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Impaired autophagy has been shown to play a critical role in experimental and human
acute pancreatitis (AP). However, the mechanism for transcriptional regulation of
autophagy remains largely unknown. In this study, we aim to explore the role of BRD4
(bromodomain-containing protein 4), a transcriptional repressor of autophagy, during AP.
Changes in pancreatic BRD4 expression and the effect of BRD4 inhibition were measured
in mice with AP (induced by caerulein and ethanol and palmitoleic acid) and in isolated
pancreatic acinar cells stimulated with cholecystokinin (CCK). Pancreatitis severity was
evaluated by serum amylase and pancreatic histopathology. The autophagic flux, the
fusion of autophagosome and lysosome, and lysosomal degradation were evaluated.
Sirtuin 1 (SIRT1) expression and the effect of SIRT1 inhibition were assessed. We found
that pancreatic BRD4 expression was upregulated during various models of AP. BRD4
inhibition reduced CCK-stimulated pancreatic acinar cell injury and pro-inflammatory
expression in vitro and protected against two models of experimental AP.
Mechanistically, BRD4 inhibition restored impaired autophagic flux via promoting
autophagosome-lysosome fusion and lysosomal degradation. BRD4 inhibition also
upregulated SIRT1 and inhibition of SIRT1 reversed the effects of BRD4 inhibition on
autophagic flux. Our data suggest that BRD4 is a potential therapeutic target for
treating AP.

Keywords: BRD4, acute pancreatitis, autophagic flux, SIRT1, lysosomal degradation
INTRODUCTION

Acute pancreatitis (AP) is an inflammatory disease of the exocrine pancreas, which is closely related
to high morbidity and mortality, and has an increasing incidence in recent years worldwide (Pandol
et al., 2007; Habtezion et al., 2019). Currently, there is no effective treatment that can change the
pathological process of the disease (Vege et al., 2018). Autophagy is an essential cellular process
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which can degrade defective cellular proteins and recycle useful
components (Parzych and Klionsky, 2014). In experimental
pancreatitis, impaired autophagy is due to the disability of
lysosomes to degrade cargo and a consequent increase in the
formation of autophagosomes (Gukovskaya et al., 2017;
Habtezion et al., 2019). Studies focusing on autophagy related
genes knockout mice models revealed the mechanistic role of
autophagy in maintaining the homeostasis of pancreas and the
pathogenesis of AP. Autophagy genes (Atg) 5 and Atg7 knockout
mice developed pancreatitis and extensive fibrosis (Antonucci
et al., 2015; Diakopoulos et al., 2015). In addition, the impaired
lysosomal function, for example in lysosomal-associated
membrane protein 2 (LAMP2) deficient mice, leading to
pancreatic inflammation and acinar cell degeneration.
Furthermore, LAMP2 deficiency also increased the severity of
experimental pancreatitis (Mareninova et al., 2015). All these
findings showed the essential role of impaired autophagy in the
development of AP, suggesting pharmacologic approaches to
enhance autophagy efficiency may be of great importance to
treat AP.

Bromodomain-containing protein 4 (BRD4) is a member of
the Bromo- and Extra-Terminal domain (BET) family proteins
with two N-terminal bromodomains and an extra-terminal
domain (Shi and Vakoc, 2014; Hogg et al., 2017). BRD4 plays
a crucial role in regulating gene transcription during cellular
proliferation and differentiation processes (Shi and Vakoc, 2014;
Jiang et al., 2017). Moreover, BRD4 has been recently identified
to repress autophagy and lysosomal genes transcription by
binding to the promoter regions (Sakamaki et al., 2017). BRD4
inhibition can enhance autophagic flux and lysosomal function,
thus promoting the degradation of pathogenic proteins
(Sakamaki et al., 2017). However, the role of BRD4 in the
pathogenesis of AP remains undetermined.

Therefore, we aim to explore the role of BRD4 using
experimental models of pancreatitis. Firstly, we found that
BRD4 is upregulated in various models of AP. Inhibition of
BRD4 by JQ1 protected against pancreatic acinar cell injury
induced by cholecystokinin (CCK). Furthermore, inhibition or
knockdown of BRD4 restored impaired autophagic flux via
enhancing autophagosome-lysosome fusion and lysosomal
degradation. Interestingly, BRD4 did not alter the initiation of
autophagy in pancreatic acinar cells. In addition, BRD4
inhibition upregulated SIRT1 and inhibition of SIRT1 reversed
the effects of BRD4 inhibition on autophagic flux, suggesting that
inhibition of BRD4 via upregulating SIRT1 exerted its effects on
autophagy. Finally, we showed that BRD4 inhibition also
protected against two clinically representative models of AP
through restoring impaired autophagy in vivo.
Abbreviations: AP, acute pancreatitis; BRD4, Bromodomain-containing
protein 4; BET, bromodomain and extraterminal; CCK, cholecystokinin; CQ,
chloroquine; SIRT1, sirtuin 1; Atg, autophagy genes; CER, caerulein; POA,
palmitoleic acid; L-Arg, L-Arginine; NaT, Na taurocholate; LAMP2, lysosomal-
associated membrane protein 2; AMPK, AMP activated protein kinase; LC3B,
microtubule associated protein 1 light chain 3 beta; STX17, syntaxin 17; mTOR,
mammalian target of rapamycin; FOXO1, forkhead box O1; FOXO3, forkhead
box O1; TFEB, transcription factor EB.
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MATERIALS AND METHODS

