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A B S T R A C T

Background: Heterogeneity in Acute Respiratory Distress Syndrome (ARDS), as a consequence of its non-spe-
cific definition, has led to a multitude of negative randomised controlled trials (RCTs). Investigators have
sought to identify heterogeneity of treatment effect (HTE) in RCTs using clustering algorithms. We evaluated
the proficiency of several commonly-used machine-learning algorithms to identify clusters where HTE may
be detected.
Methods: Five unsupervised: Latent class analysis (LCA), K-means, partition around medoids, hierarchical,
and spectral clustering; and four supervised algorithms: model-based recursive partitioning, Causal Forest
(CF), and X-learner with Random Forest (XL-RF) and Bayesian Additive Regression Trees were individually
applied to three prior ARDS RCTs. Clinical data and research protein biomarkers were used as partitioning
variables, with the latter excluded for secondary analyses. For a clustering schema, HTE was evaluated based
on the interaction term of treatment group and cluster with day-90 mortality as the dependent variable.
Findings: No single algorithm identified clusters with significant HTE in all three trials. LCA, XL-RF, and CF
identified HTE most frequently (2/3 RCTs). Important partitioning variables in the unsupervised approaches
were consistent across algorithms and RCTs. In supervised models, important partitioning variables varied
between algorithms and across RCTs. In algorithms where clusters demonstrated HTE in the same trial,
patients frequently interchanged clusters from treatment-benefit to treatment-harm clusters across algo-
rithms. LCA aside, results from all other algorithms were subject to significant alteration in cluster composi-
tion and HTE with random seed change. Removing research biomarkers as partitioning variables greatly
reduced the chances of detecting HTE across all algorithms.
Interpretation: Machine-learning algorithms were inconsistent in their abilities to identify clusters with sig-
nificant HTE. Protein biomarkers were essential in identifying clusters with HTE. Investigations using
machine-learning approaches to identify clusters to seek HTE require cautious interpretation.
Funding: NIGMS R35 GM142992 (PS), NHLBI R35 HL140026 (CSC); NIGMS R01 GM123193, Department of
Defense W81XWH-21-1-0009, NIA R21 AG068720, NIDA R01 DA051464 (MMC)
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1. Introduction

Randomised controlled trials (RCTs) in the traditional paradigm of
evidence-based medicine assume uniform treatment responses
among all individuals. It is clear, however, that this assumption is
invalid, and becomes more so with increasing heterogeneity in the
study population[1,2]. In critical care, where therapies are frequently
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Research in context

Evidence before this study

Heterogeneity subsumed within clinical critical care syn-
dromes, such as acute respiratory distress syndrome (ARDS),
has led to a plethora of “negative” clinical trials. To circumnavi-
gate this heterogeneity, investigators are increasingly seeking
heterogeneity of treatment effect (HTE) in novel phenotypes/
subgroups, with several studies describing approaches to clus-
tering using a multitude of clustering algorithms and data
types. The best approach used for identifying clusters where
HTE is detectable in secondary analysis of clinical trials, and
their comparative benefits and limitations, is not known.

Added value of this study

In this study, we present secondary analyses of three rando-
mised controlled trials (RCTs) of ARDS where we compare nine
clustering algorithms (five unsupervised and four supervised)
to seek HTE in the identified subgroups. We used a composite
of clinical data and protein biomarkers as partitioning variables.
Latent class analysis (LCA), causal forest and x-learner with ran-
dom forest identified HTE in 2/3 of the trials. No single algo-
rithm consistently identified clusters with HTE. LCA aside, most
algorithms were highly susceptible to random seed changes
leading to alteration of cluster composition and HTE detection.
Protein biomarkers were essential partitioning variables for
successful detection of HTE in the identified clusters.

Implications of all available evidence

Taken together with the wider literature, our findings reinforce
the feasibility of detecting HTE in subgroups identified using
machine learning algorithms. The inconsistencies observed
with seed changes in some of the machine learning algorithms
warrants cautious interpretation of such findings and mandates
their prospective validation. It is highly probable that no single
algorithm will work in all RCTs and future studies should focus
on matching algorithms that are best suited to specific data
structures and trial designs.
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tested in non-specific clinical syndromes with broad diagnostic crite-
ria, such as sepsis and acute respiratory distress syndrome (ARDS),
numerous trials have failed to deliver successful therapies [3,4]. The
central premise of precision or personalised medicine is to challenge
this paradigm and focus on delivering the right therapies to the right
patient by embracing the concept of heterogeneity of treatment
effect (HTE). HTE is defined as a non-random, explainable variability
in the direction and magnitude of treatment effect [5]. Conceptually,
subgroup analyses in RCTs are the most common approach to evalu-
ating HTE. However, performing multiple subgroup analyses in RCTs
can result in false discoveries [6,7]. A more predictive, unbiased, and
multivariable approach to HTE analyses has been proposed, as it
avoids the use of single variables with arbitrary cut-offs to determine
subgroups [8].

