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Abstract
Accurate protein-protein complex prediction, to atomic detail, is a challenging problem. For flex-

ible docking cases, current state-of-the-art docking methods are limited in their ability to

exhaustively search the high dimensionality of the problem space. In this study, to obtain more

accurate models, an investigation into the local optimization of initial docked solutions is pre-

sented with respect to a reference crystal structure. We show how physics-based refinement of

protein-protein complexes in contact map space (CMS), within a metadynamics protocol, can be

performed. The method uses 5 times replicated 10 ns simulations for sampling and ranks the

generated conformational snapshots with ZRANK to identify an ensemble of n snapshots for

final model building. Furthermore, we investigated whether the reconstructed free energy sur-

face (FES), or a combination of both FES and ZRANK, referred to as CSα, can help to reduce

snapshot ranking error.
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1 | INTRODUCTION

The vast majority of all proteins are involved in assemblies where they

form stable complexes with one or more partners, or more often, form

transient interactions with a large number of different partners.

Resolving the three-dimensional description of these interactions, to

atomic detail, is crucial for understanding biological function.1,2 How-

ever, despite the ever-increasing number of new structures,3 the num-

ber of resolved structures of protein-protein complexes in the Protein

Data Bank (PDB)4 remains limited. This relative paucity of protein-

protein complexes, particularly to atomic resolution, limits our under-

standing of the workings of protein-protein interactions. Thus, accu-

rate in silico predictions of protein-protein interactions seem to be the

only viable option to complete the missing links within structure-based

interaction networks and to fully elucidate functional relationships.5

Several protein-protein docking approaches have been developed

to predict the three-dimensional interaction of proteins, which can be

broadly grouped into rigid body6–13 and flexible docking14–18

methods. To model transitions from unbound to bound states, the for-

mer considers only translational and rotational search space, whereas

the latter also incorporates conformational flexibility into the docking

process. Rigid body docking, where the conformations of the unbound

complex components are equal to the bound, is considered a solved

problem;19 many highly optimized algorithms based on fast-Fourier

transformation (FFT) techniques and geometrical hashing are utilized

to obtain accurate models. However, these methods fail to generate

high-accuracy models when the proteins undergo complex conforma-

tional changes from the unbound to bound form.

To model side-chain and backbone rearrangements, a high num-

ber of degrees of freedom have to be considered; therefore, heuristic

optimization algorithms are required to search the solution space effi-

ciently. The CAPRI-experiments20 (Critical Assessment of PRediction

of Interactions) have shown that heuristic methods are often able to

find solutions with acceptable quality. Nevertheless, finding medium

or high-quality solutions still remains challenging.21–24 A solution to

this problem is so called refinement methods, which perform a local

optimization on a docked solution in order to obtain a higher quality

model. Physics-based refinement methods, using standard algorithms

from molecular dynamics, have shown anecdotal success of improving

docking solutions.25 However, the computational cost of simulating

long enough time scales to escape local minima has often been a limit-

ing factor.
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In this study, to perform more directed sampling, a method is pre-

sented that exploits a so-called contact map space (CMS). The CMS is

constructed from the observed residue-residue contacts at the inter-

face between a receptor and a ligand from one initial docked solution

or an ensemble. To bias sampling of the binding funnel, the CMS is

used as a collective variable (CV) in a metadynamics simulation. Fur-

thermore, our work does not only investigate the sampling aspect of

refinement but also how improved snapshots can be identified from

the trajectory data and be used for generating a final refined model.

Our analysis shows that the most reliable snapshot selection strategy

for final model generation is to generically use the empirical scoring

function ZRANK26 when the refinement category is not known, that

is, from a wide variety of starting model qualities; acceptable, medium

or high. Nevertheless, the mixed energy function, CSα, that takes

account of free energy changes, shows utility when refining from

models of acceptable quality.

2 | MATERIALS AND METHODS

2.1 | Method overview

The overall flow of the method is shown in Figure 1A, and a graphical

overview of our refinement method is shown in Figures 1B-E takes

one of our case studies as a representative example, that of an accept-

able docking pose for target T39.

Starting with a protein-protein model docking pose, within or on

the edge of the native binding funnel, and an optional set of additional

docked solutions in close proximity to it (taken from the dataset

described below), an improved model complex is typically generated.

From this initial starting ensemble, interface contacts are identified

(see Figures 1B,C) and denoted as the interface contact map (CMif).

The starting model is then prepared for the metadynamics simulation

in CMS by modeling missing atoms with SCWRL27 and missing seg-

ments with Loopy.28 A multistep energy minimization phase, followed

by an equilibration phase, is performed to relax the starting model

prior to production sampling, see simulation setup described below.