Chemicals and Reagents
Caerulein (CER) (#HY-A0190) was purchased from
MedChemExpress (Monmouth Junction, NJ). Palmitoleic acid
(POA), CCK, L-Arginine (L-Arg), and Na taurocholate (NaT)
were purchased from Sigma-Aldrich Chemical (St. Louis, MO,
USA). BSA was purchased from Yeasen (Shanghai, China). JQ1,
EX527 were purchased from Selleck Chemicals (Houston, TX,
USA). Antibodies against microtubule associated protein 1 light
chain 3 beta (LC3B) (#3868S), p62 (#23214S), ATG14 (#96752S),
cathepsin B (#31718S), AMP activated protein kinase (AMPK)
(#5831T), phosphorylated AMPK (#2535T), mammalian target
of rapamycin (mTOR) (#2983T), phosphorylated mTOR
(#5536T), b-actin (#3700s) were purchased from Cell Signaling
Technology (Danvers, MA, USA). Antibody against Amylase
(#sc46657) were purchased from Santa Cruz Biotechnology
(Dallas, TX, USA). Antibodies against BRD4 (#ab128874),
LAMP2 (#ab203224), syntaxin 17 (STX17) (#ab229646),
cathepsin L (#ab6314) were purchased from Abcam
(Cambridge, MA, USA). Antibody against CD45 (#550539)
were purchased from BD Biosciences (Franklin, NJ, USA).

Animals
All experiments involving animals were approved by the
Institutional Animal Care and Research Ethics Committee of
Shanghai Jiao Tong University School of Medicine (SYXK 2013–
0050, Shanghai, China) and carried out in accordance with the
guidelines of the National Institute of Health for the Care and
Use of Laboratory Animals. Male C57BL/6 mice (6–8 weeks, 20–
22 g) were purchased from Shanghai SLAC Laboratory Animal
Co Ltd (Shanghai, China). All mice were housed under specific
pathogen-free environment with controlled temperature (23 ± 1°
C), 12 h light-dark cycle, humidity of 40–70% and free access to
water and standard rodent diet. Mice were randomly allocated
into groups for all the in vivo studies (n = 5 per group).

Isolation and Treatments of Mouse
Pancreatic Acinar Cells
Pancreatic acinar cells were prepared by collagenase digestion, as
described previously (Wen et al., 2018). Isolated pancreatic
acinar cells were incubated at 37°C in DMEM/F-12 medium
containing 10% fetal bovine serum with or without CCK or
BRD4 inhibitor (JQ1) or chloroquine (CQ) (Sigma, #C6628) or
SIRT1 inhibitor (EX527). For viral transduction, cells were
infected with 107 plaque forming unit per ml adenovirus 24 h
before stimulation. The siRNA sequence used for viral
transduction is CCATGGATATGGGAACAAT (#1), GCCTC
CAAAGAAGGATGTA (#2), GCCTGAAGAGCCAGTTGTT
(#3), and TTCTCCGAACGTGTCACGT (Negative Control).

ATP Measurement
ATP levels in acinar cells were detected by using the Cell Titer
Glo Luminescent Cell Viability Assay kit (Promega, Madison,
WI) according to the manufacturer’s instructions, as previously
described (Han et al., 2017). In brief, cells (3.0 × 106/ml) were
treated with JQ1 (500 nmol/L) for 1 h, prior to CCK (200 nmol/
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L) treatment for 4 h. After the treatment, add 100 ul cell
suspension into 96-well culture plate. Then add the ATP
depletion reagents, and detect the level of bioluminescence
using a Synergy multifunctional Microplate Reader (Gene
Company Ltd, China). Data were normalized to protein
concentration for each sample, then normalized to the
untreated controls as 100%.

Assessment of PI Uptake
Isolated pancreatic acinar cells (3.0 × 106 per ml) were treated
with JQ1 (500 nmol/L) for 1 h, prior to CCK (200 nmol/L)
treatment for 4 h. Then cells were treated with propidium iodide
(PI; 1 mmol/ml) for 5 min and the fluorescent intensity
(excitation 536, emission 617), as PI uptake by the cells, was
detected using a Synergy multifunctional Microplate Reader.
Then 10 µl of 25% Triton-X100 (Sigma, #T8787) was added
into the cells, and shake for 10 min and the fluorescent intensity
(excitation 536, emission 617) was measured, as total amount of
the cells. The percentage of PI uptake was calculated by Read 1
dividing Read 2 (% PI uptake = Read 1/Read 2 ×100).

Measurement of LDH Release
Detecting necrosis in pancreatic acinar cells was used the method
of determining LDH released into the cultured medium, as
reported earlier (Gukovskaya et al., 1997; Mareninova et al.,
2006; Sung et al., 2009). In brief, cells (3.0 × 106/ml) were treated
with JQ1 (500 nmol/L) for 1 h, prior to CCK (200 nmol/L)
treatment for 4 h. LDH release was measured using LDH
Cytotoxicity Assay Kit (Beyotime, Shanghai, China. C0017)
according to the manufacturer’s instructions. The absorbance
at 490 nm was detected by using Microplate Reader (BioTek
Instruments, USA).

