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Abstract

The cause of psoriasis, a common chronic inflammatory skin disease, is not fully understood. Microarray experiments have
been widely used in recent years to identify genes associated with psoriasis pathology, by comparing expression levels of
lesional (LS) with adjacent non-lesional (NL) skin. It is commonly observed that the differentially expressed genes (DEGs)
differ greatly across experiments, due to variations introduced in the microarray experiment pipeline. Therefore, a
statistically based meta-analytic approach, which combines the results of individual studies, is warranted. In this study, a
meta-analysis was conducted on 5 microarray data sets, including 193 LS and NL pairs. We termed this the Meta-Analysis
Derived (MAD) transcriptome. In ‘‘MAD-5’’ transcriptome, 677 genes were up-regulated and 443 were down-regulated in LS
skin compared to NL skin. This represents a much larger set than the intersection of DEGs of these 5 studies, which
consisted of 100 DEGs. We also analyzed 3 of the studies conducted on the Affymetrix hgu133plus2 chips and found a
greater number of DEGs (1084 up- and 748 down-regulated). Top canonical pathways over-represented in the MAD
transcriptome include Atherosclerosis Signaling and Fatty Acid Metabolism, while several ‘‘new’’ genes identified are involved
in Cardiovascular Development and Lipid Metabolism. These findings highlight the relationship between psoriasis and
systemic manifestations such as the metabolic syndrome and cardiovascular disease. Then, the Meta Threshold Gradient
Descent Regularization (MTGDR) algorithm was used to select potential markers distinguishing LS and NL skin. The resulting
set (20 genes) contained many genes that were part of the residual disease genomic profile (RDGP) or ‘‘molecular scar’’ after
successful treatment, and also genes subject to differential methylation in LS tissues. To conclude, this MAD transcriptome
yielded a reference list of reliable psoriasis DEGs, and represents a robust pool of candidates for further discovery of
pathogenesis and treatment evaluation.
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Introduction

Psoriasis vulgaris is a common chronic inflammatory skin

disease of varying severity, characterized by red scaly plaques. The

pathogenesis of psoriasis has well recognized contributions from

the skin, immune system, and genetic factors. With increased

validation of microarray technology, microarrays have become a

valuable tool to explore the pathogenesis of psoriasis and to

elucidate the mechanisms of action of promising treatments. Using

microarray experiments, several groups have defined lists of

differentially expressed genes (DEG) between lesional (LS) versus

uninvolved or non-lesional (NL) skin of psoriasis patients [1–8].

Such lists of DEGs may serve as foundation for the purpose of

defining the psoriasis transcriptome and explaining pathology

[2,4], as well as characterizing treatment responses [9], and

residual disease after treatment [10,11].

The most common approach to synthesize published transcrip-

tomes is to intersect and visualize them through Venn-diagrams.

However it is frequently observed that DEG lists produced by

different experiments differ for a plethora of conditions including

variations in the phenotype of the disease itself [6]. This leads to a

very narrow intersection and raises doubts about the existence of a

disease core. A comprehensive review on the existence of this large

discordance was given by Cahan et al. [12], and the authors

summarized three major sources accounting for this discordance:

variation from random noise, biological and experimental

differences, and differences in technical methods. Suarez-Farinas

et al. [6] used Gene Set Enrichment Analysis (GSEA) to validate a

new list of DEGs of a microarray study, rather than the Venn-
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diagram approach. GSEA provides a quick tool to assess if a new

experiment is in agreement with previously published studies.

However, it does not address the goal of obtaining the common

molecular features of psoriasis across different labs, patient

populations, and with a variety of disease severity.

To combine results of individual studies and obtain a list of

more ‘‘robust’’ DEGs with a reliable estimation of the effect size

considering the above-mentioned variations, a statistically based

meta-analytic approach is recommended [13]. Formally, meta-

analysis refers to an integrative data analysis method that is

defined as a synthesis of results from datasets that are

independent but related [14]. Such a method has ranging

benefits as summarized by Campaign and Yang [15]. Meta-

analysis produces overall effect estimates with considerably more

statistical power than individual studies. Statistical power

improves with an increase in sample size of the combined

studies, and hence, there is an increase in the ability to find true

effects that are missed by any individual study. Moreover, meta-

analysis alleviates conflicting results obtained by separate studies

as it estimates overall average effects and focuses on the

variations between phenotypes. Hence, meaningful effects and

relationships upon which studies agree are more likely to be

discovered by meta-analysis than by less systematic and analytic

approaches.

Here, a meta-analysis was conducted using microarray data

from 5 studies [2,4,6–8] consisting of 386 paired-samples from

193 patients. The raw data (CEL files) were obtained from a

public repository, and the same preprocessing and analytic

procedures were followed across all studies. A meta-analytic

model was used to compare gene expression profiles of LS

samples with their paired NL biopsies across studies, and an

overall estimation of the fold changes (FCH) was estimated and

the statistical significance was assessed. Using this approach, we

produced a list of DEGs that represent a robust reference

psoriasis transcriptome, which we have termed Meta-Analysis

Derived, or MAD, transcriptome.

Results

Figure 1 shows the overall study flow for this meta-analysis, and

a summary of the 5 studies is given in Table S1. Following the

steps given in Figure 1, the results from the meta-analysis are

described below.

Coherence among Studies and Selection of Coherent
Genes

First, a general agreement of microarray raw data produced by

different studies was estimated using Integrated Correlation

Analysis [16]. This method produces a general coefficient called

Integrated Correlation Coefficient (ICC), with similar interpreta-

tions as the Pearson correlation coefficient, which represents

agreement between studies. Additionally, ICC can be used to

eliminate background noise prior to the analysis, excluding genes

that exhibit incoherent behavior across studies (see Materials and

Methods for details).

For 14483 probe-sets (9264 genes) that passed the first-step

filtering (see Materials and Methods for details) and were then

common among the 5 studies, the ICC was calculated as 0.406

(95% CI: [0.402, 0.409]). When genes with poor coherent

behavior (as defined by those on the lower first quantile of the

distribution) were filtered out, an improvement on the ICC to

0.569 (95% CI: [0.565, 0.573]) was observed. The resulting 10862

probe sets (7534 genes) were used for downstream analysis.

Figure 1. PRIMA diagram and study schema. A. PRIMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram. B.
Schema describing the steps taken during the meta-analysis. N and P represent the number of samples (N) and patients (P) respectively in each study.
doi:10.1371/journal.pone.0044274.g001
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Model Specification
A random effect meta-analysis model was used to analyze the

expression differences between LS and NL samples. The choice of

using a random or a fixed effect meta-analysis was based on the

comparison between sample quantiles of Cochran’s Q and the

quantiles of its theoretical distribution (x2
n21, where n represents

the number of studies) as suggested by Choi et al. [17]. The QQ-

plot (Figure S1A) shows a substantial deviation in Cochran’s Q

from the desired distribution indicating that a random effect model

is more appropriate. Comparing the standardized overall effect

estimates from the random effect meta-analysis model to a

standard normal distribution shows that those estimates do not

deviate dramatically from normality (Figure S1B).