During production sampling, to enhance sampling of relevant unbound

to bound transitions, the CMif map is used in a metadynamics simula-

tion at the docked interface. To sample a sufficient degree of confor-

mational space, 5 times replicated sampling runs are performed, see

Figure 1D. Subsequently, the snapshots of the resulting trajectories

are scored and ranked. From this set, the best n is selected to generate

the final refined model, which is obtained by averaging the equivalent

atomic Cartesian coordinates for all selected frames. To resolve small

nonphysical perturbations, for example minor side-chain clashes, the

averaged structure is subject to further energy minimization, see

Figure 1E. This methodology of averaging equivalent atomic coordinates

from a selection of high scoring snapshots is motivated by a refinement-

method based on molecular dynamics for protein-monomer models.29

2.2 | Data set

The protein-protein refinement method was benchmarked on

23 cases, using 11 targets, from the score_set data set30 of the CAPRI

scoring experiment. The data set consists of decoys of varying quality

(high, medium, acceptable, and incorrect), as contributed by all partici-

pating docking groups of the CAPRI blind docking trials; thereby,

representing models generated by a wide-range of docking methodol-

ogies. Targets containing more than one chain for receptor or ligand

(T37 and T50) and targets without any acceptable, medium or high

quality solutions (T36 and T38) were removed from the benchmark

set (see Table 1 for the full list). The structure chosen to represent the

quality category of a target was the centroid element, a calculation

based on ligand root mean square deviation (LRMSD) for all models

belonging to that category. Table 1 gives an overview of all starting

models with their initial model quality metrics. The produced refine-

ment trajectories of these targets can be downloaded from https://

zenodo.org/record/1217537.

2.3 | Definition of the contact map space

The CMS, which is a scalar value, for each protein-protein complex

describes the interface contacts of residue pairs between the desig-

nated receptor and ligand protein. To qualify as a contact, the distance

between the Cα atoms of the residue pairs has to be below 8 Å, see

Figure 1B. The mathematical definition of the CMS for complex R is

given by:31

CMS Rð Þ¼
X

γ2CMif

Dγ Rð Þ−Dγ Rrefð Þ� �2 ð1Þ

and

Dγ Rð Þ¼
1− rγ=r0γ

� �n

1− rγ=r0γ

� �m , ð2Þ

where CMif is the contact map (CM) that contains the interface con-

tacts between the receptor and ligand, see Figure 1C. The value range

for the CMS can vary from target to target, depending on the CMif

definition. The sigmoid distance function Dγ(R) quantifies the forma-

tion of a contact γ in structure R, where rγ is the contact distance in

structure R and r0γ is the contact distance in reference structure Rref. If

rγ and r0γ are the same, the distance Dγ is set to 0.6. Here, Rref describes

a set of models of a target, that is, the docked solutions of the score_set

that have the same starting model quality as the selected starting

model. Variables n and m are constant and set to n = 6 and m = 10.

2.4 | Simulation setup

All starting models were checked for missing residues and atoms, and

where necessary completed with the program Loopy28 and SCRWL;27

see Supporting Information for details. The system was solvated in a

cubic simulation box, with a buffer of 12 Å, using the explicit solvent

model SPC/E32 and with the overall charge neutralized by Na+ and Cl−

ions at a concentration of 0.15 mol/L. The energy minimization was per-

formed with GROMACS 4.633 and consisted of the following three steps:

(1) steepest-descent energy minimization with 50 000 steps and a step-

size of 0.01; (2) conjugate gradient-based minimization with 500 000

steps and one steepest-descent step every 1000 steps; (3) a second

round of steepest-descent minimization for 50 000 steps. Each
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FIGURE 1 Method overview. (A) From a set of docked solutions and the starting model for refinement, interface contacts between the

receptor and ligand are identified. The starting model is preprocessed by modeling possible missing atoms and residues, energy
minimized and equilibrated. The sampling in CMS is performed with replicated metadynamics simulations. The generated snapshots are
scored and the best n is selected to generate the final refined model. Plots B-E exemplify this for target T39. (B) Schematic
representation of the interface definition which includes residues which are within 8 Å of the receptor-ligand. (C) Schematic
representation of the contact map (CMif) resulting from the residue-residue contacts at the receptor-ligand interface. The number of
observed contacts comes from the ensemble of docked solutions. (D) Example of a five times replicated sampling run of a target with
metadynamics where the CV describes the CMS. The blue line represents the FNAT as a function of simulation time, the gray line the
CMS as a function of simulation time and the dotted dark gray line is the starting model FNAT. (E) Selection of the best n scoring
snapshots from the trajectories. The final model is an average of all snapshots by averaging the Cartesian coordinates of each atom
followed by a two step energy minimization of the structure