LysoTarcker Red Staining
Isolated pancreatic acinar cells (3.0 × 106/ml) were treated with
JQ1 (500 nmol/L) for 1 h, prior to CCK (200 nmol/L) treatment
for 4 h and then were harvested. After incubating with 500 ml of
pre-warmed medium containing 75 nmol/L LysoTracker Red
DND-99 dye (excitation 577 nm, emission 590 nm; 40739ES50,
Yeasen, China) for 1 h, cells were washed and resuspended with
Hoechst 33528 (40730ES10, Yeasen, China) for 15 min at 37°C.
Lysosomal function was imaged by confocal imaging (Leica,
Wetzlar, Germany).

Measurement the Activities of Cathepsin B
and Cathepsin L
The activities of cathepsin B and cathepsin L were measured
by the Cathepsin B Assay Kit (Abcam, #ab65300) and
Cathepsin L Activity Assay Kit (Abcam, #ab65306),
respectively, according to the manufacturer’s instructions.
Briefly, isolated pancreatic acinar cells (3.0 × 106/ml) were
pre-treated with JQ1 (500 nmol/L) with or without 10 mmol/L
EX527 for 1 h, prior to CCK (200 nmol/L) stimulation for 4 h.
The cell lysate and reaction buffer were added to a 96‐well
black plate (Block Plate, WHB, Shanghai, China). The
fluorescent intensity (excitation 400, emission 505) for both
Frontiers in Pharmacology | www.frontiersin.org 3
wa s d e t e c t e d u s i n g a S y n e r g y mu l t i f u n c t i o n a l
Microplate Reader.

Induction of Experimental Acute
Pancreatitis
CER hyperstimulation pancreatitis was induced by ten hourly
intraperitoneal injections of CER (100 mg/kg) (Lerch and
Gorelick, 2013). Controls received similar injections of
physiologic saline. JQ1 (20 mg/kg) was injected via tail vein
1 h before the first injection of CER. Mice were anesthetized by
pentobarbital sodium (1.5%, w/v) 12 h after the first injection of
CER, then blood and pancreas were collected.

Fatty acid ethyl ester pancreatitis model was induced by two
hourly intraperitoneal injections of POA (150 mg/kg) and
ethanol (1.35 g/kg) (Huang et al., 2014; Wen et al., 2015). The
control animals were injected with equal volumes of ethanol. JQ1
(20 mg/kg) was injected via tail vein 1 h before the first injection
of POA and ethanol. Mice were anesthetized by pentobarbital
sodium (1.5%, w/v) 24 h after the first injection of POA and
ethanol, then blood and pancreas were harvested.

L-Arg pancreatitis model was induced by two hourly
intraperitoneal injections of 8% L-Arg (pH = 7.0), at a dose of
4 g/kg body weight (Dawra et al., 2007). Control group were
injected with equal volume of saline. Mice were killed humanely
by cervical dislocation 72 h after the first L-Arg injection and
pancreas was harvested.

NaT pancreatitis was induced by pancreatic duct retrograde
injection of 2% NaT (5 ml/min by infusion pump for 10 min),
which is described previously (Perides et al., 2010). Control mice
received the laparotomy only. After 24 h, mice were humanely
killed by cervical dislocation pancreas were collected.

Serum Amylase
Blood samples were collected and centrifuged for 10 min at 3,000
rpm in 4°C. Serum amylase levels were detected by enzyme
dynamics chemistry using commercial kits according to the
manufacturer’s protocols (Roche, Basel, Switzerland).

Hematoxylin–Eosin Staining and
Immunohistochemistry
H&E staining was performed after being fixed in 4%
paraformaldehyde and embedded in paraffin, tissues were cut into
4 mm sections. Pancreatic sections were scored by two pathologists
in a blind manner for edema, inflammatory infiltration, and
necrosis, ranging from 0 to 3 (Wildi et al., 2007). CD45 antibody
(1:100) was used for immunohistochemistry to evaluate pancreatic
inflammatory cell infiltration (Wen et al., 2018). Briefly, after
deparaffinization and antigen retrieval by proteinase K, non-
specific bindings were blocked by 5% bovine serum albumin, and
then primary antibody was incubated overnight at 4°C. Sections
were treated with alkaline phosphatase labeled secondary antibody
for 1 h and then imaged by substrate tablets (Sigma-Aldrich, St.
Louis, MO, USA).

Immunofluorescence
The pancreas samples were embedded in paraffin and then
deparaffinized. Antigen retrieval was performed by sodium
May 2020 | Volume 11 | Article 618
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citrate buffer (pH= 6), and then sections were blocked by 5%
bovine serum albumin for 1 h. Sections were stained with
monoclonal antibody against BRD4 (1:200) and amylase
(1:300) overnight at 4°C; Alexa Fluor 488-labeled secondary
antibody (1:200) and Alexa Fluor 488-labeled secondary
antibody (1:300) for 1 h. Nuclei were stained with 4′,6-
diamidino-2-phenylindole (DAPI) for 10 min. Sections were
imaged by confocal microscope.