The MAD Transcriptome in Psoriasis
The meta-analysis of 5 studies allowed us to estimate the overall

difference in expression values between LS and NL samples across

studies (193 LS and NL pairs). Using FDR,0.05 and FCH.2,

which were the same cut-offs for all the published studies, we

identified 854 up-regulated and 550 down-regulated probe-sets

(Table S2) representing 677 and 443 known unique genes,

respectively (by ENTREZ identifiers). We refer to this transcrip-

tome as MAD-5.

A microarray meta-analysis is restricted to the universe of genes

commonly present on each chip platform used for sample

hybridization. The hgu133plus2 chips contain more than twice

the number of probe-sets than the hgu133a2 chips, representing

7315 genes whose effect size cannot therefore be assessed by

MAD-5, and which may be biologically relevant. Therefore the

same analysis was carried out considering the 163 LS and NL pairs

from the 3 studies that used hgu133plus2 chips. Using 25% cutoff

for coherence scores, 24375 probe sets (9222 genes) were

considered for downstream analysis. The transcriptome for

133plus2 (MAD-3) encompassed 1412 up-regulated and 959

down-regulated probe-sets (Table S3) representing 1084 and 748

genes, respectively, a list considerably larger than the MAD-5

transcriptome.

The intersection of DEGs reported by the 5 individual studies

consisted of 78 up- and 22 down-regulated genes. However, the

global psoriasis transcriptome obtained by the MAD-5 is much

larger than this intersection (Figure 2A) and successfully identified

those 100 genes. When only hgu133plus2-studies were considered,

340 up- and 190 down-regulated genes were in the intersection,

and all but 4 (0.75%) genes were identified by the meta-analysis

(Figure 2B). A simplified heat-map is presented in Figure 2E,

Figure 2. Overview of the MAD-5 and MAD-3 transcriptomes. A. Venn diagram showing that when comparing the MAD-5 transcriptome with
the intersection of DEGs identified by individual studies, the meta-analysis always identified a much larger set. B. Venn diagram showing the same
comparison as A but for MAD-3 transcriptome. C. 3D Barplots showing the overlap of MAD-5 genes (blue bars) by the number of individual studies (x-
axis). For example: among the MAD-5 transcriptome, 347 genes were identified by 4 studies and 100 by all 5 studies. For comparison the numbers for
the set of genes that were identified by any of the individual studies (Union) is also represented (red bars). Most DEGs from the meta-analysis
appeared in at least two of these studies. Integration Discovery Genes (IDD) represents the set of genes only identified by the meta-analysis. D. 3D
Barplots showing the same comparison as C for MAD-3. E. Color-coded graphs showing the comparison of MADs transcriptomes and individual
studies. Each row represents a gene and the color indicates whether the gene is up-regulated (red), down-regulated (green) or not differentially
expressed (gray) in each (columns) and the meta-analysis. Meta: meta-analysis; S-F+: Suarez-Farinas 2012, hgu33plus2 chips; G: Gudjonsson’2009; S-F:
Suarez-Farinas’2010; R: Reischl’2007; Y: Yao’2008.
doi:10.1371/journal.pone.0044274.g002
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showing how the DEGs in each individual study relate with those

identified by the meta-analyses.

The 4 genes from the intersection that were not identified by the

MAD-3 were IDA, LEPR, MYOCD and TYMP. In the meta-

analysis several factors intervene in the estimation of the overall

summary statistics for each gene: the log-fold change (LFC), its

corresponding standard deviation in each study, and also the

between-study variance (denoted by t2 in Equation 1). Large

values of t2 will lead to a smaller overall LFC and overall T

statistics such as in the case of the four above-mentioned genes.

Those 4 genes have p,0.056 and FDR,0.085 values, and a less

strict FDR cut-off would include them.

It can be observed that the number of DEGs in the meta-

analyses is in between the numbers of DEGs from separate studies

(Figure 2E). Not surprisingly, the number of significant genes

identified by the meta-analysis was smaller than some of the

individual studies, namely Yao’s and Suarez-Farinas+ (Figure 2E).

The meta-analytic approach depicted here is concerned with

genes that were commonly dysregulated among all the studies and

with consistent behavior (evaluated by coherence score), so fewer

genes were considered in the meta-analysis compared with

individual studies. Additionally, outliers in individual studies with

smaller sample size can easily influence the gene detection. Since

the overall estimates in a meta-analysis are essentially weighted

averages of each individual study with the weights setting as the

precision of each study, the influence of a single study is attenuated

in the meta-analysis approach. Thus it is expected that most DEGs

in the meta-analysis appear in at least two out of the five studies.

Figures 2C and 2D illustrate this point, and show that the resultant

list is a more concordant representative of the DEGs in a larger

patient population encompassing different laboratory settings.

Although the analysis of MAD-5, which involves samples from 5

labs, is statistically more robust, we will feature the MAD-3

transcriptome, which has a greater number of potential genes.

Results and insights derived from MAD-3 are presented in this

manuscript, while results from MAD-5 are provided as Table S2.

Table 1 represents the top 25 up-and down-regulated genes in

MAD-3 (Table S3), with fold-changes estimated by the meta-

analysis, ranging from 33 to more than 600. As expected, the top

25 up- and down-DEGs were all identified by the hgu133plus2

previously published transcriptomes. Additionally, 21 up- and 13

down- regulated genes from MAD-3 were also among the top 25

up- and down-regulated genes in the MAD-5 transcriptome.

Overall, the MAD-3 transcriptome contains well-recognized

psoriasis genes in the ‘‘top’’ up- and down-regulated gene lists,

and represents a meaningful list of DEGs to further evaluate, as

discussed below.

Primary Cytokines in MAD Psoriasis
In Suarez-Farinas et al. [6], we draw attention to the fact that

many of the primary cytokines known to be elevated in psoriasis

which are considered excellent therapeutic targets, were not

detected by microarray approaches (Table 3, [6]). This is primarily

due to a limitation of the platform since fold-changes are

underestimated for low-abundance transcripts. This observation

holds true in both MAD-3 and MAD-5, which did not identify

p19, p40, LTA1, IL-22, IFNc, IL-4, IL-6, iNOS, p35, and CCL3.

IL-17, IL20 and CCL4 were identified by the MAD-3 but their

overall fold changes (2.8, 2.36 and 2.06) were much smaller than

the RT-PCR based FCH (6.2, 4 and 2.8 respectively) reported in

Table 3 of [6]. To overcome this limitation, Nograles et al. defined

the genomic response to IL-17, TNF, IL-22 and INFc in

keratinocytes [18] and we have used them in many mechanistic

studies. Using GSEA approaches, those cytokines pathways were

up-regulated in psoriasis [6,8]. In the MAD-3, Normalized

Enrichment Scores (NES) for these cytokine-induced keratinocyte

‘‘pathways’’ or gene sets were: 2.19 for IL-17 genes, 2.04 for TNF,

2.11 for IL-22 and 2.41 for IFNc (FDR,0.0001 in all cases).

Genes with a synergistic response to IL-17 and TNF [19] were also

enriched (NES = 2.83, FDR,0.001) in the MAD-3 transcriptome.