14 PFEIFFENBERGER AND BATES



minimization step is stopped early when the maximum force is <100 kJ

mol-1nm-1. Subsequently, the equilibration of the system, using GRO-

MACS 4.6, followed a two-step protocol: the first phase consisted of a

100 ps long NVT equilibration, where an increase of the temperature

with V-rescale34 from 0 K to 300 K was performed; in the second step of

the equilibration, the pressure of the system was increased to 1 bar, with

Parrinello Rahman pressure coupling,35 for a simulation time of 300 ps.

During NVT and NPT, all heavy atoms were subject to position restraints

with a force of 1000 kJ mol-1nm-1. A short-range Coulomb and van der

Waals cut-off distance of 1 nm was used. For long range electrostatic cal-

culations, the Particle Mesh Ewald method with a cubic interpolation of

4 and a grid spacing of 0.16 nm was used.

The production run with metadynamics in CMS, as defined in

Equation (1), was performed with PLUMED236 and GROMACS 4.6.

The same values for van der Waals and Coulomb cutoffs were used,

along with Parrinello Rahman pressure coupling and V-rescale for tem-

perature coupling. The Gaussian addition, to bias the potential along

the CV, was deposited every 2 ps, with σ = 0.5, and a bias factor of

10 and an initial height of 5 kJ mol-1. The σ value describes the width

of the addition to the potential, and the initial height in kJ mol-1 the

quantity. The bias factor expresses the ratio between the temperature

of the CV and the system temperature.37,38 The sampling was per-

formed for 10 ns with a Δt= 2 fs. A total of five replicated production

runs were performed for each refinement case analyzed (see

Figure 1D). Our scalar collective variable, CMS, gently guides the refine-

ment but does not over constrain refinement space. However, this does

sometimes lead to some variability in the quality metrics between each

run, see Figure 1D, where maximum FNAT from run 1 is 0.6 and for

run 2 is 0.8.

2.5 | Definition of the scoring function CSα

The new scoring function, CSα, combines the free energy surface

(FES), reconstructed from metadynamics simulations, with the ZRANK

scoring function (a weighted additive scoring function of detailed van

der Waals, electrostatic and desolation terms), and is defined as

follows:

CSα ¼ αZRANKη + 1−αð ÞFESη, ð3Þ

where ZRANKη and FESη are the 0-1 normalized energies. The param-

eter α is a weighting factor that ranges from 0 to 1. Therefore, an

α-value of 1 means that only ZRANKη is considered for the scoring

and a value of 0 means that only the FESη is considered.

The correct rank for a set of snapshots S, for each target, is given

by the ascending order of their LRMSD to the reference crystal struc-

ture. This sorted list of snapshots is defined as sortlrmsd(S). Further-

more, the maximum rank is capped such that

rank Sð Þ¼ i, if i≤ max
max, otherwise

�
ð4Þ

where max is the threshold used when i > max. Applying these two

functions to s gives the reference ranking R = rank (sortlrmsd(S)). The

rank assignment based on function CSα is the descending order of

their scores and the ranks produced by this function is denoted as C =

rank (sortcs(S)). Following this notation, the rank for snapshot i is

retrieved by Ri and Ci, respectively. The ranking error ε produced by

CSα can now be quantified with

ε¼
X
TR

XC:n

i¼0

ri, ð5Þ

where n is the number of snapshots that are used for ranking, C:n

defines the subset of ranks from the 1st to the nth snapshot, and TR is

the set of targets. In an additional step, ε is normalized to

εη ¼ ε− rankmin

rankmax− rankmin
, ð6Þ

where rankmin = j TR j ((n(n + 1))/2) and rankmax = j TR j (max + 1)n.

2.6 | Model building

The generic model building protocol proposed is based on the best

n ranked snapshots from ZRANK. The final model is computed by

averaging each atom's coordinates from the n selected snapshots from

a target's trajectory.29 Snapshots, with a Δt= 50 ps, are considered for

model building, that is, where each snapshot is spaced in an interval of

50 ps. Energy minimization of the averaged model, with steepest-

descent and 50 000 steps, was performed to resolve nonphysical con-

formations. In the following text, this model building strategy is

referred to as AZRANK.