Western Blot
Total protein of pancreatic tissue and pancreatic acinar cells
were lysed with RIPA which contained protease and
phosphatase inhibitors, as previously described (Han et al.,
2017). Proteins were loaded on a 15% or 10% polyacrylamide
gel. Primary antibodies LC3B (1:1,000), p62 (1:1,000),
AMPK (1:1,000), phosphorylated AMPK (1:1,000), mTOR
(1:1,000) , phosphorylated mTOR (1:1,000) , ATG14
(1:1,000), STX17 (1:1,000), cathepsin B (1:1,000), cathepsin
L (1:1,000), LAMP2 (1:1,000), BRD4 (1:800), and b-actin
(1:1000) were used. The protein bands were detected by
chemiluminescence (Millipore, USA) using Amersham
Imager 600 (GE Healthcare, USA) and quantified by using
Image J software.

Quantitative Reverse Transcription PCR
(qRT-PCR)
Total RNA from the pancreatic acinar cells or pancreatic tissues
was isolated using Trizol reagent (Takara, Japan). Reverse
transcription was used PrimeScript RT Master Mix (Perfect
Real Time) (Takara, Japan). Gene expression was detected by
real-time PCR using TB Green chemistry (Takara, Japan) on a
QuantStudio 6 Flex System using gene-specific, intron-spanning
primers (Table 1). The results were normalized to b-actin and
expressed as fold changes over control group.

Statistical Analysis
Data were showed as mean ± SEM and analyzed by GraphPad
Prism 4.0c (GraphPad Software, Inc.). The comparison
between two groups was determined by Student’s un-
paired, two-tailed t-test. P value <0.05 was considered
statistically significant.
Frontiers in Pharmacology | www.frontiersin.org 4
RESULTS

BRD4 Is Upregulated in Mouse Models of
Acute Pancreatitis
To examine the role of BRD4 during experimental AP, we firstly
evaluated the expression of BRD4 in various clinically
representative mouse models of AP. We found that the mRNA
and protein expression of BRD4 were markedly upregulated in
caerulein hyperstimulation pancreatitis, L-arginine-induced
pancreatitis representing severe form of AP (Dawra et al.,
2007), fatty acid ethyl ester pancreatitis mimicking alcohol
associated acute pancreatitis (Huang et al., 2014), and NaT
pancreatitis mimicking biliary acute pancreatitis (Perides et al.,
2010) (Figures 1A–C). Consistently, immunofluorescent co-
staining for BRD4 and amylase revealed that there was
virtually undetectable expression of BRD4 in the exocrine of
the pancreas in normal mice (Figure 1D). In contrast, BRD4
expression was markedly increased in the pancreas during four
models of AP (Figure 1D). These results suggest that BRD4 may
play a role in the pathogenesis of AP.

BRD4 Inhibition Protects Against
Pancreatic Acinar Cell Injury
In order to evaluate the therapeutic benefit of BRD4 in AP, we
measured the effect of BRD4 inhibition on CCK-induced
pancreatic acinar cell injury in vitro. In isolated primary
pancreatic acinar cells, stimulation with CCK resulted in a
marked reduction in the intracellular ATP levels and treatment
with BRD4 inhibitor (JQ1) prevented CCK-induced loss of
intracellular ATP (Figure 2A). To further confirm the effect of
BRD4 inhibition on pancreatic acinar cell necrosis, we quantified
acinar cell necrosis by LDH release and PI uptake. Inhibition of
BRD4 by JQ1 markedly inhibited CCK-induced LDH release and
the percentage of PI uptake, suggesting that BRD4 inhibition
protected against necrotic cell death pathway activation in
primary pancreatic acinar cells (Figures 2B, C). Moreover, we
found that BRD4 inhibition also evidently inhibited the
expression of several pro-inflammatory mediators, including
Tnf, Il1b, and Il6 (Figure 2D). These results demonstrate that
BRD4 inhibition protects against CCK-induced pancreatic acinar
cell injury and inflammation.
TABLE 1 | Primer sequences used for qRT-PCR.

Gene name Forward primers (5′ !3′) Reverse primers(5′ !3′)

Brd4 AAATCAGCTCACCAGGCTGT TCTTGGGCTTGTTAGGGTTG
Tnf TCTCTTCAAGGGACAAGGCTG ATAGCAAATCGGCTGACGGT

Il1b TTGACGGACCCCAAAAGAT GAAGCTGGATGCTCTCATCTG
Il6 TTCATTCTCTTTGCTCTTGAATTAGA GTCTGACCTTTAGCTTCAAATCCT
Map1lc3b CGTCCGAGAAGACCTTCAAGCAG TGCGGCAGGAGAACCTACTGG
Vmp1 TAAGGATCAGCACAATGGAAGT TCCAGAGAGAAATACTGCAAGG
Atg2a GCTGCTCAGTGCCGTCAACC AGAAGAAGAGGTCCGTGCTGTCC
Becn1 GGCCAATAAGATGGGTCTGA GCTGCACACAGTCCAGAAAA
Sirt1 ATCGGCTACCGAGACAAC GTCACTAGAGCTGGCGTGT
b-actin ATGGAGGGGAATACAGCCC TTCTTTGCAGCTCCTTCGTT
M
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BRD4 Inhibition Restores Impaired
Autophagic Flux In Vitro and the Effect of
BRD4 Inhibition Is Mediated by
Upregulating SIRT1
Impaired autophagy plays an important role in the pathogenesis
of AP (Piplani et al., 2019). It has been shown that a series of
autophagy-associated genes, including induction of autophagy,
Frontiers in Pharmacology | www.frontiersin.org 5
the fusion of autophagosome with lysosome and lysosomal
degradation are repressed by BRD4 (Sakamaki et al., 2017), we
next sought to determine whether BRD4 influences autophagic
flux in AP. Firstly, we found that the protein expression of the
LC3B-II and p62 was significantly elevated in pancreatic acinar
cells after CCK stimulation. Treatment with chloroquine (CQ) in
the presence or absence of CCK, an well-known inhibitor of
A