Hence, as anticipated, the hallmark cytokines products were

represented in the meta-analysis, even though the primary

cytokines were difficult to detect.

Cutaneous Compartment Localization of the MAD
Transcriptome

Mitsui et al. [20] performed a laser capture micro-dissection

(LCM) study with psoriatic NL and LS skin (n = 3), comparing

gene expression profiles between NL and LS. Using this method

they generated a transcriptome for the epidermis as well as the

dermis with the same cutoffs for FCH and FDR as in the meta-

analysis. The use of LCM may increase the sensitivity of detecting

DEGs even in the presence of a small sample size. We compared

the MAD-5 transcriptome in this case, as the LCM-generated

transcriptomes were on the hgu133a2 chips. 49% of the up

regulated MAD-5 DEGs were identified in either the epidermis or

dermis by LCM, as shown in Figure 3A, even though the LCM

study was underpowered. Nevertheless, this offered useful infor-

mation into the cutaneous localization of the MAD transcriptome,

which has been included in Tables S2 and S3.

Comparisons with Pilot RNA-Seq Study
The MAD-3 transcriptome presented here (with the maximal

number of available probes on the hgu133aplus2 chip) was also

compared with a pilot RNA-seq study conducted by Jabbari et al.

[21] using LS and NL samples from 3 patients (Figure 3B). The

major advantages of mRNA sequencing-based expression profiling

are its deep coverage and large dynamic range of expression levels

over which transcripts can be detected. Using the same cutoffs for

FCH and FDR as in the meta-analysis, the RNA-seq study

identified 1343 DEGs. RNA-sequencing can potentially detect any

gene in a sample, so 37% (498/1343, gray area of Figure 3B) of

genes identified by RNA-seq could not possibly be identified by

meta-analysis because they were not physically present on the

hgu133plus2 chips. Of those 845 RNA-seq genes represented on

the chip, the MAD-3 transcriptome identified 467 (55.3%). Many

more genes were identified by the meta-analysis (1365) than the

RNA-seq analysis, which can be attributed to the lack of power of

the RNA-seq study, emphasizing the need for larger sample size

on RNA-seq studies to make this technology worthwhile.

Ingenuity Pathway Analysis (IPA)
IPA was used to identify pathways, functions and diseases

significantly overrepresented in the MAD-3 transcriptome. Signif-

icant pathways and networks enriched in the MAD-3 transcrip-

tome with a FDR,0.05 are presented in Table S4. Given recent

emphasis on the relationship between psoriasis and systemic

manifestations such as the metabolic syndrome [22], it is pertinent

that the top canonical pathway was Atherosclerosis Signaling, and Fatty

Acid Metabolism was also among the top ten significant pathways.

Cancer, Cardiac hyperplasia/hyperproliferation and Cardiovascular Disease

were also top networks. IL-17A was a key cytokine represented in

the overlapping networks, although this primary cytokine was

barely detected directly by MAD-3. IL-17-related pathways were

highly represented, with five canonical pathways in the top 40

containing IL-17. Top canonical pathways representing the link

between the innate and adaptive immunity, were also present,

Psoriasis MAD Transcriptome
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Table 1. Top 25 Up and Down-regulated genes in the MAD-3 transcriptome.

Probe Symbol Description RefSeq LFC FC

Up-regulated genes

1 211906_s_at SERPINB4 serpin peptidase inhibitor, clade B (ovalbumin), member 4 6318 9.37 660.69

2 205863_at S100A12 S100 calcium binding protein A12 6283 8.36 328.42

3 205513_at TCN1 transcobalamin I (vitamin B12 binding protein, R binder family) 6947 8.27 309.43

4 232170_at S100A7A S100 calcium binding protein A7A 338324 8.02 259.85

5 220664_at SPRR2C small proline-rich protein 2C (pseudogene) 6702 7.38 167.06

6 207356_at DEFB4A defensin, beta 4A 1673 7.1 137.64

7 206561_s_at AKR1B10 aldo-keto reductase family 1, member B10 (aldose reductase) 57016 6.48 89.07

8 41469_at PI3 peptidase inhibitor 3, skin-deri_ved 5266 6.32 79.69

9 202859_x_at IL8 interleukin 8 3576 6.04 65.85

10 207602_at TMPRSS11D transmembrane protease, serine 11D 9407 5.97 62.8

11 209720_s_at SERPINB3 serpin peptidase inhibitor, clade B (ovalbumin), member 3 6317 5.96 62.22

12 203535_at S100A9 S100 calcium binding protein A9 6280 5.9 59.78

13 205660_at OASL 29-59-oligoadenylate synthetase-like 8638 5.8 55.89

14 207367_at ATP12A ATPase, H+/K+ transporting, nongastric, alpha polypeptide 479 5.75 53.78

15 212531_at LCN2 lipocalin 2 3934 5.74 53.31

16 219554_at RHCG Rh family, C glycoprotein 51458 5.7 51.98

17 207602_at IGFL1 IGF-like family member 1 374918 5.6 48.36

18 217388_s_at KYNU kynureninase (L-kynurenine hydrolase) 8942 5.58 48

19 220322_at IL1F9 interleukin 1 family, member 9 56300 5.44 43.45

20 204733_at KLK6 kallikrein-related peptidase 6 5653 5.43 43.05

21 202018_s_at LTF lactotransferrin 4057 5.17 36.11

22 205476_at CCL20 chemokine (C-C motif) ligand 20 6364 5.13 34.92

23 227736_at C10orf99 chromosome 10 open reading frame 99 387695 5.07 33.6

24 219403_s_at HPSE heparanase 10855 5.07 33.48

25 206134_at ADAMDEC1 ADAM-like, decysin 1 27299 5.05 33.15

Down-regulated genes

1 204712_at WIF1 WNT inhibitory factor 1 11197 24.16 217.88

2 205404_at HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1 3290 23.31 29.92

3 207955_at CCL27 chemokine (C-C motif) ligand 27 10850 23.28 29.71

4 227174_at WDR72 WD repeat domain 72 256764 23.23 29.38

5 205883_at ZBTB16 zinc finger and BTB domain containing 16 7704 23.18 29.06

6 237120_at KRT77 keratin 77 374454 23.17 29.00

7 207326_at BTC betacellulin 685 23.17 29.00

8 210297_s_at MSMB microseminoprotein, beta- 4477 23.11 28.63

9 214240_at GAL galanin prepropeptide 51083 23.02 28.11

10 239929_at PM20D1 peptidase M20 domain containing 1 148811 22.94 27.67

11 214598_at CLDN8 claudin 8 9073 22.8 26.96

12 224555_x_at IL1F7 interleukin 1 family, member 7 (zeta) 27178 22.79 26.92

13 205030_at FABP7 fatty acid binding protein 7, brain 2173 22.78 26.87

14 217059_at MUC7 mucin 7, secreted 4589 22.68 26.41

15 205979_at SCGB2A1 secretoglobin, family 2A, member 1 4246 22.67 26.36

16 234513_at ELOVL3 elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3, yeast)-like 3 83401 22.67 26.36

17 1554195_a_at C5orf46 chromosome 5 open reading frame 46 389336 22.64 21.00

18 235278_at MACROD2 MACRO domain containing 2 140733 22.61 26.23

19 239547_at HS3ST6 heparan sulfate (glucosamine) 3-O-sulfotransferase 6 64711 22.58 26.11

20 204607_at HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial) 3158 22.51 25.98

21 239017_at COL6A4P1 collagen, type VI, alpha 4 pseudogene 1 344875 22.5 25.70

22 1553583_a_at THRSP thyroid hormone responsive 7069 22.46 25.66

23 213661_at PAMR1 peptidase domain containing associated with muscle regeneration 1 25891 22.35 25.50

Psoriasis MAD Transcriptome
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such as Dendritic Cell Maturation, Role of Cytokines in Mediating

Communication between Immune Cells, Communication between Innate and

Adaptive Immune Cells, and Fcc Receptor-mediated Phagocytosis in

Macrophages and Monocytes.