TABLE 1 CAPRI starting model quality

TR SMQ FNAT IRMSD (Å) LRMSD (Å)

T29 Acc 0.45 3.41 6.98

T29 Med 0.53 2.75 5.21

T29 Hig 0.82 1.82 3.83

T30 Acc 0.2 6.12 13.13

T32 Acc 0.36 2.77 8.08

T32 Med 0.49 1.96 6.57

T35 Acc 0.15 5.09 13.3

T39 Acc 0.55 2.31 7.51

T39 Med 0.78 1.32 3.65

T40 Acc 0.63 2.58 6.84

T40 Med 0.8 2.16 4.27

T40 Hig 0.8 1.03 4.32

T41 Acc 0.49 2.63 6.97

T41 Med 0.65 1.38 3.4

T41 Hig 0.78 0.8 2.48

T46 Acc 0.49 3.75 10.57

T47 Acc 0.54 2.56 5.7

T47 Med 0.79 1.32 2.84

T47 Hig 0.85 0.99 1.59

T53 Acc 0.19 5.67 13.09

T53 Med 0.48 5.7 9.62

T54 Acc 0.41 3.94 7.53

T54 Med 0.5 2.7 4.76

The FNAT, IRMSD, and LRMSD to the reference crystal structure for
23 different starting models, and from 11 different protein targets, are
shown. The column SMQ describes the CAPRI starting model quality as
assigned in the score_set data set with the three classes acceptable (acc),
medium (med), and high (hig).
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2.7 | Model assessment measures

Model quality is assessed by LRMSD, interface root mean square devi-

ation (IRMSD) and fraction of native contacts (FNAT). The calculation

of these assessment measures follows the formulation described for

the CAPRI blind docking trials.21,22 Below we outline these calcula-

tions, pointing out any variation from the original formulation. The

LRMSD quantifies the translational, rotational and conformational

deviation of the predicted ligand model to the reference model. The

RMSD between predicted ligand position and reference ligand posi-

tion is computed after optimally superimposing the receptor of the

predicted complex to the reference model. The superimposition as

well as the RMSD calculation is based on Cα-atoms. The IRMSD

describes the conformational difference at the receptor-ligand inter-

face between the predicted model and the reference model. The set

of interface atoms are given by observed residue-residue contact in

the reference crystal structure. Here, a residue in the ligand is in con-

tact with the residue in the receptor if any of their atoms has a dis-

tance <10 Å. The IRMSD calculation is based on Cα-atoms only and

interface atoms of the predicted and reference model are first opti-

mally superimposed. The FNAT quantifies the relative number of cor-

rectly predicted residue-residue contacts between a receptor and a

ligand as observed in the reference crystal structure, where a residue-

residue contact is defined as any of their atoms within a distance less

than 5 Å. FNAT values can range from 0, that is, no correctly predicted

contact, to 1, all contacts are correctly predicted. From the above

three metrics, a CAPRI quality classification of each refined protein-

protein docked complex was performed and categorized in the order

of increasing accuracy to the reference crystal structure as incorrect,

acceptable, medium, and high. The assignment of these quality classes

for the starting model solutions, in the score_set data set, was directly

taken from their annotation.

3 | RESULTS

3.1 | Refinement success of the model building
strategy AZRANK

Here, we analyze how often our optimum refinement strategy,

AZRANK, which takes as the final refinement model an equivalent

atom coordinate average of the 14 best snapshots selected from

5 metadynamics simulation runs, improves the starting model docked

pose relative to the three metrics; FNAT, LRMSD, and IRMSD. The

number of 14 snapshots was determined by extensive empirical test-

ing, the Supporting Information text and Supporting Information

Figures S1 and S2 provide more information about this procedure. In

addition, an interesting question to ask of our refinement method is

how often the final model is as good in quality, if not better, than the

absolute best snapshot, should it have been selected. This provides a

measure of how good the energy function, in this analysis just

ZRANK, can select the best, or at least the better-quality, snapshots.

Results to the analysis are shown in Table 2. Here, for each refine-

ment category, consisting of the target number and starting model

quality (acceptable, medium or high), changes in the three model

assessment metrics is reported.

Overall, the refinement with model building strategy AZRANK

was most successful for starting models with acceptable quality;

here the FNAT, LRMSD and IRMSD could be improved for 7, 6, and

8 out of 11 targets, respectively. For starting models with medium

quality, the FNAT, LRMSD, and IRMSD could be improved 2, 4, and

5 out of 8 targets, respectively. For the four high quality examples

in the test-set the FNAT, LRMSD, and IRMSD were improved 0, 1,

and 2 times, respectively. The theoretical best refinement success, if

the best snapshot would have been selected as the final model,

yields good results for all three starting model quality classes (see

Table 2. The FNAT, LRMSD, and IRMSD could be improved for all

acceptable quality models. The sampling for medium quality starting

models failed only for target T41 (where the IRMSD decreased

slightly by 0.12 Å), whereas all other metrics, for all other targets,

could be improved. Similarly, for the case of starting models with

high quality, a decrease in quality after refinement sampling was

only observed for target T41, where the IRMSD decreased

by 0.09 Å.

