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Cell-free protein synthesis (CFPS) systems from crude lysates have benefitted from modifications to their
enzyme composition. For example, functionally deleting enzymes in the source strain that are deleteri-
ous to CFPS can improve protein synthesis yields. However, making such modifications can take substantial
time. As a proof-of-concept to accelerate prototyping capabilities, we assessed the feasibility of using

the yeast knockout collection to identify negative effectors in a Saccharomyces cerevisiae CFPS platform.
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We analyzed extracts made from six deletion strains that targeted the single deletion of potentially neg-
ative effectors (e.g., nucleases). We found a statistically significant increase in luciferase yields upon loss
of function of GCN3, PEP4, PPT1, NGL3, and XRN1 with a maximum increase of over 6-fold as compared
to the wild type. Our work has implications for yeast CFPS and for rapidly prototyping strains to enable
cell-free synthetic biology applications.

© 2016 Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

1. Introduction

Cell-free protein synthesis (CFPS), which was first used to
decipher the genetic code,! has recently made a renaissance with
improved protein production capabilities and cost economics.?
CFPS has been particularly useful for proteins that are difficult to
produce via standard in vivo methods (e.g., membrane proteins®->
and proteins harboring non-standard amino acids®'°), high-
throughput screening,''"'* and clinical manufacture of
therapeutics.'*"'° Additionally, the ease of protein production makes
way for rapid prototyping in synthetic biology with applications

Abbreviations: ANOVA, analysis of variance; ATP, adenosine triphosphate; cAMP,
cyclic adenosine monophosphate; CFPS, cell-free protein synthesis; CRISPR, clus-
tered regularly interspaced short palindromic repeats; elF, eukaryotic initiation factor;
NTP, nucleoside triphosphate; OD, optical density; SC, synthetic complete media;
YKO, yeast knockout.
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in genetic circuits,?*?> metabolism,>®> promoter libraries,?* and
diagnostics,”® among others. This process uses crude cell lysates,
or extracts, which contain the necessary translational machinery
(including ribosomes, tRNAs, and aminoacyl tRNA synthetases) to
drive protein synthesis in vitro.”> Substrates such as nucleoside
triphosphates (NTPs) and amino acids are added to the extract
along with salts and other factors to mimic the cellular environ-
ment. Once DNA encoding the protein of interest is added to the
reaction, the product can be made in a matter of hours. Because
the protein synthesis reaction now occurs outside the confines of
the cell membrane, there are benefits including the ability to
control the reaction components and conditions, as well as the
ability to decouple cell growth from protein synthesis.> Enabled
by these benefits, several systems have emerged based on the
lysates of Escherichia coli,*® Saccharomyces cerevisiae,’” wheat germ,'!
insect cells,?® Leishmania tarentolae,?® Chinese hamster ovary cells,*®
and tobacco BY-2 cells,’! among others.

In addition to containing the necessary elements for transla-
tion, crude extracts also contain many other enzymes that have the
potential to positively or negatively affect protein synthesis. Ex-
amples of negative effectors could include enzymes responsible for
degrading DNA and proteins, as well as using resources such as ATP
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that could be otherwise directed toward translation. Manipula-
tions to the extract enzyme composition have shown utility in E. coli
and wheat germ extracts. In one illustration, changes to extract pro-
cessing methods removed protein synthesis inhibitors, such as
thionins, and ribonucleases from wheat germ extract and allowed
for production of up to 4 mg/mL dihydrofolate reductase in a con-
tinuous exchange reaction.> Also, work in the E. coli system used
genomic modifications to remove deleterious enzymes from cell-
free reactions by deleting their corresponding genes from the source
strain.®**-® These deletions included knocking out enzymes to impair
amino acid and nucleic acid degradation pathways. For example,
in order to address cysteine degradation, Calhoun and Swartz deleted
the gene encoding for glutamate-cysteine ligase, which increased
the lifetime of measurable concentrations of cysteine from 15
minutes to over 3 hours.>> Additionally, Michel-Reydellet et al. were
able to stabilize linear DNA fragments by deleting endonuclease 1.>*
In a different genomically recoded chassis strain, Hong et al. ob-
served a four-fold improvement in protein synthesis yields for
products harboring non-standard amino acids through the dele-
tion of five nucleases.’