Interferon Signaling and Role of JAK1 and JAK3 in cc Cytokine Signaling

were both represented in the top canonical pathways. Many other

cytokine pathways were also significant, paralleling the cytokine-

rich environment in psoriasis, including IL-10, IL-12, IL-2, IL-9,

IL-22, IL-15, IL-6, and IL-8 Signaling. The Production of Nitric Oxide

and Reactive Oxygen Species in Macrophages pathway was also

significant, which is relevant since there is an abundance of

TNF- and iNOS-producing dendritic cells (TIP-DCs), also called

inflammatory myeloid DCs, present in psoriasis lesions [23]. The

identification of IL-12 Signaling and Production in Macrophages

pathway is also interesting given the presence of genetic single

nucleotide polymorphisms (SNPs) in the IL-12/IL-23 system in

psoriasis [24,25].

The strength of the association of the canonical pathways in

MAD-3 transcriptome was compared with that of the Suarez-

Farinas+ transcriptome (Figure 4), which is the largest data-set

published to date with the greatest number of psoriasis DEGs [8].

As is shown in Figure 4, all the commonly recognized pathways in

psoriasis were over-represented in both the MAD-3 and Suarez-

Farinas+ transcriptomes, but the association was stronger in the

MAD-3. The largest and most significant difference in this analysis

was the detection of Atherosclerosis Signaling in skin lesions. The

strength of the association between this pathway and the psoriatic

phenotype is much stronger in the MAD-3 transcriptome

(FDR,1025) than in Suarez-Farinas+ (FDR,1022). In addition,

there were several IPA functions and pathways that were

significant only in the MAD-3 (at FDR,0.1), including Lymphoid

Tissue Structure and Development, and Hypersensitivity Response functions,

as well as pathways such as IL-2 Signaling, IL-17A Signaling in

Fibroblasts, Granzyme B Signaling, MSP-RON Signaling Pathway, and

Pathogenesis of Multiple Sclerosis. Conversely numerous pathways

identified uniquely by Suarez-Farinas+ in the bottom of the figure

were not related to cytokine biology, so they appear to be of

secondary importance within likely pathways of cytokine-drive

pathogenesis. This finding supports the importance of the Meta-

Analysis as an analytical approach to provide consensus on a

molecular definition of psoriasis, as well as giving us new tools to

explore the systemic associations that have been recently reported

in psoriasis [22].

Transcription Factors (TFs) Identified by the Meta-analysis
IPA also identified several transcription factors (TF) as being

significantly activated or inhibited in this transcriptome (Table S5).

Target molecules in the transcriptome predicted activation of TFs

involved in interferon production, including IRF7, IRF1, IRF3,

IRF5, STAT2, and T-box 21 (TBX21). This data, along with the

above-mentioned interferon-associated canonical pathways, sup-

ports the involvement of interferons in psoriasis [26]. TBX21 is a

Th1-specific TF that controls expression of IFNc. Components of

the NFkB pathway have been shown to be active in psoriasis [27],

and NFkB and RELA TFs were both activated. High-mobility

group box 1 protein (HMGB1), another activated TF, may be an

important factor mediating the inflammatory response [28].

FOSL1 and Ap1 were both predicted to be activated TFs. FOSL1

can dimerize with Jun to form the Ap-1 complex, and the

decreased activity of the pathway has been shown in a mouse

model, with epidermal deletion of JunB/AP-1 causing psoriasis

[29]. AP-1 TF is impaired in LS psoriasis skin [30]. FOXM1, a

transcriptional activator involved in cell proliferation, was also

activated, but a number of factors involved in cell cycling were

Table 1. Cont.

Probe Symbol Description RefSeq LFC FC

24 223836_at FGFBP2 fibroblast growth factor binding protein 2 83888 22.33 25.10

25 227803_at ENPP5 ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative) 59084 22.25 25.03

doi:10.1371/journal.pone.0044274.t001

Figure 3. Comparison with other transcriptomes. A. Cutaneous
localization of MAD-5 transcriptome. 49% of MAD-5 genes (black
rectangle) were identified as being part of the Epidermis (green
rectangle) or Dermis (yellow rectangle) psoriasis transcriptome defined
by the use of laser capture micro-dissection (LCM) techniques (using the
same cutoffs FDR,0.05 and FCH.2). Genes identified in both
Epidermis and Dermis transcriptomes are in the blue rectangle. B.
Venn-Diagram showing the intersection between the MAD-3 psoriasis
transcriptome and RNA-seq pilot experiment (using the same cutoffs
FDR,0.05 and FCH.2). Numbers are colored in red and green to
represent up-regulated or down-regulated genes respectively. The gray
zone represents genes identified by RNA-seq but that were not
physically present in the hgu133plus2 chips.
doi:10.1371/journal.pone.0044274.g003
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inhibited, including RB1, SRF, CDKN2A, SMAD3, and

SMARCB1. Transcription factors involved with myocardial

differentiation and function were both activated (FOXO1) and

inhibited (GATA4 and MYOCD) in this transcriptome. These

observations support previous reports showing involvement of

some of these TFs in psoriasis as described above, and provide

opportunities to evaluate these newly identified TFs in the IPA of

this MAD transcriptome.

Integration Driven Discovery (IDD) ‘‘New’’ Genes
The MAD-3 identified a set of 64 genes which were not

identified by any of the individual studies (Figure 2E) that we have

termed Integration Driven Discovery (IDD) genes [17] (Table 2).

The MAD-5 identified 11 IDD genes (Figure 2D), which were all

found in the MAD-3 gene set of 64 except SERPINA5 and

CYB5R2. In order to validate these results, 8 IDD genes were

chosen due to their particular interest in psoriasis for RT-PCR

confirmation using a new set of 9 patients with moderate-to-severe

psoriasis. The RT-PCR results shown in Table 3 validated those

genes as DEGs (p,0.05). The magnitude and direction of FCH

for all genes under consideration were similar by PCR compared

with the MAD-3 (Pearson correlation 0.98, p-value,0.001)

Among these 64 IDD genes, 41% (26/64) were also detected by

the above-mentioned pilot RNA-seq study (n = 3) [21] and the

correlation between FCHs was 0.95 (p,10216) (Table 2). Six of

these genes (9.3%) were also detected by laser capture micro-

dissection (LCM) [20] as DEGs in the Dermis (Table 2).

