicated that p62 is essential for the final clearance 
of mitochondria (Geisler et al., 2010; Lee et al., 2010), other 
studies suggest that p62 is responsible for the aggregation 
and autophagosomal engulfment of mitochondria, but 
is not essential for their ultimate removal via mitophagy 
(Narendra et al., 2010; Okatsu et al., 2010; Matsumoto et 
al., 2015). It is possible that, like its role in inclusion body 
formation, p62-mediated aggregation of mitochondria into 
tight clusters is a cytoprotective attempt at preventing fur-
ther mitochondrial access to substrates and thereby limiting 
the spread of mitochondria-derived ROS throughout the cell 
(Narendra et al., 2010). Mutations that cause a loss of p62 
function could prevent mitochondrial aggregation and re-
duce turnover of dysfunctional mitochondria, exposing the 
cell to further assault by ROS. Mutations in modifiers of p62, 
such as TBK1, may also decrease p62 function as ablation of 
TBK1-mediated phosphorylation of Serine residue 403 (Ser-
403) of p62 results in reduced autophagosomal engulfment 
of mitochondria (Matsumoto et al., 2015). Thus, it is pos-
sible that TBK1-mutations lead to ALS pathogenesis partly 
via reduced p62 phosphorylation. Of note, the p.R110C 
and p.G427R mutations of p62 were reported to lead to de-
creased phosphorylation at Ser-403 and Ser-349, which was 
associated with dysregulated cell signaling (Deng et al., 2019; 
Foster et al., 2019). 
 
The Effect of p62 Mutations on the Oxidative 
Stress Response
Nuclear erythroid 2-related factor 2 signaling
Nuclear-erythroid factor-2 (Nrf2) is a transcription factor 
that is normally sequestered in the cytosol, however under 
conditions of oxidative stress it is translocated to the nu-
cleus where it promotes the expression of genes involved in 
the stress response, including glutathione-s-transferase and 
nuclear respiratory factor-1 (Nrf-1), Heme oxygenase 1, and 
NAD(P)H quinone oxidase 1 (NQO1) (Itoh et al., 1997; Ishii 
et al., 2000). The Nrf2 response is the primary mechanism 
utilised by neurons to protect against oxidative stress (Lau 
et al., 2010). SOD1G93A mice display impaired induction of 
Nrf2-induced protective genes (Mimoto et al., 2012; Guo et 
al., 2013), while overexpression of Nrf2 in the same mouse 
model delays symptom onset and extends survival time 
(Vargas et al., 2008). Further, Nrf2-deficient cells are more 
prone to cell death upon to exposure to reactive oxygen spe-
cies (Ishii et al., 2000). It is therefore likely that the Keap1-
Nrf2 system is a crucial pathway in ALS-FTLD pathogenesis.
As an early stress response gene p62 promotes Nrf2 signal-
ing. Under basal conditions Nrf2 is bound to the inhibitory 
protein Keap1, which shuttles Nrf2 to the proteasome for 
degradation (Ishii et al., 2000; Cullinan et al., 2004; Ko-
bayashi et al., 2004; Furukawa and Xiong, 2005). p62 has a 



2190

Foster AD, Rea SL (2020) The role of SQSTM1/p62 in amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis. 
Neural Regen Res 15(12):2186-2194. doi:10.4103/1673-5374.284977

KIR that mediates p62 binding to Keap1 (Jain et al., 2010; 
Lau et al., 2010). The interaction between p62 and Keap1 is 
essential for p62-dependent Nrf2 signaling, and ALS and 
FTLD-associated mutant proteins that exhibit reduced p62-
Keap1 binding also have a reduced ability to activate Nrf2 
(Copple et al., 2010; Jain et al., 2010; Lau et al., 2010; Foster 
et al., 2019). This includes mutations affecting the KIR region 
of p62, such as p.P348L and p.G351A (Goode et al., 2016), 
and p.R110C, a mutation affecting the PB1 domain (outside 
of the KIR) (Foster et al., 2019). In the absence of a PB1 
domain, or in the presence of point mutations within the 
PB1 domain (p.R21A and p.D69A), activation of the NQO1 
anti-oxidant response element luciferase reporter was greatly 
diminished, indicating that a fully functioning PB1 domain 
is required for p62-dependent upregulation of Nrf2 (Jain et 
al., 2010). Pharmacological induction of Nrf2 was sufficient 
to restore NADH and FAD pools and cellular respiration in 
p62-deficient SH-SY5Y cells and FTLD patient fibroblasts 
expressing p62 variants p.A381V and p.K238del (Bartolome 
et al., 2017). Thus, activation of Nrf2 may be an important 
avenue of research for ALS and FTLD therapeutics.