B

C

D

FIGURE 1 | BRD4 is upregulated during various models of experimental acute pancreatitis. (A) Representative H&E images of pancreatic sections in CER, L-Arg,
Ethanol- and POA, and NaT (200×), scale bar: 100 mm. (B) mRNA levels of Brd4. (C) Immunoblot analysis of BRD4 from pancreatic tissue. (D) Double
immunofluorescent staining of BRD4 (red) and amylase (green) from pancreatic tissues (400×). 4′,6-Diamidino-2-phenylindole (DAPI; blue) was used to counterstain
nuclei. Scale bar: 20 mm. Data represent the mean values ± SEM (n = 5). Statistical analysis was performed by Student’s un-paired, two-tailed t-test between two
groups, *P < 0.05 versus control.
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autophagy that blocks lysosomal degradation, similarly led to an
increase in the protein expression of the LC3B-II. Compared to
CCK-stimulated and CQ-treated cells, inhibition or knockdown
of BRD4 decreased the accumulation of LC3B-II and more
markedly decreased the accumulation of p62, indicating that
BRD4 inhibition may enhance autophagic flux (Figure 3A;
Figures S1A, B). Next, we assessed the effect of BRD4
inhibition on AMPK and mTOR, which regulate autophagy
induction through Ulk1 phosphorylation (Kim et al., 2011).
Interestingly, we found that BRD4 inhibition had no
significant effect on the activation of AMPK and mTOR,
suggesting that inhibition of BRD4 did not affect the induction
of autophagy in isolated pancreatic acinar cells (Figure 3B). We
also found BRD4 inhibition did not affect the expression of the
genes that were related to autophagosomes formation, including
Becn1, Vmp1, Atg2a, and Map1lc3b (Figure 3C). Since the
histone deacetylase, SIRT1 has been reported to regulate
autophagy-lysosomal pathway (Hariharan et al., 2010; Huang
et al., 2019) and can be upregulated by BRD4 inhibition (Kokkola
et al., 2015). We examined whether BRD4 inhibition restores
impaired autophagy by upregulating SIRT1. As expected, the
expression of SIRT1 was upregulated by JQ1 treatment or BRD4
knockdown in isolated pancreatic acinar cells (Figures 4A, B;
Figure S4). Furthermore, compared with JQ1-treated group,
treatment with the SIRT1 inhibitor EX527 resulted in an
increased expression of the autophagic markers such as LC3B-
II and p62 (Figure 4C).

Autophagosome fusion with lysosome is a key step in
autophagy progression, which is regulated by ATG14 and the
complex formed by STX17, synaptosome associated protein 29,
Frontiers in Pharmacology | www.frontiersin.org 6
and vesicle associated membrane protein 8 (Itakura and
Mizushima, 2013). We measured the expression of ATG14,
STX17, and LAMP2 and found that the protein levels of
ATG14, STX17, and LAMP2 were downregulated in pancreatic
acinar cells after CCK stimulation and inhibition of BRD4 by JQ1
or knockdown of BRD4 by transfecting shRNA restored their
expression (Figure 4D; Figures S2A, B), suggesting that BRD4
inhibition enhances the fusion of autophagosomes with
lysosomes. Furthermore, using LysoTracker staining, we found
that BRD4 inhibition maintained lysosomal pH (Figure S3).
Interestingly, we also observed that treatment with the SITR1
inhibitor, EX527 reversed the effects of BRD4 inhibition on the
expression of autophagosome and lysosome fusion markers,
including ATG14, STX17, and LAMP2 (Figure 4D), indicating
the influence of BRD4 inhibition on autophagosome fusion with
lysosome was mediated by SIRT1.

It has been shown that during AP, impaired autophagy is
related to an imbalance between cathepsin L and cathepsin B as
the former degrades trypsinogen and trypsin into amino acid and
the latter converts trypsinogen into trypsin (Mareninova et al.,
2009). We next measured the expression of cathepsin L and
cathepsin B and found that inhibition or knockdown BRD4
significantly increased the level of the pro-enzyme and cleaved
form of cathepsin L. Interestingly, BRD4 inhibition did not alter
the expression of cathepsin B, but BRD4 knockdown markedly
decreased the expression of cathepsin B (Figure 4E; Figure S2C),
suggesting that BRD4 mediates the balance between cathepsin L
and cathepsin B, therefore, resulting in reduced pancreatic acinar
cell injury. And with the SITR1 inhibitor treatment, the pro-
enzyme and the cleaved form of cathepsin L was decreased, but
A B C