Many of these IDD genes were found in gene-sets induced by

IFNc, TNF, and IL-1 cytokine- treated keratinocytes [9,18,31], as

indicated in Table 2. Two up-regulated IDD genes (HS3ST-1 and

PTPN22) were also present in the psoriasis inflammatory DC

transcriptome [32], which contains DEGs between

CD11c+CD11c2 DCs versus CD11c+CD1+ DCs FACS-sorted

from psoriasis lesions. A number of these genes were also present

in the atopic dermatitis transcriptome, with the same direction of

dysregulation [33]. IPA analysis of these ‘‘new’’ IDD genes helped

determine their relevance (Table 2). 17 of 64 genes belong to the

Cell-mediated Immune Response network, 14 to Lipid Metabolism, 12 to

Dermatological Diseases and Conditions, and 8 to Cardiovascular

Development and Function network. 3 of these genes were found in

the Fatty Acid Metabolism pathway (ALDH1A2, SCL27A2 and

PCDH20). 2 genes were involved in Type II Diabetes Mellitus

Signaling pathway (PPARG and SLC27A2), and there has been a

SNP reported associated with type II diabetes for LONRF2. The

PPAR signaling pathway was represented by 14/102 molecules in the

MAD-3 (p = 0.08; FDR,0.3), and 2 IDD genes were associated

with this pathway (PPARG and SLC27A2).

Selection of Consistent Disease-classification Genes: A
Genomic ‘‘Classifier’’ for Psoriasis

Biomarker discovery has become an important topic in

biomedical research. There is a great interest in finding a small

set of genes that best discriminate between diseased and healthy

state, as these markers can lead to major biological insights

regarding disease characteristics and diagnosis, as well as

development of targeted therapeutics. Here we set out to identify

the smallest set of genes that distinguish LS from NL skin samples

across a heterogeneous cohort of psoriasis patients. With the

MAD-5 transcriptome as a starting point, the Meta Threshold

Gradient Directed Regularization (MTGDR) method proposed by

Ma and Huang [16] was used to select genes most relevant to

disease classification. This algorithm automatically establishes the

minimal set of genes and a decision rule that classifies a given

genomic profile of an unknown skin biopsy into LS or NL with a

minimal error. Parameters of the model were estimated using the

386 available samples (training samples).

Although Ma and Huang [16] claimed that there is no

limitation on the number of genes used as inputs for the MTGDR

Figure 4. Ingenuity Pathway Analysis. Comparison of canonical
pathways overrepresented in MAD-3 transcriptome (blue bars) and
Suarez-Farinas+ (red bars), which is the study with the largest sample
size and number of DEG. Bars represents a –log10 transformation of the
Benjamini-Hochberg adjusted p-value, which controls FDR. Only
pathways with FDR,0.1 (which corresponds to 1 in the –log10 scale;
represented by yellow line) in either MAD-3 or Suarez-Farinas+ are
shown.
doi:10.1371/journal.pone.0044274.g004
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algorithm, when deciding their relevance, it is beneficial to

assemble first the univariate selection of DEGs as starting point of

MTGDR. In this way, a large amount of computing time can be

saved with minimal difficulty in detecting potentially ‘‘true’’

biomarkers.

Using a 3 fold cross-validation, MTGDR’s tuning parameters

(see equation 3 of Materials and Methods) were set as t= 1 and

k = 1298. With these tuning parameters and using all training

samples, 20 genes were selected for the final model and used to

construct the classifier. The performance among training samples

was superb with only 2 samples (from Suarez-Farinas+ study)

being misclassified (0.5%). The general classification error,

estimated by a 5-fold cross-validation, was 1.3% and below 2%

in all studies (Table S6). Those 20 genes and their corresponding

estimates in each study are listed in Table S6. Here, a positive sign

of the estimated coefficient indicates that up-regulation of this gene

is positively associated with the outcome of interest, i.e., the odds

of being LS skin. RadViz [34], a commonly used multidimensional

visualization tool, was used to obtain a graphical representation of

the disease-classification genes in a 2-dimensional space (Figure 5)

for each study separately (see Materials and Methods for more

Table 3. RT-PCR validation on IDD genes.

RT-PCR Meta-analysis

Gene LFC p.value FDR LFC p.value FDR

1 P2RX1 21.63 0.0128 0.0148 21.08 0.0002 0.0005

2 TMPSS11E 21.73 0.0122 0.0148 21.23 0.0020 0.0024

3 BACH2 21.38 0.0006 0.0024 21.18 ,0.0001 ,0.0001

4 MERTK 21.66 0.0004 0.0024 21.01 ,0.0001 ,0.0001

5 PPARG 21.25 0.0049 0.0098 21.21 ,0.0001 ,0.0001

6 SRGAP1 21.76 0.0015 0.004 21.00 ,0.0001 ,0.0001

7 PTPN22 1.04 0.0130 0.0148 1.23 0.0001 0.0002

8 CYB5R2 0.73 0.0331 0.0331 1.01 ,0.0001 ,0.0001

doi:10.1371/journal.pone.0044274.t003

Figure 5. MAD classifier. Radviz plots showing how the 20 genes selected by MTGDR procedure separate the lesional (LS) and non-lesional (NL)
samples apart in each study. Perfect separation between LS and NL samples can be seen in every study. S-F+: Suarez-Farinas 2012, hgu33plus2 chips;
G: Gudhjonsson’2009; S-F: Suarez-Farinas’2010; R: Reischl’2007; Y: Yao’2008. Center insert shows biological relevance of these genes. Top 25 psoriasis
genes in Table 1 are underline. 6 of these 20 genes have been identified as top methylation genes discriminating between psoriasis (LS) and healthy
skin. 4/20 were identified as part of the Residual Disease Genomic Profile (RGDP) or ‘‘Molecular Scar’’.
doi:10.1371/journal.pone.0044274.g005

Psoriasis MAD Transcriptome

PLOS ONE | www.plosone.org 10 September 2012 | Volume 7 | Issue 9 | e44274



details). RadViz graphs show a clear separation between LS and

NL samples can be obtained with the 20 genes (biomarkers) whose

biological relevance is addressed in the discussion.

Both misclassified samples were from Suarez-Farinas+ study,

one NL sample misclassified as LS showed high K16 mRNA and

abundant CD3+ T cell and CD11c+ dendritic cell infiltrates,

similar to its LS pair. The second misclassified case was a LS

sample from an Asian patient, and the cellular features of psoriasis

were not very marked, for example epidermal thickness was

similar to normal skin, and there were not many T cells or

dendritic cells. This may be a specific type of psoriasis with a

different ‘‘small plaque’’ morphology specific to this population

[35].

The 20 genes in the classifier were reviewed for their presence in

other studies [10,36], as well as their biological relevance, as

shown in the center top panel of Figure 5. The top 25 up- and

down-regulated psoriasis DEGs from genes in Table 1 that are in

the genomic classifier list are underlined. Six out of these 20 genes

have recently been identified as top methylation genes discrimi-

nating between psoriasis (LS) and healthy skin [36]. 4/20 genes

were identified as part of the Residual Disease Genomic Profile

(RGDP) or more colloquially ‘‘molecular scar’’ after treatment

with TNF blockade [10]. The methylation status of several of these

classifier genes can also be considered as part of the molecular

scar. Hence this classifier offers a novel tool for the molecular

diagnosis of psoriasis, as well as for studying novel biology using

model diseases. Furthermore, this meta-analysis provides a robust

list of DEGs that can be mined for questions of pathogenicity,

diagnosis, new therapeutics, and biomarkers, as shown above.