Selective autophagy and p62-dependent induction of Nrf2 
may also be linked to p62 phosphorylation at Serine residue 
349 (Ser-349), which is phosphorylated in an mTORC1-de-
pendent manner, and increases p62 binding affinity for 
Keap1 and subsequently increases Nrf2 signaling (Ichimura 
et al., 2013). Inhibition of mTORC kinase by rapamycin (and 
subsequently induction of autophagy) decreased p62 Ser-349 
phosphorylation and resulted in decreased Heme oxygen-
ase-1 expression and Nrf2 activity (Ichimura et al., 2013). 
Further, autophagy inhibition increases p62-dependent Nrf2 
activity (Jain et al., 2010). Thus, it is clear that autophagy and 
the Nrf2 response are linked via p62 activity. 

Mutations in genes that code for post-translational modifi-
ers of p62, such as TBK1, may also affect p62-mediated Nrf2 
signaling. The phosphorylation of Ser-349 of p62 enhances 
the binding affinity of p62 for Keap1 (Ichimura et al., 2013), 
and thus promotes Nrf2 signaling (Figure 2). A protein with 
the FTLD-associated variant p.R110C substitution had re-
duced phosphorylation of serine residues 403 and 349 (351 
in mice), and while it did not demonstrate altered autophag-
ic flux, did exhibit reduced ability to stimulate Nrf2 (Foster 
et al., 2019). Mutations in TBK1, which is responsible for the 
phosphorylation of p62 at Ser-403 (Matsumoto et al., 2011, 
2015; Pilli et al., 2012), have been identified in ALS and 
FTLD patients (Freischmidt et al., 2015; van der Zee et al., 
2017). Phosphorylation of Ser-403 (Matsumoto et al., 2011, 
2015; Pilli et al., 2012) is a preceding step for Ser-349 phos-
phorylation (Ichimura et al., 2013), therefore mutations in 
kinases such as TBK1 may play a role in altered cell signaling 
in ALS/FTLD via changes to p62 phosphorylation. 

Nuclear factor-kappa B signaling
NF-κB is a transcription factor responsible for promoting ex-
pression of both pro-survival and pro-inflammatory genes. 
Under basal conditions, NF-κB is bound to the inhibitory 
proteins IκBα, β, and ε, which prevent translocation of NF-
κB into the nucleus and thereby block transcriptional effects. 
Under stimulation, the IκB proteins are phosphorylated and 
degraded via the proteasome, allowing NF-κB to move into 
the nucleus and promote transcription. Constitutive NF-
κB signaling is required for neuronal survival and induction 

of NF-κB activity occurs in response to oxidative stress 
(Mattson et al., 2000; Bhakar et al., 2002). 