Figure 2A shows the success at improving the FNAT as a function

of starting model (SM) FNAT. The analysis of our method shows that for

a large range of initial values, that is, 0.2-0.6, improved quality models

could be generated with the model building strategy AZRANK and

14 snapshots. For SMs with higher FNAT values (0.6-0.8), the success

of AZRANK is less pronounced. However, this is mainly due to target

T41, which produced negative refinement results for all three model

quality categories (see red bars in Figure 2A). The analysis of the refine-

ment performance as a function of starting model LRMSD shows good

results for medium LRMSD values in the range from 6 to 9 Å. However,

starting from lower LRMSD values (1.5-6 Å) produces a mixed set of

results, with cases that could yield improved models but with some

cases that could not. Refinements of models for higher starting LRMSD

values (ie, >9 Å) produce snapshots with large improvements, however,

model building based on AZRANK is less able to identify these and

improvements in LRMSD are small or not possible. Refinement perfor-

mance as a function of SM IRMSD is shown in Figure 2C. The genera-

tion of improved IRMSD snapshots and models with AZRANK is most

successful in the SM IRMSD range from 1.8 to 4.5 Å. Lower IRMSD

values from 1 to 1.8 Å show no improvement; the generated models

with AZRANK could not produce improvements and even the sam-

pled best snapshot for these targets had only minor improvements.

Refinement on models with SM IRMSD >4.5 Å produce improved

sampled snapshots and to some extent improved build models with

AZRANK.

The level of refinement success is enhanced if the best snapshot

could have been selected as the final model, see last three columns of

Table 2, yielding a 100% success rate (if an improvement in at least

one metric is counted), with notable improvements over all three

starting model quality classes (see Table 2). Indeed, a closer look at

the differences of the extent of improvement between the best sam-

pled snapshot and the built model with AZRANK shows the inade-

quacy of the scoring function ZRANK to identify the highest quality

snapshots from the trajectory. The difference for the three metrics

16 PFEIFFENBERGER AND BATES



FNAT, LRMSD, and IRMSD is significant, that is, P value <.05, consid-

ering all 23 test-cases (see Figure 2D-F).

3.2 | Refinement success as a function of
simulation time

Analysis of the sampling power for the 5 times replicated metady-

namics runs in CMS, over 10 ns, shows that large FNAT and LRMSD

improvements are mostly sampled within the first 4 ns, where snap-

shots with improvements of ΔFNAT > 0.25 and ΔLRMSD < − 4.5

have the highest density (see Figures 3A,B). As expected, snapshots

with small FNAT improvements (range 0.01-0.1) resemble a uniform

distribution, with equal density, over the sampled time. For LRMSD,

the density continuously lowers with increasing sampling time, for all

analyzed thresholds (see Figure 3B). This could indicate a drift away

from the near-native conformation that is also observed for refine-

ment simulations of protein-monomers.39

Improvements for large IRMSD deviations (>−1.4 Å) follow a

bimodal distribution, where the highest density of these snapshots are

observed around time-points 2 ns and 8 ns, see Figure 3C. Across the

complete time period sampled, the smaller IRMSD improvements fol-

low a uniform density distribution (thresholds −0.6 Å to −1.0 Å). This

may indicate that transitions to larger IRMSD improvements will

require longer simulation times. However, as discussed above, longer

simulations may drift models away from their native binding funnels.

