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Abstract: The chemical composition of surface geological materials may cause metabolic changes
and promote endemic diseases (e.g., oncological, gastrointestinal, neurological or cardiovascular
diseases). The results of a geochemical survey is presented following the guidelines proposed by
the International Project IGCP 259 performed on the alluvium of Santiago Island (Cape Verde) and
focused on public health issues. Geochemical mapping is the base knowledge needed to determine
critical contents of potential toxic elements and the potentially harmful regions in the planet. This
work presents maps of baseline values of potentially toxic elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni,
Pb, V, and Zn) in Santiago alluvium and the assessment of their human health risks. According to
the results the Cd, Co, Cr, Ni and V baseline values are above the Canadian guidelines for stream
sediments (for any proposal use) and for soils (for agricultural and residential proposal uses) and also
above the target values of Dutch guidelines. Hazard indexes (HI) were calculated for children and
adults. For children (HI) are higher than 1 for Co, Cr and Mn, indicating potential non-carcinogenic
risk. For the other elements and for adults there is no potential non-carcinogenic risk. Cancer risk
was calculated for Cd, Cr and Ni exposures, for adults and children, and the results are only slightly
higher than the carcinogenic target risk of 1 × 10−6 for adults exposed to Cr by inhalation. However,
these results may be underestimated because alluvial contaminants may be indirectly ingested by
groundwater and by crop and vegetables consumption.

Keywords: potentially harmful elements; alluvial deposits; baseline values (BV), human health risk
assessment; Santiago Island; Cape Verde

1. Introduction

Geochemical surveys were developed in the last century [1–6] mainly as a means of geochemical
prospecting of ore deposits [7,8]. Geochemical databases have been carried out in many regions [9–13],
countries [7,14–18], multinational regions [19] and, more recently, continents [20–22], at various scales,
ranging from high to very low density (e.g., >1 sample/km2 to 1 sample/10,000 km2, respectively).
Geochemical surveys application has expanded to also encompass environmental monitoring, land-use
decision support, natural resource management, and medical geology [7,23]. A diversity of sampling
media have been targeted by geochemical surveys over time, which includes rock, sediment, soil,
alluvium, ground water, surface water, dust, and vegetation [22]. In order to understand the
transference, mobility, residence and biogeochemical processes of chemical elements few recent
surveys have even targeted several media [24,25].

Geochemical surveys are especially important in developing countries like Cape Verde, where
intervention limits for near-surface environment are not yet established. Considering this lack of
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information a high-density (aprox. 1/3 km2) geochemical survey in Santiago Island, Cape Verde
archipelago, following the guidelines proposed by the International Geological Correlation Program
(IGCP) Project 259 [1], was conducted in order to compile the first environmental geochemical atlas for
that region. This paper presents the baseline value (BV) Santiago Island maps of some potentially toxic
elements in alluvial deposits. Alluvial deposits are important natural resources, in particular in areas
of limited rainfall when weathering profiles are very thin or non-existent, being the most adequate
place for local agriculture. Knowledge of the geochemistry of near-surface environment is essential
as it contributes to the improvement of the nutritional status of the population [26,27] and helps to
understand the causes of some endemic diseases which can persist through out the life course due
to heavy metal exposure, such as As, Cr, Al, Mn, Pb, Hg, Cu, Co, etc. Some elements can naturally
accumulate on alluvial deposits in concentrations that are toxic to the plant, to the animal feeding on it
and to humans. The dispersion of these elements in the environment is mainly carried out by water
and air, which are vehicles linking the inorganic environment to life. The inhabitants of Santiago Island
depend on groundwater for consumption and for agriculture and the flux water-vegetables-human
also deserve evaluation, because endemic diseases can be controlled with proper measures, if its cause
is well constrained. Some of these potentially toxic elements (PTEs) can lead to long-term carcinogenic
and non-carcinogenic health risks and early environmental and occupational exposure to PTEs in
different locales around the world has been related to oncological disease and mortality, neurological
or cardiovascular diseases [28–40], etc. The widespread existence of PTEs has become one of the
most serious environmental concerns around the globe and the development of efficient and selective
chemical sensors to detect such potentially toxic elements have been a priority [41–48].