Increasingly, research groups are using machine learning (ML)
approaches to identify subgroup within critical care syndromes with
the hope of identifying HTE. For example, in ARDS, using latent class
analysis (LCA), two subphenotypes of ARDS, with divergent biological
features, clinical characteristics and outcomes, have been consis-
tently described across five RCTs [9,12]. In three of these RCTs, the
phenotypes showed differential responses to randomised interven-
tions. In sepsis, using k-means clustering, investigators have identi-
fied subgroups that showed HTE [13]. Others have proposed using
supervised ML algorithms to determine characteristics associated
with HTE [14,15]. The optimal approach to finding clusters where
HTE is observable, however, remains unknown.

The main objective of this exploratory study was to ascertain the
optimal ML algorithm to consistently identify clusters with HTE. Fre-
quently, approaches that combine protein biomarker data with clini-
cal data are used as partitioning variables for subgroup discovery [8].
The importance of protein biomarkers in identifying clusters where
HTE is observed remains uncertain. A secondary objective, therefore,
was to test whether the detection of HTE was predicated on the inclu-
sion of protein biomarkers as partitioning-variables.

2. Methods

2.1. Overview

The overview of the analysis plan is summarised in Fig. 1. Briefly,
the performance of each of the nine clustering algorithm was evalu-
ated independently in secondary analyses of three prior ARDS RCTs.
Baseline variables pertaining to demographics, vital signs, ventilatory
metrics, clinical laboratory measurements, and research protein bio-
markers served as predictors for each algorithm (Table S1). For each
algorithm, once patients were classified into clusters, HTE for 90-day
mortality was sought, and variable importance for cluster classifica-
tion was estimated. For secondary analyses, we repeated the above
analyses by 1) generating permutations of random seed initiation for
relevant algorithms to assess their stability; 2) excluding the protein
biomarkers as predictor variables.

2.2. Study Population

Data from three ARDS RCTs conducted by the National Heart, Lung
and Blood Institute’s ARDS-Network were used. Permission to con-
duct these analyses was provided by BioLINCC. ALVEOLI (n=549)
tested the efficacy of high positive end-expiratory pressure (PEEP)
compared to usual care/lower PEEP [16]. FACTT (n=1000) tested the
efficacy of conservative versus liberal fluid management strategies
[17]. SAILS (n=745) tested the efficacy of rosuvastatin versus placebo
[18]. Specifically, these three trials were selected because the clinical
data and biomarker availability, timing of recruitment, and inclusion
criteria were relatively uniform across all three RCTs (Table S2). The
use of these three RCTs would enable algorithmic performance evalu-
ation in the same clinical syndrome and independent of variances in
partitioning variables. In SAILS, in addition to ARDS diagnosis, the
inclusion criteria mandated that subjects had a known/suspected
infection and met systemic inflammatory response syndrome criteria.
Partitioning variables in the clustering algorithms were collected
prior to randomisation. Biospecimens for protein biomarkers were
collected at enrolment. Assay procedures are described in prior publi-
cations [9,11,12].

2.3. Clustering algorithms

The clustering algorithms selected for evaluation were either
those commonly described in the medical literature or prominent in
the data science literature [19]. The algorithms used for unsupervised
clustering were categorised as 1) distance-based: K-means, partition-
ing around medoids (PAM), hierarchical clustering (HC), and spectral
clustering (SC); 2) probability-based: latent class analysis (LCA).
These algorithms were implemented agnostic to outcome and treat-
ment group allocation.

All non-normally distributed continuous predictor variables were
log-transformed. For algorithms that required complete data, missing
values were replaced by single imputation with chained equations
(MICE package in R) and the same imputed data was used in all algo-
rithms. A summary of the missing values can be found in Table S3.



Fig. 1. Overview of the analysis plan and study design. ALVEOLI = Assessment of Low Tidal Volume and Elevated End-Expiratory Pressure to Obviate Lung Injury, FACTT = Fluids
and Catheters Treatment Trial, SAILS = Statins for Acutely Injured Lungs from Sepsis, FIML = Full information maximum likelihood. LCA = Latent class analysis, MOB = model based
recursive partitioning, XL-RF = X-learner with Random Forest (RF); XL-BART = Bayesian Additive Regression Trees (BART). HTE = Heterogeneity of treatment effect.
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For unsupervised methods, all continuous variables were z-scaled
prior to being used in the algorithms (mean = 0, standard devia-
tion = +/-1). For distance-based clustering, Euclidean distance was
used to determine clusters.