3.3 | CSα: Combining FES and ZRANK for snapshot
scoring

We investigated whether the reconstructed FES from the metady-

namics simulations gives additional benefits in selecting snapshots,

by exhaustively testing, via a weighting term, α, how different con-

tributions of FES and ZRANK influence the ranking error. To be pre-

cise, the effect of different α-values (ranging from 0 to 1) on the

snapshot ranking error, εη, with respect to the number of selected

snapshots n (ranging from 1 to 100), was explored. The heatmap in

Figure 4 shows a decrease in ranking error εη when an ensemble of

snapshots is selected (n ≥ 2) and α values of ≈0.5 are chosen. For

example, for n = 35 the lowest εη with a value of 0.805 is obtained

with α = 0.49, indicating that an almost equal contribution of

ZRANK and FES is important. This is a lower ranking error compared

to setting α = 1.0 (only ZRANKη is considered) with εη = 0.843 and

setting α = 0.0 (only FESη is considered) with εη = 0.954. However,

if only one snapshot is selected, that is, n = 1, an α = 1.0 (only

ZRANKη is considered) produces the lowest ranking error with εη =

0.861. Furthermore, the heatmap also shows that high

TABLE 2 Complex model quality after refinement

Build model with n = 14 Best snapshot

TR SMQ ΔFNAT ΔLRMSD ΔIRMSD ΔFNAT ΔLRMSD ΔIRMSD

T29 Acc 0.08 −1.66 −0.90 0.24 −4.25 −1.59

T29 Med −0.04 1.61 0.70 0.16 −2.35 −0.38

T29 Hig −0.04 −0.10 −0.37 0.00 −1.15 −0.22

T30 Acc 0.09 1.75 −0.25 0.25 −3.55 −0.75

T32 Acc 0.22 −4.75 −1.13 0.24 −4.93 −1.53

T32 Med −0.01 −3.25 −0.43 0.16 −3.48 −0.84

T35 Acc −0.06 0.10 0.35 0.02 −5.04 −0.87

T39 Acc 0.24 −5.92 −1.28 0.35 −6.03 −1.76

T39 Med 0.16 −1.5 −0.10 0.18 −2.35 −0.50

T40 Acc 0.00 −1.29 −0.60 0.11 −4.62 −0.70

T40 Med −0.05 −0.27 −0.24 0.02 −2.20 −0.62

T40 Hig −0.08 4.58 1.30 0.13 −2.24 −0.15

T41 Acc −0.13 1.12 1.75 0.04 −3.57 −0.42

T41 Med −0.25 1.50 1.64 0.07 −1.13 0.12

T41 Hig −0.31 1.96 1.54 0.03 −0.92 0.09

T46 Acc −0.03 0.03 −0.30 0.01 −3.00 −0.08

T47 Acc 0.06 0.91 −0.21 0.17 −2.76 −1.12

T47 Med −0.13 2.87 0.77 0.02 −1.34 −0.22

T47 Hig −0.10 1.93 0.46 0.06 −0.07 −0.01

T53 Acc 0.17 −0.69 0.97 0.29 −2.45 −0.84

T53 Med 0.04 0.92 −1.45 0.33 −3.20 −1.01

T54 Acc 0.09 −1.78 −1.21 0.19 −3.22 −1.64

T54 Med 0.00 −0.13 −0.27 0.09 −1.39 −0.37

Results from 11 different target complexes (TR) with different CAPRI starting model qualities (SMQ) acceptable (acc), medium (med), and high (hig). Refine-
ment performance is shown for AZRANK with n = 14 snapshots and the theoretical best improvement by selecting the best quality snapshot. The metrics
ΔFNAT, ΔLRMSD (Å), and ΔIRMSD (Å) show the relative change to the starting model values, where bold text indicates an improvement over the initial
model quality.
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contributions of FESη and low contributions of ZRANKη, with

α < 0.3, leads to markedly larger ranking errors.

3.4 | Case study of T39 and T41

The 3D rendering of our refined model for target T39, built using the

AZRANK strategy (setting n = 14), is shown in Figure 5A. This target

represents the interaction of Kinesin-like protein KIF13B (receptor)

with Centaurin-alpha-1 (ligand).40 The difficulty of this target, before

refinement classified as an acceptable model (T39acc), is associated

mainly with the ligand's flexible loop regions. The results of our refine-

ment methodology show notable success at improving the accuracy of

these flexible loop regions at the protein-protein interface. Indeed, the

per-residue change in RMSD for the ligand before and after refinement

shows a continuous decrease for the whole chain. The improvements

can be more than 8 Å, as indicated by the red line in Figure 5B. The

scoring of the different snapshots with FESη, ZRANKη and CS0.49 vs

LRMSD is shown in Figure 5C. The left plot shows that FESη has a

broad energy funnel (r = 0.03), where snapshots with a wide range of

LRMSD values (20-1 Å) have similar energies; therefore, making a selec-

tion of the best snapshots hard for this particular target. Energy funnels

associated with ZRANKη and CS0.49 show a better correlation with

LRMSD, with r = − 0.77 and r = − 0.52, respectively, which indicate

a better fit for selecting snapshots with improvements.

An improvement in model quality was not possible for refine-

ment target T41, starting from an acceptable quality model (see 3D

rendering in Figure 5D). This target is an X-ray structure of a com-

plex formed between colicin E9 deoxyribonuclease (receptor) and

colicin E2 immunity protein (ligand).41 The bound complex is charac-

terized by an α-helix (receptor) and loop interactions at the inter-

face. The starting model, seen in blue, has large displacements,

especially for the alpha-helix, with a per-residue RMSD of ≈3 Å to

(A) (D)

(C) (F)

(B) (E)

FIGURE 2 Complex refinement result overview. Plots A-C show the results for all benchmark cases. (A) Starting model (SM) FNAT vs refined FNAT.