Discussion

A statistically based meta-analytic approach systematically

combines microarray studies from different patient populations

and laboratories to provide a single estimate of the overall

differential expression level for each gene. By accumulating results

across studies, one can gain a more accurate representation of the

population relationship than is provided by the individual study

estimators; the statistical power is increased; the influence from

any individual study is reduced. While individual studies generate

variable sized lists of DEGs, the meta-analysis provides a more

precise view of molecular definition of the disease, while

simultaneously allowing for differences between studies. Of course,

there are a number of issues associated with applying a meta-

analysis in gene expression studies [12,15]. For example, there are

specific concerns regarding challenges with probes and probe sets,

differential platforms being compared, and laboratory effects. To

overcome these challenges, we carefully planned and conducted

the meta-analysis from the very beginning of selecting the data

sets. Using this approach and 5 microarray studies, we present a

Meta-Analysis Derived (MAD) transcriptome of psoriasis DEGs

from a large sample size of 193 pairs of LS and NL skin biopsies.

We believe that this list is more robust and consistent than can be

obtained from a simple operation on (e.g., intersection or union)

separate DEGs lists from individual studies.

Hopefully, other investigators will find this list of DEGs useful in

defining a ‘‘core transcriptome’’ across a range of severity of

psoriasis. The MAD-3 transcriptome was obtained from patients

with ‘‘plaque-type’’, ‘‘chronic’’ and ‘‘moderate to severe’’ psoriasis,

while the 5 study also included patients with ‘‘mild to severe’’

disease, suggesting that these results represent the transcriptome

from a range of severity with broad applicability across this

disease. However, as the full details of all the patients in the

contributing 5 studies were not readily available, prospective

studies should be carried out on psoriasis of varying degrees of

severity to confirm and extend these observations.

Analysis of this list of DEGs in IPA indicated that several well-

known key cytokine pathways (e.g., IL-17 and IFNc) and pathways

of great importance such as Role of IL-17A in Psoriasis, Atherosclerosis

Signaling, and Fatty Acid Metabolism were significantly represented in

the DEGs list. The overall importance of IL-17 signaling in

psoriasis is highlighted by several recent studies in which major

improvements in psoriasis were seen when IL-17 antagonists were

tested in clinical trials [37–39]. However, the largest difference

detected in IPA profiles of the MAD-3 transcriptome concerned

Atherosclerosis Signaling (Figure 4). This association is of particular

interest in light of the well-established link between moderate-to-

severe psoriasis and a significantly increased risk of cardiovascular

disease [40]. Furthermore, it now appears that some factors that

influence cardiovascular risk may be produced locally in inflamed

psoriasis skin lesions and could become systemically available to

increase risk of vascular or cardiac pathology [8,22].

Not only is this MAD-3 list much larger than the intersection of

DEGs of individual studies, it also identifies several ‘new’ IDD

genes relevant to psoriasis (Table 2). Of the up-regulated IDD

genes, many are of great interest. For example, PTPN22 is a

psoriasis risk gene with polymorphisms associated with early onset

psoriasis, and CYB5R2 is involved in fatty acid metabolism. There

were also several interesting down-regulated IDD genes, including

the serine protease TMPRSS11E, also called DECS1.

TMPRSS11E correlates with normal keratinocyte differentiation

[41], so reduction is consistent with the loss of normal keratinocyte

differentiation that occurs in psoriasis. BACH2 has been

implicated as a type 1 diabetes risk factor by GWAS [42], and

may have a role in response to viral antigens [43]. MERTK may

play a role in clearance of apoptotic cells by antigen-presenting

cells [44], or may act as anti-inflammatory, potentially allowing

reduction of MERTK unrestrained TLR activation [45]. Poly-

morphisms of PPARG have been seen in a cohort of psoriatic

arthritis [46]. PPARb/d activation, which can be antagonistic to

PPARc, has been shown in psoriasis skin [47], and activation of

PPARb/d contributed to a psoriasis-like mouse model of disease

[48]. Expression levels of the above genes were all confirmed by

RT-PCR.

Interestingly, we observed that 9 of the 20 classifier genes are

among the top 25 up- and down-regulated genes listed in Table 1.

Even with such a substantial overlap, a psoriasis expert may still

question why many well-known up-regulated genes (e.g., DEFB4)

were not in the list of ‘‘classifier’’ genes. A top DEG gene is not

necessarily a good ‘‘classification’’ gene. DEG are genes whose

average expression values differ across tissues/classes, while a

classification algorithm aims to discriminate among different

tissue/class using the smallest possible set of genes (classifier genes).

How the association between a gene and tissue or class is measured

differs correspondingly. While detecting DEGs, such association is

measured univariately by using a moderated (paired) t-test,

whereas in the MTGDR, the association of gene expression and

tissue/class is modeled multivariately with all genes considered

simultaneously as covariates in the logistic regression model. In

this regard, MTGDR does two tasks simultaneously: building a

classification rule and selecting the most relevant genes. Addition-

ally top psoriasis DEGs are defined considering the paired

structure of the data. A gene with a large between-patient

variation may be a DEG (as defined by the paired t-test) but not

necessarily ideal for prediction purposes.

Among classifier genes, TCN1 (transcobalamin 1/ HAPTO-

CORRIN) anchors (in Radviz plots) are consistently close to LS

skin across different studies. This gene encodes a member of the

Psoriasis MAD Transcriptome
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vitamin B12-binding protein family cobalamin metabolic process,

which is found in neutrophilic granules. TCN1 (Chr 1,

LOD = 4.41) has shown linkage to serum insulin concentrations

in impaired glucose tolerance [49]. TCN1 protein was also

increased in synovium of rheumatoid arthritis [50], and was

significantly associated with cholesterol levels or statin response

[51], perhaps providing a predisposing link between both skin

inflammation and high cholesterol.

Several genes in the psoriasis classifier, KYNU (up), MUC7 and

CLDN8 (down), were part of the Etanercept ‘‘molecular scar’’

previously reported by our group [10]. The molecular scar

represents a group of genes that are still expressed at the end of 12

weeks of successful treatment with etanercept, an anti-TNF agent

used for psoriasis, at the time point where there was complete

clinical resolution and no visible skin inflammation. KYNU,

kynureninase, is an enzyme involved in the biosynthesis of NAD

cofactors from tryptophan through the kynurenine pathway.