Recently, our lab has developed a novel CFPS platform in yeast
that enables rapid protein expression from linear PCR templates.>”>7-40
In terms of CFPS systems, our yeast platform benefits from being
a microbe, a common protein production chassis, and a model or-
ganism. However, the platform currently suffers from low batch CFPS
yields. Based on previous work, we hypothesize that this is due to
the expected presence of nucleases and proteases,”’” non-productive
consumption of energy substrates such as ATP and other
nucleotides,*® and low rates of translation initiation.?”*%3° We also
note that unlike the E. coli system described above, yeast CFPS does
not appear to suffer from amino acid substrate limitations.>® Guided
by the results for wheat germ and E. coli CFPS systems above, we
hypothesized that deleting potential negative effectors in the chro-
mosome of the yeast crude lysate source strain could improve CFPS
yields.

Many tools have been developed for engineering yeast. In par-
ticular, well established tools exist for the simple genomic
modification of yeast cells through homologous recombination,*!
and now also through the CRISPR system.*? As a model organism,
the entire genome of yeast has been sequenced*’ and all open
reading frames have been characterized in a yeast knockout (YKO)
collection.** The use of this collection of strains can bypass the time
investment for making a number of candidate mutations to char-
acterize open reading frames. In a typical lab workflow, constructing
single mutations in yeast takes approximately 7 days including
primer design, PCR-based template construction, and knockout
confirmation.

Here, our goal was to develop a method to rapidly test lysates
from a series of single deletion strains in the YKO strain library, in
order to efficiently identify gene deletions that can increase yeast
CFPS yields. By leveraging the YKO collection, we aimed to reduce
the total time for assessing a mutation by more than 50%. As a sec-
ondary objective, we wanted to assess the reproducibility of using
the strains from the library along with our extract preparation
methods. Thus, we set strict criteria for our work: the CFPS results
came from two extracts of each mutant strain prepared from two
separate fermentations.

We began by identifying possible negative effectors. Based on
previous work primarily performed in yeast, but also E. coli, we tar-
geted several relevant categories of enzymes. We chose knockouts
of a protease (proteinase A, pep4A), two nucleases (poly-A specific
exonuclease, ngi3A, and exoribonuclease, xrn1A), a phosphatase
(protein phosphatase T, ppt1A), and two regulators of translation
(elF2 kinase, gcn2A, and elF2B regulatory domain, gcn3A).23845 Pro-
teinase A (Pep4) is one of two proteases responsible for
approximately 86% of all protein degradation in yeast.*® Next, given
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Fig. 1. A workflow diagram illustrates how the YKO collection is used for efficient
screening of mutant strain extracts. Each nonessential ORF was deleted individu-
ally with the KanMX gene, shown here in orange, which imparts resistance to the
drug G418. We selected a number of candidate strains from the yeast knockout col-
lection that we subsequently grew in 1 L cultures, lysed, and processed into extract
ready for use in cell-free protein synthesis.

the benefit seen in E. coli CFPS upon the deletion of nucleases,’ as
well as our reliance upon uncapped mRNA, we chose the strain de-
ficient for exoribonuclease (Xrn1), a 5’-3” exonuclease that acts on
decapped mRNA. We also chose an exonuclease that acts in the 3’-
5’ direction, Ngl3, which acts on polyA-RNAs. Protein phosphatase
T (Ppt1) is a serine/threonine phosphatase. Based on previous work
showing that our CFPS reactions are energy limited and that phos-
phate accumulates,* we included a phosphatase mutant to explore
the possibility that phosphatase activity in the extract non-
productively cleaves high-energy phosphate compounds in our cell-
free reactions. Finally, given that translation initiation is considered
the rate-limiting step in protein synthesis,*” we chose the strains
deleted for GCN2 and GCN3, which are inhibitors of translation ini-
tiation. Gen2 phosphorylates translation initiation factor elF2o.. When
phosphorylated, elF2o inhibits elF2B through interaction with the
elF2B subunit, Gcn3.%84°

Strains harboring the above mutations were directly selected from
the YKO library. As illustrated in Fig. 1, this library is a collection
of yeast single mutant haploid strains, with each strain carrying one
G418 resistance gene (KanMX) in place of every nonessential open
reading frame of the S288c-derived BY4741. This is a commonly used
laboratory strain that carries genetic auxotrophies (Supporting
Information Table S1) to enable simple and fast genetic
manipulation.’® We used the MAT a collection because the origi-
nal source strain we used for yeast CFPS, MBS, is MAT a.?’