This study had the following objectives: (1) present a geochemistry survey of alluvial deposits for
the studied metals and metalloid; (2) define the baseline values on Santiago Island; (3) evaluate the
environmental risks; and (4) evaluate the human health risk, in areas naturally enriched with metals.

2. Settings of the Archipelago of Cape Verde and Santiago Island

The archipelago of Cape Verde (composed by 10 islands—Figure 1) is located at the eastern
shore of the Atlantic Ocean, 500 km west from Senegal’s Cape Verde, off the western shore of Africa
(Figure 1). Santiago island (991 km2), located in the southern part of the archipelago, is the biggest
island and with half of the country´s population [7].
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Santiago Island has a semi-arid climate, with strong winds during the dry season, and a mean
annual precipitation of 321 mm, mainly due to torrential rains, during the wet season [50]. It has
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215 km2 of arable area and estimated hydric resources of 56.6 × 106 m3/year on the surface, and
42.4 × 106 m3/year underground [51].

The works carried out by [49,52–55] allowed the establishment of the volcanostratigraphy of the
island of Santiago (Figure 1). Table 1 provides a brief description of the geologic units in Santiago,
named: Ancient Internal Eruptive Complex (CA), Flamengos Formation (FL), Orgãos Formation (CB),
Eruptive Complex of Pico da Antónia (PA), Assomada Formation (AS), Monte das Vacas Formation
(MV), and quaternary formations (CC).

Table 1. Geologic units, outcrop, rock type and composition, primary minerals of Santiago Island,
Cape Verde.

Geological Formation Outcrop Rock Type Composition Primary Minerals

CA—Ancient internal
eruptive complex

Centre, centre-W
and in stream

valleys

Subaerial and submarine lava
flows and pyroclastic deposits;

dykes and intrusive rocks

Basalts-basanites,
phonolites-trachytes

and carbonatites

Feldspar pyroxene
carbonates, olivine,

phyllosilicates

FL—Flamengos
formation

NE-flank of the
island

Submarine lava flows with
subordinated breccias and

tuffs
Basanites

Pyroxene, Fe-Ti
oxides, olivine,

feldspar

CB—Orgãos formation Centre-E Volcano-sedimentary deposits;
rare lava flowss Diverse

Pyroxene, Fe-Ti
oxides, carbonates,

feldspar

PA—Pico da Antónia
eruptive complex

Widespread in the
island

Subaerial and submarine lava
flows, dykes and pyroclastic

material; intercalated
sedimentary deposits

Basalts-basanites,
phonolites-trachytes
and conglomerates

Pyroxene, Fe-Ti
oxides, feldspar

olivine

AS—Assomada
formation Centre-W Subaerial lava flows and some

pyroclasts Basanites
Pyroxene, Fe-Ti
oxides, feldspar,

olivine

MV—Monte das Vacas
formation

50 cinder cones
throughout the

island

Subaerial pyroclasts and small
subordinated lava flows Basanites

Pyroxene, Fe-Ti
oxides, feldspar,

olivine

CC—recent
sedimentary
formations

Mostly in stream
valleys

Alluvial, aeolian and marine
deposits Diverse

Pyroxene, Fe-Ti
oxides, carbonates,

feldspar

3. Materials and Methods

3.1. Sample Collection, Chemical Analysis

Three hundred and forty near surface alluvium composite samples (0–15 cm depth) were sampled
across the Santiago Island, at a density of approximately 0.3 site/km2. On each site the composite
sample (~1 kg) was obtained by collecting five points, spaced approximately 50 m. These samples
represent pristine alluvial deposits developed from all the geological formations in Santiago Island.
To establish the sampling sites and the treatment of the samples, the guidelines of the IGCP 259
project were followed [1]. Field duplicate samples were taken at every 10 sites and locations affected
by pollution were avoided. Samples were then sieved to <2 mm, being this fraction used for all
chemical analyses.