(B) Starting model (SM) LRMSD vs refined LRMSD. (C) Starting model (SM) IRMSD vs refined IRMSD. For plots (A-C), the black line indicates the
change based on build model with AZRANK, and the gray area visualizes the gap between best snapshot and build model. (D-F) Split down of
refinement results with respect to starting model quality all, acceptable (acc), medium (med), and high (hig). The number in brackets indicates the
number of refined models in that category. The symbols +++, ++, +, and - indicate significance level between build model (BM) and best snapshot
(BS) at P-value <.001, P-value <.01, P-value <.05, and P-value ≥.05, respectively
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8 Å (see residues 30-60 in Figure 5E). After refinement with

AZRANK (n = 14), these interface regions decreased in quality (see

Figure 5D green colored rendering). A displacement with a delta

change of up to 7 Å is observed (see red line in Figure 5E). Analysis

of the snapshot scoring with ZRANKη, see Figure 5F, reveals a false

energy-minima that incorrectly identifies solutions with a higher

LRMSD instead of the snapshots that represent a real improvement

in LRMSD, thus explaining the failed model building of AZRANK.

This problem is not unique to ZRANKη, function FESη is also not able

to correctly identify improved LRMSD snapshots. However, the cor-

relation to LRMSD is substantially higher, with r = − 0.82, com-

pared to ZRANKη, with r = − 0.74. The scoring function CS0.49, a

combination of FESη and ZRANKη, shows an even higher correlation

with r = − 0.85, suggesting the positive impact of combining the

two functions for this particularly difficult target.

4 | DISCUSSION

Our primary result is that metadynamics sampling in CMS yields

improved quality snapshots for all targets and starting model catego-

ries. Sampled improvements for FNAT ranged from 0.01 to 0.35, for

LRMSD from −0.07 Å to −6.03 Å and for IRMSD from −0.01 Å

to −1.76 Å.

The new methodology is drawing on the input space of inter

residue-residue contacts, originating from an ensemble of docking

poses obtained from the score_set data set. Our sampling method will

bias towards this space, and indeed, as demonstrated in this study,

capable of producing an even better model than any within the origi-

nal ensemble. However, there is no guarantee that this will always be

the case. One current limitation of our methodology is that it only

incorporates potential interface residue contacts sampled by the

docking community. These could be incorrect, and alternative residue-

residue contact predictions, based for example on evolutionary infor-

mation42 that can easily be introduced into our CMif definition, may

better guide the refinement in the direction of the correct binding

pose. Use of such predictions may be especially important for the

more difficult docking cases, for example, where model building by

homology is required to obtain one or more unbound components.

Interestingly, the largest improvements for FNAT and LRMSD

were mainly sampled in the first 4 ns of the refinement runs, suggest-

ing that, in general, shorter and more replicated runs lead to enhanced

sampling power for those two metrics. An explanation for this finding

is the observation that during the sampling runs disassociations

between the receptor and ligand can occur, resulting in solutions with

high LRMSD and low FNAT. As to why longer simulations may exhibit

these observed drifts, irrespective of our constraining CMS potential,

is still unexplored. It could be that some binding funnels are shallow;

therefore, irrespective of the number of starting conformations found

by the docking community to be approximately in the correct position,

(A)

(B)

(C)

FIGURE 3 Complex refinement improvements as a function of time.

Shown are the probability density functions (PDF) for improvements
over time for (A) FNAT, (B) LRMSD (Å) and (C) IRMSD (Å). The
different colored lines show the used threshold. The number in
brackets indicates the number of snapshots ≥ the threshold for FNAT
and ≤ the threshold for LRMSD and IRMSD

FIGURE 4 Parameter optimization of CSα based on acceptable

quality refinements. The heatmap shows the normalized ranking error
εη for different α (y-axis) and number of selected snapshots (x-axis); a
lower value means better. The gray line indicates the best α-value for
the number of snapshots, that is, for which the lowest εη was
observed
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longer simulations, may have the tendency to drift away from the

native binding site. Conversely, docking ensembles may already be

within a deep binding funnel, and therefore, the collective variable cal-

culated, as described in our refinement protocol, may rapidly direct

the refinement toward the bottom of the binding funnel. Conversely,

reliance on shorter simulation runs cannot be absolute as the free-

energy surface can be very jagged in the vicinity of the native confor-

mation requiring longer simulations, or stronger biasing potentials

than the CMS potential used here, for scaling larger energy barriers.