D

FIGURE 2 | BRD4 inhibition prevents the activation of cell death pathway and downregulation of proinflammatory gene expression in vitro. (A) ATP levels were
measured by luminescence in isolated pancreatic acinar cells. Data were normalized to untreated control as 100% (n = 5). (B) The percentage of total cellular lactate
dehydrogenase (LDH) released into the extracellular medium in isolated pancreatic acinar cells stimulated with CCK (200 nmol·L-1) in the absence or presence of JQ1
(500 nmol·L-1) (n = 5). (C) PI uptake induced by CCK (200 nmol·L-1) with or without JQ1 (500 nmol·L-1) in isolated pancreatic acinar cells (n = 5). (D) mRNA levels of
Tnf, Il1b, and Il6 in CCK-stimulated pancreatic acinar cells with or without JQ1 (n = 3). Data represent the mean values ± SEM. Statistical analysis was performed by
Student’s un-paired, two-tailed t-test between two groups, *P < 0.05, compared to the control; #P < 0.05, compared to CCK-stimulated group.
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the level of cathepsin B was not changed (Figure 4E). To further
assess the effect of JQ1 on lysosomal function, we measured the
activity of cathepsin B and L. BRD4 inhibition increased the
activity of cathepsin L and SIRT1 inhibitor reversed its effect, but
there was no effect on the activity of cathepsin B (Figure 4F).
Taken together, these data suggest that BRD4 inhibition
enhances the fusion of autophagosome with lysosome and
improves lysosomal degradation, but has no influence on
autophagy initiation and autophagosome formation. Secondly,
the influence of BRD4 inhibition on autophagy was likely
mediated by upregulating SIRT1.

BRD4 Inhibition Alleviates Two Acute
Pancreatitis Models
Then, we examined the influence of BRD4 inhibition on
pancreatitis severity during two experimental models of AP in
vivo. Firstly, we tested JQ1, the inhibitor of BRD4 in caerulein
hyperstimulation pancreatitis, a widely used and highly
reproducible AP model (Lerch and Gorelick, 2013). We
showed that JQ1 markedly reduced pancreatic edema,
inflammatory infiltration, and necrosis (Figures 5A, B).
Furthermore, leukocyte infiltration assessed by CD45
immunostaining and pro-inflammatory cytokines such as Tnf,
Frontiers in Pharmacology | www.frontiersin.org 7
Il1b, and Il6 in the pancreas were decreased with JQ1 treatment
(Figures 5C, D). The second AP model was induced by
administrations of POA and ethanol, which is associated with
alcohol-induced pancreatitis (Huang et al., 2014). Similarly, we
found that JQ1 significantly reduced histological scores in the
pancreas, including edema, inflammation, and necrosis (Figures
5A, B). Furthermore, JQ1 decreased leukocyte infiltration and
inflammatory factors in the pancreas and serum amylase levels in
this model (Figures 5C, D). Consistently with our in vitro
findings, these data showed that BRD4 inhibition protects
against two clinically relevant models of AP.

BRD4 Inhibition Restores Impaired
Autophagy In Vivo
Finally, we evaluated the effect of BRD4 inhibition on autophagy
in vivo. In these two AP models, JQ1 treatment significantly
downregulated p62 levels (Figure 6A). BRD4 inhibition
downregulated LC3B-II expression in fatty acid ethyl ester-
induced pancreatitis, while had no effect on LC3B-II
expression CER model (Figure 6A). These data suggest that
BRD4 inhibition restores impaired autophagy in vivo.
Furthermore, we found that BRD4 inhibition upregulated the
expression of ATG14 and LAMP2, but had no effect on STX17 in
A

B

C

FIGURE 3 | BRD4 inhibition restores impaired autophagic influx, but has no effect on autophagy initiation. (A) Immunoblot analysis of LC3B level at 4 h after CCK or
CQ stimulation in isolated pancreatic acinar cells (n = 3). (B) Immunoblot analysis of AMPK, mTOR phosphorylation levels at 1 h after CCK stimulation in isolated
pancreatic acinar cells (n = 3). (C) mRNA levels of Map1lc3b, Vmp1, Becn1, and Atg2a at 4 h after CCK stimulation (n = 3). Data represent the mean values ± SEM.
Statistical analysis was performed by Student’s un-paired, two-tailed t-test between two groups, *P < 0.05, compared to the control; #P < 0.05, compared to CCK-
stimulated group;##P < 0.05, compared to the CQ-stimulated group; #P < 0.05, compared to CCK+CQ-stimulated group.
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both models (Figures 6B, C), indicating BRD4 inhibition
enhances the fusion of the autophagosome with lysosome in
vivo. Finally, we detected the expression of SIRT1 in vivo and
found that BRD4 inhibition significantly upregulated SIRT1
levels (Figure S5). Collectively, our data suggest that BRD4
inhibition via upregulating SIRT1 restores impaired autophagy
in vivo.
Frontiers in Pharmacology | www.frontiersin.org 8
DISCUSSION

The BET protein family includes four subtypes: Brd2, Brd3, Brd4,
and Brd6/t which is testis specific. (Shi and Vakoc, 2014; Sakamaki
et al., 2017). It has been known that among these isoforms only
BRD4 knockdown mediates autophagy and lysosomal function
(Sakamaki et al., 2017). Therefore, we focused our study on the
A B