The chemical analysis was performed at ACME Analytical Laboratories, Ltd. (Vancouver, BC,
Canada). Individual samples were digested in aqua regia and analysed by inductively coupled
plasma-mass spectrometry (ICP-MS, ALS Global, Vancouver, Canada) for As, Cd, Co, Cr, Cu, Hg,
Mn, Ni, Pb, V, and Zn. Digestion with aqua regia is a chemical attack method used in heavy metal
environmental studies because it is effective in removing the more mobile elements normally associated
with clay minerals, organic matter and other secondary minerals [1].

3.2. Analytical Quality Control, Statistical Analysis and Baseline Value

The data resulting from the chemical analysis of the elements was subjected to several data quality
tests in order to determine which elements have reliable data to be interpreted by subsequent statistical
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analysis and is well described in Cabral Pinto et al. [7]. The methodology followed in this work to
determine the baseline value of each metal at each sampling site followed the guidelines of the IGCP
259 project [1]. The mapping of the BVs was performed by ordinary kriging using a theoretical model
of spatial continuity fitted to the experimental variograms calculated for each metal (Supplementary
Materials, Table S1). Cross validation was carried out for each interpolated variable to assess if the
fitted model was suitable for the experimental variogram. The root-mean-square error (RMSE) was
used to measure the differences between values predicted by the model and the actual values. The
RMSE ranges from 0 to infinity, with 0 corresponding to the ideal. The baseline value representative of
the entire Santiago Island (BV-S) was calculated as the median of the data set limited by the Tukey
range [56].

3.3. Risk Assessment

The environmental risk (ER) is calculated for PTE using Canadian [57] and Dutch [58] legislations
for soils and sediments. For each element ER = BV-S/P, where computed. BV-S is the baseline
element concentration in Santiago Island and P is the permissive level of that element, according to
the legislations.

The non-carcinogenic and carcinogenic risks for residents of the Santiago Island were estimated
according the United States Environmental Protection Agency (USEPA) methodology [59]. The
equations used to determine the exposition to toxic elements via ingestion, dermal contact and
inhalation are:

CDIingest =
C × IRS × EF × ED

BW × AT
× CF (1)

CDIdermal =
C × SA × AF × ABS × EF × ED

BW × AT
× CF (2)

CDIinhalation =
C × ET × EF × ED

PEF × 24 × AT
(3)

where CDI = Chronic Daily Intake (µg/kg bw/day); C—Concentration of chemical in alluvial deposits
(mg kg−1); IRS—Ingestion Rate of Alluvium (mg day−1); EF—Exposure Frequency (350 days/year);
ED—Exposure Duration (35 years for adult; 6 year for children); BW—Body Weight (70 kg for adult;
15 kg for children); AT—Averaging Time (365 days); CF—Conversing Factor (10−6 kg mg−1); SA—Skin
Surface Area available for contact (2373 cm2 for children and 6032 cm2); AF—Alluvium to skin
Adherence Factor (0.2 mg·cm−2 for children and 0.07 mg·cm−2 for adult); ABS—Absorption Factor
(0.001); ET—Exposure Time (12 h·day−1); PEF—Particle Emission Factor: 1.36 × 109 m3·kg−1 [60].
In the formulas C is the concentration of PTE in alluvial deposits, which is the 95% upper confidence
limit (UCL) in accordance with the USEPA [61].

The human health risk caused by PTEs exposure is expressed as hazard quotient (HQ) = ADD/RfD.
The ADD is the average daily dose that a children or adult is exposed. RfD is the reference dose which
is the daily dosage that enables the exposed individual to sustain this level. The HI is the chronic
hazard index that is the sum of the hazard quotient for multiple exposure pathways. When HI values
>1, there is a chance that non-carcinogenic risk may occur; otherwise, HI < I the opposite applies.
The carcinogenic risks were calculated for Cd, Cr and Ni exposure of Santiago Island population,
according to the Exposure Factors Handbook [60,62] and using the Slope Factors according to [63].
USEPA acceptable risk values for cancer risk 1 × 10−4 to 1 × 10−6.