Several genes in the classifier were also recently identified by

Robertson et al. [36] as top genes harboring differential

methylation sites in psoriasis versus normal skin, namely

S100A12, SERPINB3, and KNYU. These investigators showed

that patterns of DNA methylation of LS skin could help separate

psoriatic LS from normal skin (with NL skin showing intermediate

patterns of methylation). In this analysis, these three genes were in

the top 10 most significant methylation sites, although there was

an inverse correlation between DNA methylation and nearby gene

expression for these genes. Hence KNYU may be a novel gene to

evaluate in the future as a biomarker, both for its increased gene

expression in LS skin as well as demethylation status. The presence

of these genes in the classifier, which can be broadly considered a

genomic predictor of disease, in clinically resolved psoriasis lesions,

and as top sites harboring DNA methylation, may suggest their

role as key genes in the molecular fingerprint of psoriasis. Further

studies are warranted to determine their role and effects and future

use as predictors of disease.

In conclusion, the meta-analysis produced a pool of consistent

candidate genes for further investigation of psoriasis pathology,

biomarker selection, and potential targeted treatment detection. In

future work, these data may serve as a ‘‘gold standard’’ psoriasis

transcriptome, since it has been carefully curated and modeled.

Findings presented here can be further validated through RT-

PCR or protein staining of important genes. It will be useful to

examine the relationship between the top DEGs with clinical

disease severity, to evaluate ‘‘new’’ genes in the transcriptome and

their role in disease pathogenesis, and explore relationships

between top DEGs, classifier genes, RDGP, and methylation.

The transcriptome can also be used in the context of response to

treatment, such as we have conducted in the past with etanercept

treatment [6,9] and ixekizumab [52]. The impact of the classifier

genes can be studied alone, such as for TCN1, or they can be

considered together as the molecular definition of psoriasis, which

could aid in differential diagnosis. Specific new pathways identified

by IPA provide opportunities for discover of disease pathogenesis

and new therapeutic targets.

Materials and Methods

Given the fact that only a careful application of meta-analysis

can mitigate or overcome the variations across different studies, we

chose the experiments on the same platform, and reanalyzed the

data using the same preprocessing and analytic procedures. We

followed the PRISMA statement guidelines, the corresponding

checklist can be found in Table S7.

The Experimental Data
We searched the NIH’s GEO (Gene expression omnibus)

repository using psoriasis and Affy chips on human as keywords (before

Oct 1st, 2009) identifying 8 potential experiments. One additional

experiment was part of a collaboration with Janssen Research &

Development, and has recently being released to GEO repository.

We excluded 3 studies conducted on earlier Affymetrix HGU95

chips series (a-e and v2), while a fourth study was excluded because

it was conducted on multiple outdated platforms. The inclusion of

those studies would have severely limited the universe of genes to

be analyzed and would had resulted in noisier data since the

agreement with newer platforms is smaller.

Among five of the studies, 3 studies were performed on

HGU133plus2 chips. The first study reported by Yao et al. [4],

used 56 samples (28 LS and NL skin pairs) and found 1408 up-

regulated and 1465 down-regulated probesets (974 and 853 genes

respectively). The second was reported by Gudjonsson et al. [43]

with a sample size of 116 (58 LS and NL pairs), and there was a set

of 721 up-regulated and 364 down-regulated probesets (508 genes

and 248 genes) identified. The third experiment [8] is a study with

a total of 162 samples (81 LS and NL skin pairs) involved, and

there were 2129 up-regulated probesets (1568 genes) and 2046

down-regulated probesets (1555 genes) reported. Also, a study with

15 LS and NL pairs on HGU133a2 chips published by Suarez-

Farinas et al. [6] presented a list of 732 (579) up-regulated and 890

(703) down-regulated probesets (genes). In the last study, Reischl et

al. [7] reported 179 DEGs using an experiment on HG-U133A

chips with 13 patients. Table S1 summarizes the relevant

information for the 5 studies used in the meta-analysis.

Uniform Preprocessing of Raw Data for the Meta-analysis
The raw Affymetrix data (CEL files) of every study was

downloaded from NIH’s GEO (Gene expression omnibus)

repository and expression values were obtained using GCRMA

algorithm [53] and normalization across samples was carried out

using quantile normalization. As the first step of data filtering, only

those probe sets that demonstrated a certain degree of variation

across samples in each study were selected. Probe sets with SD

below 0.1 were regarded as non-informative and eliminated. The

set of common probe sets across studies was input for the further

filtering by integrated correlation approach.

Integrated Correlation and Gene-Coherence Score
The Integrated Correlation Coefficients (ICC) approach,

introduced by [16], was used as the second step of data filtering.

It defines a set of genes exhibiting coherent behavior across studies

as explained in [54].

For each study s, xg representing the expression profile for a

gene g, and rs
p~corr xg1

,xg2

� �
is the correlation for the pair of

genes p = (g1,g2). The integrated correlation, defined as

I s,s0ð Þ~corr rs
p,rs0

p

� �
quantifies the coherence between studies.

If this expression is calculated considering only the pairs

containing a specific gene gk, a measure of the gene-specific

coherence between two studies is produced, which is

Cs,s0 gð Þ~corr rs
p,rs0

p

� �
, p~ gk,gið Þ, i=k. When more than two

studies are involved, the average over all s and s’ is used as a

Coherence Score for a gene g,

Cg~
Xn

s~1

X
s0ws

Cs,s0 gð Þ
�

n

2

� �
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For each gene, a Coherence score was calculated and genes with

scores bigger than the median were selected as a set of Coherent

Genes. Confidence Intervals for the correlation scores were

obtained by bootstrapping.

We evaluated how the results varied by the choice of cut-off in

the filtering out of incoherent genes. For the 3 plus2-studies, using

all genes or filtering out those on the first quartile (25%) of

coherence score resulted in the identification of the same DEGs

(data not shown). In the case of the 5 studies meta-analysis, the

choice of 25% or 50% cut-offs rendered identical results (data not

shown). Based on the above observations, it is reasonable to

conclude that the implementation of filtering based on coherence

scores ruled out mostly inconsistent but insignificant genes

(random noises).

Meta Analysis
The classic application of meta-analysis is to find a single

outcome using published data where only the summary statistics

are typically available. With microarray experiments, however, a

more fortuitous situation of having the complete set of raw data

available is commonly achievable. Thus, we took advantage of this

feature and modeled the differences in expression values between

LS and uninvolved (NL) skin pairs uniformly.

The general model in a meta-analysis setting is as follows. Let Yij

represent the measured effect for study j (j = 1, …, J) for a specific

gene i. We have,

Yij~hijzeij , eij*N 0,s2
ij

� �

hij~ mi zdij , dij*N 0,t2
i

� � ð1Þ

where between-study variance ti
2 represents the variability

between studies, and it is usually estimated by the DerSimonian

and Laird method [55]. And s2 represents the within-study

variance for the ith study. Both Yij and s2 (called as summary

statistics) are already known from previous analysis/study. mi is

regarded as the average measure of differential expression across

all datasets/studies for this gene, which is the parameter of interest

and may be estimated along with its a standard error (se) as:

u
^

i
~

PJ
j~1

wijyij

PJ
j~1

wij

, se( ui)
^

~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

PJ
j~1

wij

vuuut ð2Þ

where wij equals to the inverse of the variance of Yij. A question

that must be addressed in meta-analysis is to specify if a fixed-effect

model or a random-effects model is more appropriate for the data.