The main focus of the presented method was to improve directed

sampling at the interface level. The metric IRMSD quantifies the con-

formational difference at the interface between the predicted model

and the reference crystal structure state. Table 1 shows the IRMSD of

used starting models, where values range from 0.80 Å to 6.12 Å. The

results in column “Best Snapshot” of Table 2 and Figure 3 show that

substantial improvements could be sampled for a number of targets.

For example, the best snapshot for T29 improved with a ΔIRMSD of

−1.59 Å from an initial value of 3.41 Å. However, sampling full transi-

tions, where IRMSD values below 1 Å are obtained, remains challeng-

ing; this has already been observed in a previous protein complex

refinement study,19 where all tested sampling methods failed to fully

sample the full transition from an unbound to bound conformational

state. The results for model building based on AZRANK, with 14 snap-

shots, has shown some degree of success for starting models with

acceptable quality, where the FNAT, LRMSD, and IRMSD could be

improved 7, 6, and 8 times out of 11 targets. If model building success

is defined as improving at least one metric for each target, a success-

rate of 82% could be achieved, where 9 out of 11 targets are improved.

The described method shows potential to guide models within, or

on the edge, of the binding funnel to descend the funnel and thereby

enabling higher quality models to be sampled. Other refinement

methods have shown similar measures of success using quite different

strategies. For example, in,43 a general quadratic function is con-

structed to underestimate a set of local minima in the context of a

wider scope of binding funnel. Another study facilitated refinement

by using a gradual energy landscape smoothing of the binding funnel;

achieved by changing the grid size resolution for docking structures in

the context of the FFT docking algorithm GRAMM.44 However, no

one method can as yet provide a complete solution to the refinement

problem, as not only further improvements in modeling energy func-

tions are required, but also the development of new algorithms to

enable sufficient sampling of conformational space; for example, large

to medium backbone motions between the unbound and bound con-

formational states are problematic for any current simulation method-

ology to replicate.19

Disappointingly, we show that ranking just on free energy, FESη

alone, produces a higher ranking error of snapshots compared to

ZRANKη, and is therefore not recommended as a viable alternative for

snapshot selection. However, there is some encouragement in that

FESη, when combined with ZRANKη, can lead to a lower ranking error

εη as shown in our analysis of CSα. The model building performance of

this function is at least comparable to ZRANKη for improving

FIGURE 5 Case study of targets T39 (plots A-C) and T41 (plots D-F). Plots (A) and (D) 3D rendering of the protein-ligand complex of the crystal

structure (gray), starting model (SM) with acceptable quality (blue), and refined model with AZRANK and n = 14 (green). The starting and refined
models were superimposed to the crystal structure using the receptor Cα-atoms. Plots (B) and (E) Per residue change of RMSD for the ligand,
shown are the values for the SM (blue), refined model (green), and the difference, that is, delta, between these two (red). (C) and (F) The
normalized score of FESη, ZRANKη, and CS0.49 for all snapshots of the refinement simulation with Δt = 50ps runs 1-5 and their correlation to
LRMSD. The dotted black line indicates the LRMSD of the starting model
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acceptable quality models. However, CSα falls behind when medium

quality or high-quality models are refined. Thus, snapshot selection

solely based on ZRANKη is currently recommended for ranking when

refinement of models of unknown quality is performed.

Importantly, as also recently discussed by several groups in the

protein docking field,45 our results underline that the identification of

improved quality snapshots, from thousands of solutions, remains one

of the most challenging tasks for successful protein-protein complex

refinement. The explored combination of FES and ZRANK in a simple

weighted additive scoring function, CSα, although showing some

encouraging results, did not yield significant success at improving this

outcome. A possible avenue to improve the blending of energy func-

tions, to reduce snapshot ranking error, could be to use machine-

learning based scoring schemes that are able to combine different

functions in a nonlinear fashion.

Such scoring schemes, based on support vector machines46 or

extremely randomized trees,47 have been proposed for the global

identification of correct docked models.48,49 However, using machine

learning for the specific purpose of refining local decoys, within or

close to the native funnel, are to the authors knowledge, not as yet

developed. A promising movement in this direction might be the iden-

tification of improved quality snapshots from refinement trajectories

of protein folds,50 which explicitly take the temporal component of

the dynamic trajectory into consideration by the use of temporal

learning with deep recurrent neural networks;51 a methodology which

can be readily adopted to protein-protein complex refinement and

selection.
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