The potential role of NF-κB signaling in ALS is complex. 
NF-κB is upregulated in the spinal cords of ALS patients 
and SOD1G93A mice (Swarup et al., 2011; Frakes et al., 2014). 
However, while inhibition of NF-κB in ALS astrocytes did 
not prevent motor neuron death, selective inhibition of NF-
κB in microglia prevented microglial-mediated death in 
vitro, impaired pro-inflammatory microglial activation and 
increased survival time in ALS mice (Frakes et al., 2014). 
Constitutive expression of NF-κB in microglia is sufficient to 
induce gliosis and motor neuron death (Frakes et al., 2014), 
while increased NF-κB activity promoted survival of cells 
exposed to oxidative stress and NF-κB inhibition resulted in 
greater toxicity (Heck et al., 1999). Astrocytic NF-κB activa-
tion upregulated microglial proliferation in SOD1G93A mice, 
and this response delayed muscle denervation and prolonged 
the presymptomatic phase, while inhibition of the early mi-
croglial response resulted in acute detrimental effects (Ouali 
Alami et al., 2018). Interestingly, astrocytic NF-κB activation 
accelerated disease progression in the symptomatic phase of 
SOD1G93A mice (Ouali Alami, Schurr et al., 2018), however 
inhibition of NF-κB in astrocytes in the same mouse model 
did not show any change in disease onset or progression 
(Crosio et al., 2011). ALS-associated proteins FUS, TDP-
43 (Swarup et al., 2011; Zhao et al., 2015), and UBQLN2 
(Picher-Martel et al., 2015) all promote NF-κB signaling, and 
either astrocytic- (Kia et al., 2018) or microglial-induced 
motor neuron death (Zhao et al., 2015).  

p62 has a dual role in the regulation of NF-κB signaling 
and dysregulation of NF-κB has been associated with PDB 
associated UBA domain p62-variants, which have a de-
creased ability to inhibit NF-κB compared with p62 wild 
type (Rea et al., 2014). While over-expressed wild type p62 
inhibits NF-κB, p62 has also been reported to play an essen-
tial role in positively regulating NF-κB signaling in relation 
to osteoclastogenesis, bone homeostasis, and in cancer (Du-
ran et al., 2004, 2008; Guo et al., 2011). Genetic ablation of 
p62 was shown to decrease IκB kinase activation and subse-
quently inhibited NF-κB translocation both in vitro and in 
vivo in mice (Duran, Serrano et al., 2004), and p62 downreg-
ulation abrogated tumour necrosis factor receptor 6 (TRAF6) 
and IL-1 mediated NF-κB signaling (Sanz et al., 2000), fur-
ther demonstrating a role for p62 in NF-κB activation out-
side of neurodegeneration. Ubiquitin-binding affinity affects 
p62-regulated NF-κB signaling as p62 dimerization via the 
UBA domain and ubiquitin-binding are mutually exclusive 
(Isogai et al., 2011). Non-disease associated mutations with-
in the UBA domain that prevent dimer formation increase 
p62 binding to polyubiquitin and subsequently decrease 
NF-κB signaling. Consistent with this finding, p62 UBA do-
main variants have a reduced ability to bind ubiquitin and 
impaired negative regulation of NF-κB signaling (Long et al., 
2010). However, the PDB-associated non-UBA domain mu-
tant p.P364S exhibits increased NF-κB signaling similar to 
p62 UBA-domain variants, despite retaining full affinity for 
ubiquitin-binding (Rea et al., 2009), indicating that the role 
of p62 in regulating NF-κB signaling is not solely due to its 
ability to bind ubiquitin. 

p62 interacts with TRAF6, an adaptor protein and E3 
ubiquitin-ligase that regulates NF-κB, via its TRAF6-binding 
sequence (TBS), and mutations within this domain of p62 
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Figure 1 Schematic of p62 domains. 
p62 self-oligomerizes via its PB1 domain. The LC3-interacting region (LIR) 
is required for p62 binding to the autophagosome membrane protein LC3, 
and p62 binds to ubiquitinated substrates via the ubiquitin associated (UBA) 
domain. p62 regulates Nrf2 signaling through interaction with inhibitory 
protein Keap1 via the Keap1 interacting region (KIR) domain, and regulates 
nuclear factor-kappa B (NF-κB) signaling via TRAF6 binding through the 
TRAF6 binding sequence (TBS) and interaction with RIP via the ZZ do-
main (Ichimura and Komatsu, 2018).  

Figure 2 The effect of p62 on Nrf2 and NF-κB signaling. 
Upon exposure to oxidative stress, p62 is phosphorylated at Serine residues 
403 and 349, and binds to the Nrf2-inhibitory protein Keap1, shuttling it 
to the autophagosome for degradation. Nrf2 can then enter the nucleus 
and promote transcription of ARE-genes, including p62, which can also 
downregulate NF-κB signaling. Keap1: Kelch-like receptor protein 1; NF-
κB: nuclear factor-kappa B; Nrf2: nuclear-erythroid factor-2; TRAF6: tumor 
necrosis factor receptor associated factor 6; ZZ: zinc finger.