Next, we grew 1 L cultures of each of the yeast mutants in du-
plicate in order to prepare extract and assess variability (Fig. 1).
Fermentations were harvested at mid-exponential phase with an
average OD of 11.50 + 0.76. Representative growth curves can be seen
in Fig. 2A and B. Previous work has shown that yeast harvested at
approximately 12 OD is the most productive for CFPS.?”3° OD mea-
surements were taken over the course of the fermentation and the
growth rate was analyzed during exponential growth. The gcn3A
growth curve is offset from the others. This is due to a lower start-
ing OD, resulting in the delay in exponential phase. All strains except
gcn3A had comparable growth rates, as assessed by one-way anal-
ysis of variance (ANOVA) followed by Dunnett’s test to compare each
mutant to the wild type (p <0.01).



4 J.A. Schoborg et al./Synthetic and Systems Biotechnology 1 (2016) 2-6

14 ;
12 1 s
10 4 ~ S ol
8 | “‘:' ‘ gcn2A
® A
ODggo 6 ot 4gen3a
L) [}
g 5.' pepdA
o | e " ppt1A
0 ats A ngl3A
0 5 10 15; “XOIA
Time (hr)

B

0.6 1
0.5 1 o
0.4 1
0.3 1
0.2 1
0.1 1
0.0 -

Growth
Rate
(h*1)

wt gcn2Agen3ApepdA ppt1A ngl3A xrm1A
Mutant

Fig. 2. Growth of the strains used in this study. (A) Strains from the Saccharomyces genome deletion collection were grown in two to four 1 L cultures for subsequent lysis.
(B) Growth rates were calculated using OD readings taken while cultures were dividing exponentially. Column values represent the mean with error bars corresponding to

the absolute error of at least two independent growths.

After fermentation, the cells were processed into extract through
several steps described in the Methods section. For each extract, a
magnesium optimization was performed spanning 3-6 mM addi-
tional magnesium glutamate in the reaction (Supporting Information
Fig. S2). The luciferase yield for the optimum magnesium concen-
tration for each of the extracts is shown (Fig. 3). The data show the
average of a total of eight CFPS reactions. The wild type BY4741
extract gave active luciferase yields of 2.98 + 0.85 ug/mL, while the
best mutant, xrn1A, showed yields approximately six times better
with 20.00 + 1.26 pg/mL. The gcn24, gen3A, pep4A, ppt1A, and ngl3A
extracts yielded 3.95+0.63 ug/mL, 11.16 £ 2.21 ug/mL, 15.23 £ 2.13 pg/
mL, 11.32 £4.40 ug/mL, and 10.08 + 1.75 pug/mL, respectively. All
extracts except gcn2A showed higher yields that were statistically
significant compared to wild type, as determined by one-way ANOVA
followed by Dunnett’s test to compare each mutant to the wild type
(p<0.0001). The gcn2A derived extracts gave yields that were not
statistically different from the wild type. These statistical conclu-
sions were consistent for the production of superfolder green
fluorescent protein as well, as seen in the Supporting Information
Fig. S3. The consistency of the sfGFP and luciferase results high-
lights the potential generality of our results.

The CFPS results led us to several hypotheses about the com-
position of the lysate that will be the basis of future studies.
We hypothesize that loss of XRN1 or NGL3 results in greater
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Fig. 3. The impact of different extract source strains on CFPS yields. Extract from
xrnlA, pep44, and ppt1A strains was approximately 4- to 6-fold more productive than
extract from wild type BY4741. Average CFPS yields for each strain were calculated
from the yields of two separately grown and lysed extracts with four replicates per-
formed of each reaction, for a total of eight independent reactions. The error bars
represent the standard deviation of the replicates. Extracts that showed a statisti-
cally significant improvement over wild type (wt), based on ANOVA followed by
Dunnett’s test (p <0.0001), are marked with an asterisk.

productivity in our extract due to a loss of nuclease activity. Xrnl
is a ribonuclease and could be active in extracts, reducing protein
yield by destroying ribosomes. Ngl3, on the other hand, is a poly-A
specific exonuclease involved in mRNA decay. We hypothesize that
loss of Ngl3 in extract results in greater mRNA stability. Similarly,
it is likely that loss of PEP4 increases extract productivity due to loss
of protease activity. Pep4 is a vacuolar protease and could degrade
the product as well as functional enzymes that generate our protein
of interest. Also, it is possible that loss of PPT1 leads to a more pro-
ductive extract by reducing the general phosphatase activity in the
cell-free reaction. Interestingly, gcn2A did not show any signifi-
cant improvement over wild type while gcn3A did. Loss of GCN3 is
likely beneficial to extract productivity because loss of this subunit
(elF201) removes translation initiation inhibition. In previous work,
the deletion of GCN3 has been shown to remove translation regu-
lation effects of phosphorylated elF2, described above.*® Gen2 is a
known kinase that phosphorylates elF2, upstream of the Gcn3
regulation.”!