4. Results and Discussion

4.1. Baseline Value Maps

Descriptive statistics including the median, mean ± standard deviation, coefficient of variation
percent, and the ranges of the analyzed metals concentrations along with the BV-S of Santiago Island
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were calculated and listed in Table 2. Figure 2 displays the spatial distribution of geochemical baseline
values of the studied PTE at the sampling locations and also at all points of the interpolated spatial field.

Table 2. Statistical As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V and Zn variables analysed, interval ranges,
and the baseline values (BV-S) of metals from the alluvial deposits of Santiago Island (n = 340). Values
expressed in mg kg−1.

Variable Median Mean SD CV Range P5–P95 Tukey Range BV-S

As 0.3 0.6 0.6 1.07 0.3–7.2 0.3–1.6 0.3–1.4 0.25
Cd 0.10 0.14 0.09 0.64 0.05–1.00 0.05–0.30 0.05–0.35 0.10
Co 44.7 45.1 13.9 0.31 3.1–140 26.4–66.1 15.8–73.4 44.65
Cr 114.0 124 68 0.55 8.0–463 20.0–251.5 8.0–264.0 114
Cu 48.8 48.6 18 0.37 3.2–142 17.6–77.8 9.4–87.6 48.7
Hg 0.01 0.01 0.01 0.74 0.01–0.08 0.01–0.03 0.01–0.04 0.01
Mn 1191 1260 442 0.35 197–4210 737–1976 255–2162 1182
Ni 155 161 76 0.47 6.8–477 21.3–286 6.8–338 154
Pb 3.9 5.2 6.6 1.26 1.4–81.4 2.0–10.1 1.4–10.1 3.80
V 160 161 45.7 0.28 24.0–372 92.4–236 50.5–263 159

Zn 81.0 82.7 19.1 0.23 15.0–199 57.0–189 34.0–130 81

Med: median; SD: standard deviation; CV: variation coefficient; P5–P95: the interval limited by the 5th and 95th
percentile values; Tukey range (92) or non-anomalous range: P25 − 1.5 × (P75 − P25) − P75 + 1.5 × (P75 − P25); BV-S
(baseline value for Santiago): the median of the data limited by the Tukey range.

The mineralogical composition of alluvial deposits is primarily governed by the mineralogy
of the bedrock, climatic conditions (precipitation, temperature, wind direction), and topography.
Chemical weathering is not intense in Santiago, due to the semiarid climatic conditions and the
vigorous relief. The alluvium mineralogy is a combination of components inherited from the original
lithology, minerals resulting from the alteration of these primary components, and probably also
wind-transported minerals, mainly from the Sahara Desert. The alluvial deposits on the island of
Santiago are dominated by primary silicate minerals such as pyroxene, feldspar and olivine (Table 1).
The main secondary minerals are phyllosilicates (smectite, palygorskite, kaolinite, mica/illite), calcite,
hematite and also quartz. Other minerals occur, such as leucite, analcite, apatite, nepheline, magnetite,
titanomagnetite, ilmenite, chromite, garnet, serpentine, zeolites, siderite, opal, barite, titanite, zircon,
halite, aragonite, dolomite, brucite, and chlorite [23]. A brief description of soils types of Santiago
Island is present in the Supplementary Materials (Table S2).

Figure 2 and Tables 1 and 3 shows that the alluvial deposits of Santiago Island, Cabo Verde, have
a geochemical composition controlled by the type of underlying rock [23,64]. Most of the elements in
the alluvium have a mainly geogenic origin.

Table 3. Baseline values of PTE from the alluvial deposits of Santiago, and admissible levels (in mg
kg−1) in soils and stream sediments according to the Ontario (88) and Dutch guidelines (89).