This depends on the value of the between study variance; ti
2 = 0

corresponds to a fixed model while ti
2.0 corresponds to a random

model. The hypothesis (Ho: ti
2 = 0 versus Ha: ti

2.0) would be

tested using the Cochran’s Q statistic that follows a x2
n-1

distribution under the null hypothesis [17].

Model Fitting
For each study, a moderated paired t-test was used to analyze

differences (on the log2 scale) among LS and NL psoriatic samples.

The summary statistics (Yij and s2 in Equation 1) were recorded

and would be the input in the meta-analysis. Then, the overall fold

changes (LFC) between LS and NL skin on the log2 scale (i.e., the

parameters of interest in this analysis) and their corresponding

standard errors were calculated using Equation 2. The resulting

adjusted p-values using Benjamini and Hochberg procedure,

which control for false discovery rate (FDR), are used to decide the

statistical significance of genes along with LFC.

Disease-classification Genes
The Meta Threshold Gradient Directed Regularization

(MTGDR) method proposed by Ma and Huang [16] was used

to select genes (also referred to as biomarkers) which may

distinguish LS and NL skin samples. MTGDR is an extension of

the Threshold Gradient Directed Regularization (TGDR) [56], to

the case where several studies are combined. For each study m, the

independent variables Ym - defined as the binary indicators of

group membership (1 denotes LS skin and 0 for NL skin) - is

modeled through a logistic regression with the expression values

for all genes (represented by matrix matrix Xm) as a covariates.

MTGDR assumes that the regression coefficients of the logistic

regression of the TGDR model may be different across studies but

the sets of genes with nonzero coefficients (i.e., the classifier/

biomarker genes) are the same across studies.

In microarray studies where more than thousands of genes are

surveyed, only a small number of genes are actually associated

with the outcome of interest. MTGDR tries to select such genes

(corresponding to those with nonzero coefficients on the logistic

regression) and estimates the corresponding coefficients simulta-

neously by maximum likelihood. The algorithm starts with initial

values for the regression coefficients equal zero and in each

iteration, updates only the coefficients associated with genes with

large meta-gradients (defined by the sum of the gradient across

different experiments). Which and how many genes are updated in

each iteration are determined by k (the number of iterations) and

the tuning parameter t. A value of t= 1 indicates that only the

gene with largest meta-gradient is updated whereas if t= 0, all

genes will be updated. With a large t (close to 1) and a finite k,

only a small number of genes will have nonzero coefficients. For

the detailed descriptions on MTGDR, see Ma and Huang [16].

Tuning parameters t and k were jointly determined by a 3-fold

cross-validation. Samples from each study were randomly divided

into 3 subsets and cross-validation was carried out by running

MTGDR for a set of possible values for t (range from 0–1) and

number of iterations (k) up to 5000. Optimal parameters were

selected as those that maximized the log-likelihood. The limit of 3-

fold cross-validation was due to the small size in one study. To

evaluate the performance of the final classifier, we considered 5-

fold cross-validation. Samples in each study were randomly

divided into 5 parts, 4 folds were used to run MTGDR, and

then the resulting estimates were used to make prediction on the

removed one fold. This procedure was repeated 5 times to produce

class prediction on all samples, and the prediction error was

computed. Prediction errors generated by 10 and 20-fold cross-

validation produced similar results.

Radviz Plot
Radial Coordinate Visualization (Radviz) [8] is a non-linear

visualization technique that can display data on three or more

attributes in a 2-dimensional projection. The visualized attributes

(e.g., genes) are presented as anchor points spaced around the

perimeter of a circle. Samples are shown as points inside the circle,

with their positions determined by a metaphor from physics: each

point is held in place with springs that are attached at the other

end to the attribute anchors. The stiffness of each spring is

proportional to the value of the corresponding attribute and the

point ends up at the position where the spring forces are in

equilibrium. Data instances that are close to a set of feature

anchors have higher values for these features than for the others. A
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unique Radviz plot including all 5 studies was not possible in

practice since the odds of being LS skin differs among individual

studies as shown in Table S4.

RT-PCR
The gene expression data for certain genes of interest were

confirmed by RT-PCR in NL and LS biopsies from 9 patients with

moderate-to-severe psoriasis. All patients gave written informed

consent, and research was approved by the Rockefeller University

Institutional Review Board. RNA was extracted from skin samples

frozen in liquid nitrogen using the RNeasy Mini Kit (Qiagen,

Valencia, CA). DNA was removed by on-column DNase digestion

by the Qiagen RNase-free DNase Set. The primers for

TMPSS11E, BACH2, MERTK, PPARG, RASSF6, SRGAP1,

BAK1, PTPN22, CYB5R2 (Hs01070171_m1, Hs00222364_m1,

Hs01031973_m1, Hs01115513_m1, Hs00698249_m1,

Hs00381035_m1, Hs00832876_g1, Hs00249262_m1,

Hs00212055_m1, respectively) were obtained from Applied

Biosystems (Foster City, CA). Data was normalized against a

housekeeper gene, human acidic ribosomal protein. Paired t-tests

were conducted on the log2 transformed expression values for

each gene, and corresponding p-values were reported.

Ingenuity Pathway Analysis
IPA software (www.ingenuity.com) was used to examine the

data in the context of known biological response and regulatory

networks as well as other higher-order response pathways. IPA

uses a Fisher’s exact test to determine the probability of each

biological function or disease assigned to MAD transcriptome by

chance. In the functional network analysis, genes are grouped in

networks with connections representing known biological relation-

ships, supported by a published reference. IPA was also used to

predict which transcription factors could be responsible for gene

expression and whether those transcription factors are activated or

inhibited.

Statistical Language and Packages
The statistical analysis was carried out in the R language version

2.12 (www.r-project.org), and packages were from the Bioconduc-

tor project (www.bioconductor.org). The RadViz plots were made

in the Orange software (www.orange.biolab.si).

Supporting Information

Figure S1 A. Model selection. QQ plot showing the comparison

of sample quantiles of Cochran’s Q against the quantiles of

x2
n21distribution (the theoretic distribution under the null

hypothesis, n is the number of studies), the substantial deviation

indicates a random effect meta-analysis model is preferred. B. QQ

plot showing the comparison of the standardized overall effect

estimates using the random effect meta-analysis model with a

standard normal distribution, which indicates that those estimates

do not deviate too far from normality.
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Table S1 Description and summary of the analytic
methods used in the original studies.
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Table S2 MAD-5 psoriasis transcriptome. DEGs identified by

the 5-study meta-analysis.

(XLS)

Table S3 MAD-3 psoriasis transcriptome. DEGs identified by

the 3-study meta-analysis.

(XLS)

Table S4 Significant canonical pathways represented in MAD-3

transcriptome.

(XLS)

Table S5 Transcription Factors predicted to be Activated/

Inhibited by IPA analysis.

(PDF)

Table S6 The 20 ‘‘classification’’ genes selected by MTGDR

procedure. A. Estimated coefficients for each gene in each study.

B. Misclassification error rates in each study and an overall error

rate using a 5-fold cross-validation.

(PDF)

Table S7 The PRIMA (Preferred Reporting Items for System-

atic Reviews and Meta-Analyses) checklist.

(DOC)
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