C

D

E

F

FIGURE 4 | BRD4 inhibition upregulated SIRT1 and inhibition of SIRT1 reversed the effects of BRD4 inhibition on autophagic flux. (A) mRNA level of Sirt1 at 4 h
after CCK stimulation in isolated pancreatic acinar cells (n = 3). (B) Immunoblot analysis of SIRT1 level at 4 h after CCK stimulation (n = 5). (C) Immunoblot analysis
for LC3B and p62 expression in isolated pancreatic acinar cells pretreated with 500 nmol·L-1 JQ1 or 10 mmol·L-1 EX527 followed by stimulation with 200 nmol·L-1

CCK for 4 h (n = 4). (D) Immunoblot analysis for ATG14, STX17, and LAMP2 expression (n = 5). (E) Immunoblot analysis for cathepsin B (n = 3) and cathepsin L
expression (n = 5). (F) The activities of cathepsin B (n = 3) and cathepsin L (n = 3). Data represent the mean values ± SEM. Statistical analysis was performed by
Student’s un-paired, two-tailed t-test between two groups, *P < 0.05, compared to the control; #P < 0.05, compared to CCK-stimulated group; +P < 0.05,
compared to JQ1-treated group.
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role of BRD4 in AP. Among BRD4 inhibitors, we choose JQ1 since it
is widely used pharmacological BRD4 inhibitor in various other
diseases (Jiang et al., 2017; Rudman et al., 2018; Song et al., 2019).We
found that BRD4 inhibition reduced CCK-induced pancreatic acinar
cell injury and pro-inflammatory expression in vitro, and protected
against two AP models. Interestingly, Huang et al. reported that
treatment with I-BET-762, another BET inhibitor, markedly
Frontiers in Pharmacology | www.frontiersin.org 9
alleviated taurolithocholic acid-induced pancreatitis and POA plus
ethanol AP, but not caerulein hyperstimulation pancreatitis (Huang
et al., 2017), suggesting that different BET inhibitor may exert their
anti-inflammatory effects through different mechanisms. As shown
in our study, BRD4 inhibition by JQ1 protects against AP mainly
through restoring impaired autophagic flux, which has been reported
to be pivotal in the pathogenesis of AP.
A

B

C

D

FIGURE 5 | BRD4 inhibition protects against caerulein- and ethanol plus POA-induced pancreatitis in vivo. (A) Representative H&E images of pancreatic sections in
CER and ethanol plus POA-induced pancreatitis (200×) (n = 5). (B) Histopathological scores for edema, inflammation, necrosis, and the total histology score (n = 5).
(C) Representative micrographs of leukocyte marker CD45 immunohistochemical staining for the pancreas (200×). (D) mRNA levels of Tnf, Il1b, and Il6 from
pancreatic tissue (n = 3) and serum amylase levels (n = 5). Scale bar = 100 mm. Data represent the mean values ± SEM. Statistical analysis was performed by
Student’s un-paired, two-tailed t-test between two groups, *P < 0.05, compared to the control; #P < 0.05, compared to AP group.
May 2020 | Volume 11 | Article 618

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Shen et al. BRD4 Inhibition in Acute Pancreatitis
Autophagy is a critical catabolic process which can degrade and
recycle damaged organelles, lipids, and proteins (Habtezion et al.,
2019). SQSTM1, also known as p62, is an autophagy receptor. As
degraded along with cargos, it can be used as amarker of autophagic
degradation (Klionsky et al., 2016). The excessive accumulation of
p62 is a marker of impaired autophagy (Gukovskaya et al., 2017).
We found that BRD4 inhibition and knockdown had a pronounced
effect on reducing the accumulation of p62, indicating that BRD4
Frontiers in Pharmacology | www.frontiersin.org 10
inhibition enhances autophagic degradation. It has been reported
that BRD4 inhibition and knockdown promotes autophagy
induction in early stages, the formation of autophagosomes, and
subsequent fusion with lysosomes (Sakamaki et al., 2017). In our
study, we found that BRD4 inhibition had no effects on the
phosphorylation of mTOR and AMPK, two markers of
autophagic induction, nor on the genes that were related to
autophagosomes formation, suggesting that BRD4 inhibition did
A