Element BV-S
Canadian Guidelines Dutch Guidelines

Soil Agricultural
Property Uses

Soil Residential
Property Uses

Sediments (All Types
of Property Uses Target Values

As 0.25 11 18 6 29
Cd 0.1 1 1.2 0.6 0.8
Co 44.7 19 21 50 9
Cr 114 67 70 26 100
Cu 48.7 62 92 16 36
Hg 0.01 0.3 0.2 0.2 0.3
Mn 1182 - - - -
Ni 154 37 82 16 36
Pb 3.8 45 129 31 85
V 159 86 86 90 -

Zn 81 290 290 120 140

Note: The bold values highlight the concentrations of PTE of guidelines which are below the respectively
concentrations of baseline values in Santiago alluvium.
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4.2. Risk Assessment

The comparison of the BV-S of each studied PTE in the alluvial deposits of Santiago Island and
the international values legislated as dangerous for certain uses (guideline values), is given in Table 3.
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The BV-S of Co, Cr, Cu, Ni and V are above the Canadian guidelines [57] for soils (for agricultural and
residential uses), stream sediments (for any use) and above the target values of Dutch guidelines [58].
Manganese has not international guidelines for any property use, but its baseline value in Santiago
alluvium is enriched relatively to upper crust values (774 mg kg−1) of Rudnick and Gao [65].

The Hazard Quotients (HQ) for ingestion, dermal contact and inhalation routes and Hazard
Indexes (HI) were calculated (Table 4), for the PTE which are above the international guidelines for
diverse property uses and also for Mn. Environmental exposure to Mn can induce parkinsonism
and although the long-term medical significance of this finding is unclear, the data are troubling and
point to the need for further investigation of manganese’s health risks [66]. The selected elements
are potentially toxic elements and some (Cd, Cr and Ni) are also carcinogenic [67]. The pathways
chosen were ingestion, inhalation and dermal contact and the calculations were performed for children
and adults.

Table 4. HQ values for various pathways and elements and HI for elements from Santiago Island.

Element
HQ Ingestion HQ Dermal HQ Inhalation HI

Children Adult Children Adult Children Adult Children Adult

Co 2.9 × 100 3.1 × 10−1 8.2 × 10−3 1.2 × 10−3 4.1 × 10−3 2.3 × 10−3 2.9 0.3
Cr 1.1 × 100 1.2 × 10−1 3.1 × 10−3 4.7 × 10−4 9.2 × 10−4 5.2 × 10−4 1.1 0.1
V 1.9 × 10−1 2.0 × 10−2 5.3 × 10−4 8.1 × 10−5 1.2 × 10−3 6.7 × 10−4 0.2 0.0
Ni 2.6 × 10−2 2.7 × 10−3 7.2 × 10−5 1.1 × 10−5 7.2 × 10−7 4.0 × 10−7 0.0 0.0
Cu 6.2 × 10−1 6.7 × 10−2 1.7 × 10−3 2.7 × 10−4 8.8 × 10−4 5.0 × 10−4 0.6 0.1
Zn 8.4 × 10−3 9.0 × 10−4 2.3 × 10−5 3.6 × 10−6 2.3 × 10−7 1.3 × 10−7 0.0 0.0
Cd 4.0 × 10−3 4.3 × 10−4 4.5 × 10−4 6.8 × 10−5 1.1 × 10−5 6.3 × 10−6 0.0 0.0
Mn 1.1 × 100 1.2 × 10−1 3.1 × 10−3 4.7 × 10−4 1.5 × 10−2 8.3 × 10−3 1.1 0.1

Note: Bold values show the PTE values above 1, and so highlight the elements which have potential
non-carcinogenic risk.

The non-carcinogenic hazard indexes (HI) for all nine elements are presented in Table 4. For adults
the HI are always smaller than 1, whereas for children they are higher than 1 for Co (HI = 2.9), Cr
(HI = 1.1), and Mn (HI = 1.1), indicating potential non-carcinogenic risk. The HI value of these elements
is mainly controlled by the HQ ingestion, which are also higher than 1 for these 3 elements (Table 4 and
Supplementary Figure S1). For the other elements and for adults there is no potential non-carcinogenic
risk. The HI is Co > Cr > Mn, for both children and adults. Compared to adult, children health index
is higher, and their cumulative effect is also of concern for children. The high concentrations of PTE
on near-surface environment can threaten human health via ingestion by geophagism, rare in adults,
but quite common in children or by hand-to-mouth intake [68,69], and by inhalation of dust particles
and by dermal contact, specially by farmers and construction workers. Potentially toxic elements can
also threaten human health indirectly also by ingestion of contaminated groundwater. The studies of
Türkdoğan et al. [70] show that high contents of these metals in volcanic soils, vegetables and fruits
are related with endemic upper gastrointestinal disease region of Turkey.