Figure 3 The effect of mutant p62 on Nrf2 and NF-κB signaling in ALS 
and FTLD pathogenesis. 
Several ALS and FTLD-associated variants exhibit reduced Keap1-binding, 
preventing Nrf2 from entering the nucleus and promoting protective genes, 
predisposing the cell death upon exposure to ROS. Upregulation of Nrf2 
signaling downregulates NF-κB signaling, indicating that p62 variants that 
fail to promote Nrf2 signaling may also lead to a concomitant increase in 
NF-κB signaling. Additionally, several p62 variants are unable to regulate 
NF-κB signaling, which could potentially lead to increased transcription of 
pro-inflammatory and pro-apoptotic factors, predisposing the cell to death. 
ALS: Amyotrophic lateral sclerosis; FTLD: frontotemporal lobar degenera-
tion; FronNrf2: nuclear-erythroid factor-2; NF-κB: nuclear factor kappa-B; 
ROS: reactive oxygen species. 

have been identified in ALS and FTLD (Rubino et al., 2012; 
Le Ber et al., 2013). TRAF6 polyubiquitination is associated 
with increased NF-κB and is promoted by p62, as evident 
in p62 knockout mice, which exhibit no polyubiquitinated 
TRAF6 in brain tissue and also exhibit neurofibrillary tan-
gles and neurodegeneration (Wooten et al., 2005). However, 
p62 also facilitates TRAF6 de-ubiquitination by forming a 

scaffolding complex linking the de-ubiquitinating enzyme 
CYLD with TRAF6 (Jin et al., 2008; Wooten et al., 2008). Ex-
pression of a p62 UBA-deletion construct abolished TRAF6 
polyubiquitination, as did a p62 PB1-deletion construct. 
Nerve growth factor treatment of PC12 cells induces TRAF6 
polyubiquitination and formation of the p62-TRAF6-IκB 
kinase-PKC iota complex, which leads to NF-κB activa-
tion, and inhibition of p62-TRAF6 interaction blocks both 
TRAF6 polyubiquitination and complex formation (Wooten 
et al., 2005). Deletion of the TRAF6 binding region of p62 
was sufficient to block TRAF6-mediated NF-κB induction. 
TRAF6 exhibits a low basal level of polyubiquitination, how-
ever co-expression with p62 enhances TRAF6 polyubiquiti-
nation (Wooten et al., 2005). Therefore, TBS domain variants 
in ALS-FTLD may alter NF-κB signaling and thereby con-
tribute to ALS-FTLD pathogenicity. 

Concluding Remarks
In this review, we have summarized the current understand-
ing of the role of p62 in ALS and FTLD pathogenesis, and 
how mutations in various domains of the protein may con-
tribute to disease onset  (Figure 3). 

While SQSTM1 mutations identified in PDB cases pri-
marily affect the UBA domain, the variants identified in ALS 
or FTLD patients span the entirety of the protein. As p62 
is a multifunctional protein that exerts its effects through 
numerous functional domains, mutations affecting these 
domains can have an effect on both autophagy and cell sig-
naling pathways such as the Nrf2 and NF-κB pathways, and 
are likely to also affect mitophagy and aggregate/inclusion 
body formation. ALS and FTLD-associated p62 variants may 
therefore contribute to ALS and FTLD pathogenesis via re-
duced degradation of toxic proteins as well as via a reduced 
ability to mount a suitable stress response, leaving cells more 
susceptible to neurotoxic insult. The role of p62 and modifi-
ers such as TBK1 in a functioning autophagy lysosome sys-
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tem are well established, however further research into how 
mutations that affect mitochondrial turnover and altered 
NF-κB signaling in regards to neuronal health and survival 
is required. As failure of autophagy can disturb the UPS and 
lead to increased dysfunctional mitochondria and increased 
ROS production, further investigations into modulation of 
autophagy and mitophagy to identify potential therapeutic 
approaches for ALS-FTLD are needed. 
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