B

C

FIGURE 6 | BRD4 inhibition restores impaired autophagic influx in vivo via promoting autophagosome-lysosome fusion and lysosomal degradation. (A) Immunoblot
analysis for LC3 and p62 in the pancreas from CER (upper) or ethanol plus POA (lower). (B) Immunoblot analysis for ATG14 and STX17 in the pancreas from CER
(upper) or ethanol plus POA (lower). (C) Immunoblot analysis for LAMP2 in the pancreas from CER (upper) or ethanol plus POA (lower). Data represent the mean
values ± SEM (n = 3). Statistical analysis was performed by Student’s un-paired, two-tailed t-test between two groups, *P < 0.05, compared to the control;
#P < 0.05, compared to AP group.
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not affect autophagy induction and autophagosome formation. This
may partly be explained by that pancreatic basal autophagy is high
and is crucial for pancreatic hemostasis (Antonucci et al., 2015), but
during experimental AP, activated autophagy is protective while
incomplete autophagic process might be detrimental (Gukovskaya
et al., 2017). Accumulating evidence demonstrated that autophagy
in acute pancreatitis models is impaired (Mareninova et al., 2009;
Gukovskaya et al., 2017; Biczo et al., 2018). The fusion of
autophagosome with lysosome is critical for efficient lysosomal
degradation and is regulated by a series of proteins, such as ATG14,
Rab7, LAMP2, and STX17 (Itakura and Mizushima, 2013; Zhang
et al., 2019). We found that BRD4 inhibition or knockdown
increased the expression of ATG14, STX17, and LAMP2 in
isolated pancreatic acinar cells and in two clinically relevant
models of AP, suggesting that BRD4 inhibition restores impaired
autophagy by improving the fusion of autophagosome with
lysosome in vitro and in vivo.

In addition to the fusion of autophagosome with lysosome,
efficient lysosomal degradation depends on the integrity of lysosome
membrane and the activities of acidic hydrolases (Saftig and
Klumperman, 2009). Cathepsin B and cathepsin L are involved in
this process, cathepsin B converts trypsinogen to trypsin while
Frontiers in Pharmacology | www.frontiersin.org 11
cathepsin L degrades both trypsin and trypsinogen into amino acids
(Halangk et al., 2000; Wartmann et al., 2010; Gukovskaya and
Gukovsky, 2012). Previous studies have shown that in pancreatitis
level of fully processed (mature) forms of these cathepsins decreased
and accumulation of intermediate forms increased (Mareninova
et al., 2009; Gukovskaya and Gukovsky, 2012; Biczo et al., 2018).
Moreover, acidic environment in the lysosome plays a critical role in
maintaining the normal activities of these enzymes (Mindell, 2012).
In this study, we found that BRD4 inhibition maintained lysosomal
pH, increased the expression of mature form of cathepsin L and the
activity of cathepsin L in isolated pancreatic acinar cells, suggesting
that BRD4 inhibition restores impaired autophagy during AP also
by enhancing lysosomal degradation.

SIRT1 is a member of class III histone deacetylase, which is
involved in the regulation of cell metabolism, apoptosis, and
autophagy (Oellerich and Potente, 2012). It has been showed that
BRD4 inhibitor JQ1 upregulated SIRT1 and alleviated inflammatory
responses in a cellular model of lung disease (Kokkola et al., 2015).
In addition, BRD4 inhibition induced ferritinophagy and
downregulated the expression of genes that are related to
ferroptosis by enhancing the expression of SIRT1 or suppressing
the expression of the histone methyltransferase G9a (Sui et al.,
2019). Consistently, we found that BRD4 inhibition or knockdown
upregulated SIRT1 in pancreatic acinar cells and in experimental
models of AP. It has been reported that SIRT1 regulates autophagy
by interacting with autophagy related genes and deacetylating them.
For example, SIRT1 deacetylate autophagy genes such asAtg5,Atg7,
and Atg8, which is critical for the activation of autophagy induced
by starvation (Lee et al., 2008). Moreover, SIRT1 deacetylated
FOXO1 (forkhead box O1), enhancing autophagosome-lysosome
fusion (Hariharan et al., 2010; Huang et al., 2019). SIRT1 also
deacetylates FOXO3 (forkhead box O3), leading Bnip3‐mediated
autophagy (Kume et al., 2010). In addition, SIRT1 deacetylates
TFEB (transcription factor EB), enhancing the expression of
autophagy/lysosome-associated genes (Bao et al., 2016). In this
study, we observed that the inhibition of SIRT1 deacetylation with
EX527 reversed the effects of BRD4 inhibition on autophagic flux.
Specifically, inhibition of SIRT1 reversed the increased expression of
LC3B-II and p62 with BRD4 inhibition, downregulated the
increased expression of ATG14, STX17, and LAMP2 with BRD4
inhibition, and decreased the pro-enzyme and the cleaved form and
the activity of cathepsin L, but the level and the activity of cathepsin
B was not changed. These data suggest that SIRT1 is a crucial
mediator that is responsible for BRD4-mediated autophagy
during AP.
CONCLUSION

In summary, in this study, we showed that BRD4 expression is
upregulated in various experimental models of pancreatitis.
BRD4 inhibition alleviated pancreatic acinar cell injury and
two clinically relevant mouse models of experimental AP.
These protective effects were mediated by restoring impaired
autophagic flux, primarily through enhancing autophagosome
fusion with lysosome and lysosomal degradation. The regulation
FIGURE 7 | Schematic diagram for the mechanism of BRD4 inhibition on
impaired autophagy during acute pancreatitis. BRD4 inhibition protects
against pancreatic injury in the in vitro and in vivo settings of AP. Inhibition or
knockdown of BRD4 upregulated SIRT1, leading to enhanced
autophagosome fusion with lysosome and lysosomal degradation, therefore
restored impaired autophagic flux by pancreatitis insults.
May 2020 | Volume 11 | Article 618

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Shen et al. BRD4 Inhibition in Acute Pancreatitis
of impaired autophagic flux by BRD4 inhibition is through
upregulating SIRT1 (Figure 7).
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