In sum, our work demonstrates the merit of using the YKO library
for rapidly assessing different single gene knockout strains on CFPS
activity. Importantly, the time for making genomic mutations was
eliminated in our study, allowing us to move directly to cell growth
and extract preparation. Our data also highlight the robustness and
reproducibility of our results. Looking forward, we propose that com-
munity resources, such as the YKO, should be leveraged in the field
of cell-free synthetic biology to accelerate the ability to catalog pos-
itive and negative effectors on chassis strains.

Notably, the gene deletions that give beneficial improvements
are capable of being ported into other strains of S. cerevisiae, such
as MBS or S288c, which have produced higher yields of protein than
that seen in BY4741, despite BY4741 being an S288c-based strain.**°
However, care will need to be taken to ensure that mutations ben-
eficial to one source strain carry over to another. Additionally, it may
be advantageous to explore whether beneficial mutations hold for
a variety of extract processing conditions, such as lysis method. Nev-
ertheless, once beneficial single knockout mutants have been
identified, combinations of mutations have the potential for syn-
ergistic effects to improve yields even further. Looking forward, we
hope to carefully explore multiplexing multiple knockouts in a future
study, but this goes beyond the initial proof-of-concept study shown
here.

Beyond improving protein expression yields, we anticipate that
our general approach may be useful for studying metabolic path-
ways, genetic circuits, and promoter libraries in different strain
backgrounds in a wide range of organisms. Not only do knockout
libraries exist in other model organisms, such as E. coli,>>** but with
the ease of the CRISPR/Cas9 systems®*>> for eukaryotic genomic
modifications, it is likely that more libraries will be prepared from
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commonly used eukaryotic cells, such as CHO cells.>®*” We antic-
ipate that combining cell-free systems with different strain
collections will allow for a system-wide approach to gain a better
understanding of how biological systems perform their versatile
roles.

2. Methods
2.1. Cell growth and crude extract preparation

Yeast strains were from the YKO collection. Strains grew in 1L
cultures at 30 °C with shaking 250 RPM in 2.5 L Tunair full-baffle
shake flasks (Sigma-Aldrich, St. Louis, MO) in SC media buffered to
pH 5.5 and supplemented with 50 mM phosphate from an OD of
0.48 £0.12 to 11.50 £ 0.76. Methods for crude extract preparation
from S. cerevisiae strains were identical to the methods described
previously.*® Briefly, cells were lysed using high-pressure homog-
enization and dialyzed for buffer exchange.

2.2. Cell-free protein synthesis

CFPS reactions were carried out as described by Hodgman and
Jewett,”” except that reactions were supplemented with 0.4 mM
cAMP.*° The total protein concentration of the yeast extract was
8.90 £ 3.22 mg/mL as determined by Bradford Assay using com-
mercially available reagents (Bio-Rad, Hercules, CA) with bovine
serum albumin used as the protein standard. Cell-free reactions in-
cubated for 5 hours at 21 °C, at which point the reaction had run
to completion, and were then placed in ice and immediately assayed
for active luciferase yield. The amount of active luciferase was de-
termined by adding 2 uL of the CFPS reaction to 30 uL of ONE-Glo
Luciferase Assay System (Promega, Madison, WI) in a white 96-
well plate. Total luminescence was measured every 2 minutes over
a 20-minute interval using a BioTek Synergy 2 plate reader (Win-
ooski, VT) and the maximum output of relative light units (RLUs)
was recorded for each sample. The values generated were then com-
pared to a linear standard curve of recombinant luciferase (Promega,
Madison, WI) added to the ONE-Glo Luciferase Assay System to cal-
culate the active luciferase yield. The amount of active superfolder
green fluorescent protein was determined as in Schoborg et al.*® All
results are reported as means * standard deviations. Statistical anal-
ysis was performed using JMP software (SAS, Cary, NC). A one-
way analysis of variance was performed and followed by Dunnett’s
multiple-comparison test. A p-value less than 0.02 was denoted as
statistically significant.
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