The evaluation of cancer risk was performed for heavy metals which are potentially
carcinogenic [66]. The results for cancer risk are higher than the carcinogenic target risk of 1 × 10−6 [60]
only for Cr, for adults (Table 5). However, these results may be miscalculating the risk because the
other pathways were not considered and contaminants may be indirectly ingested by groundwater
and by crop and vegetables consumption. Pallegriti et al. [71] found that residents of Catania province
with its volcanic region appear to have a higher incidence of papillary thyroid cancer than elsewhere
in Sicily. Hawaii and the Philippines have revealed an increased incidence of thyroid cancer in
volcanic areas [72]. The common denominator of these regions is their numerous volcanoes and
the fact that several constituents of volcanic lava have been postulated as being involved in the
pathogenesis of thyroid cancer. High incidences of thyroid cancer were found in volcanic areas
(Hawaii and Iceland) and Malandrino et al. [73] found conclude that a volcanic environment may play
a role in the pathogenesis of thyroid cancer. The areas of high incidence of endemic Kaposi sarcoma
are characterised by a common geologic substrate, composed of fertile reddish-brown volcanic clay
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soils [74]. Chronic exposure to Cr has long been recognized as being capable to increase thyroid,
sarcoma, lung, and, head cancer incidence among exposed human populations [75–79].

Table 5. Cancer risk values for Cr, Ni and Cd from Santiago Island.

Element
Cancer risk

Children Adult

Cr 3.2 × 10−7 1.1 × 10−6

Ni 7.7 × 10−9 2.5 × 10−8

Cd 5.8 × 10−11 1.9 × 10−10

Note: Bold values show the PTE values above 1, and so highlight the elements which have potential
non-carcinogenic risk.

5. Conclusions

Baseline maps show that the alluvial deposits of Santiago Island, Cabo Verde, have a geochemical
composition controlled by the type of underlying rock, as most of the elements in the alluvium
have mainly a geogenic origin. The environmental risk calculations shown that the Santiago Island
alluvial deposits are naturally contaminated in Co, Cr, Cu, Ni and V, because these elements have
contents well above those allowed by Canadian and Dutch legislations for soils, for agricultural and
residential property uses (intervention limits for soils are not yet established in Cape Verde). The
non-carcinogenic hazard indexes (HI) were calculated for eight potentially toxic elements and they are
always smaller than 1 for adults, considering that the alluvium contaminants enter the human body by
soil ingestion, dermal contact and inhalation of dust particles. Most significant, non-carcinogenic Co
hazard is 2.9 for children. Ingestion mainly controls the HI values, and ingestion by geophagism and
by hand-to-mouth intake is much more common in children. The cancer risk is always lower or very
close to the carcinogenic target value. Exposure to other pollutants through other media, such as the
vegetables and water ingestion may constitute another sink of risk, that should be study in the future.
The inhabitants of Santiago Island depend on groundwater for consumption and for agriculture and
the flux water-vegetables-human also deserve evaluation, because endemic diseases can be controlled
with proper measures, if its cause is well constrained.

Supplementary Materials: Supplementary Materials: The following are available online at http://www.mdpi.
com/1660-4601/16/1/2/s1, Figure S1: Hazard index (HI) and hazard quotient (HQ) for potentially toxic elements
from Santiago Island. Symbols: HI-crosses; HQ for ingestion-balls; HQ for dermal contact—squares; HQ for
inhalation-lines., Table S1: Parameters of the theoretical models of spatial continuity fitted to the experimental
variogram of As, Cd, Co, Cu, Cr, Hg, Mn, Ni, Pb, V and Zn.
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