Two to five clusters were compared in the unsupervised
approaches. Optimal number of clusters was determined using an
unbiased and automated approach for the distance-based algorithms
called consensus clustering. In consensus clustering, each algorithm
was run 1000-times with various combinations of variables, observa-
tions, and multiple random starting locations for each run. The cumu-
lative results for each clustering solution are captured in a consensus
matrix. The distribution of the proportion of ambiguous clustering
(PAC) on the cumulative distribution function plot was used to iden-
tify the most stable clustering solution using the ConsensusClusterPlus
package in R. For LCA, the model comprising the optimal number of
classes was selected using the Vuong-Lo-Mendel-Rubin test (primary
selection criteria), Bayesian information criteria (BIC), entropy, and
the size of the smallest class [20]. Each model was run with up to
1000 random starts, and models were only considered for evaluation
if the maximum likelihood ratio replicated in at least 20 starts.

The supervised clustering algorithms were trained directly to pre-
dict differential treatment responses using outcome and treatment
group allocation as the dependent variables. The four algorithms
used were: model based recursive partitioning (MOB), Causal Forest
(CF), and X-learner with Random Forest (XL-RF) and Bayesian Addi-
tive Regression Trees (XL-BART). For all algorithms, out-of-sample
prediction for individual treatment effect (ITE) was generated per
observation. Patients were classified into one of two clusters,
based on the whether the ITE coefficient was positive or negative.
Details of all algorithms and procedures used are summarised in
the supplement.

2.4. Statistical analysis

For both the supervised and unsupervised approaches, once the
optimal number of clusters were identified and observations classi-
fied into clusters, HTE was tested using logistic regression models,
where 90-day mortality served as the dependent variable and the
interaction term of clusters and treatment group was the indepen-
dent variables. P-values for the interaction term were generated
using the ANOVA likelihood ratio test and a significant interaction
term (p<0.05) was defined as success for HTE. Odds ratio for hetero-
geneity of treatment effect in the clusters was generated for each
algorithm (odds ratio > 1 was associated with harm and < 1 with
benefit). Chi-squared test was used to test differences in outcome
between the identified clusters.

2.5. Variable importance

To determine the most contributory partitioning variables for
cluster identification, for each algorithm, gradient boosted machine
models (XGBoost) were trained to classify the identified clusters
using the same partitioning-variables as predictors in the model
(Table S1). The gain in accuracy in cluster classification with the addi-
tion of a variable was computed and cumulatively tallied for each
XGBoost model to obtain the relative importance of each variables
per algorithm.

2.6. Sensitivity analyses

ML algorithms are subject to instability with perturbations in the
random initialisation seed (the starting point from which algorithms
are generated). To test the reproducibility of the algorithms, we
repeated the above analyses with random seed iterations for all
approaches (except LCA, where models were only selected if the
maximum likelihood was reproduced in multiple initiation seeds).
Nine further runs were performed, each with a new random seed for
single imputation and the clustering algorithms. Inter-run similarities
in clusters identified across the 10 runs were evaluated using the
Adjusted Rand Index (ARI).

Finally, to test the importance of biomarkers for identifying clus-
ters where HTE was observed, we repeated the above analyses by
excluding protein biomarkers as predictors.

All clustering approaches, except LCA, were performed on RStudio
version 1.1.453 using R version 4.0.1. LCA was performed using MPlus
version 8.5.

2.7. Ethics statement

Local institutional review board granted a consent-waiver for the
use of de-identified trial data for research purposes.

2.8. Role of funders

Funders of the study had no role in study design, data collection,
data analysis, data interpretation, or writing of the report.



Fig. 2. Summary of the primary clustering analyses in the three trials. ALVEOLI = Assessment of Low Tidal Volume and Elevated End-Expiratory Pressure to Obviate Lung Injury
(N = 549), FACTT = Fluids and Catheters Treatment Trial (N = 1000), SAILS = Statins for Acutely Injured Lungs from Sepsis (N = 745). LCA = Latent class analysis, PAM = partitioning
around medoids, HC = Hierarchical clustering, MOB = model based recursive partitioning, CF = Causal forest, XL-RF = X-learner with Random Forest (RF); XL-BART = Bayesian Addi-
tive Regression Trees (BART). Panel 2a: Optimal number of clusters and proportions of patients in each clusters per algorithm (The colours are representative of the size of the
clusters). Panel 2b: Top 10 variable importance for each clustering algorithm. sTNFR-1 = Soluble tumour-necrosis factor receptor-1, IL-8 = Interleukin-8, WBC = White blood cell
count, ICAM-1 = Intercellular adhesion molecule-1, VE = Minute ventilation, SP-D = Surfactant protein-D, IL-6 = Interleukin-6, PAI-1 = Plasminogen activator inhibitor-1, HR = Heart
rate, P:F ratio = PaO2/FiO2, White (race), VT = Tidal volume, UO = Urine output, BMI = Body mass index, PEEP = = Positive end-expiratory pressure, vWF = Von Willebrand Factor,
Pplat = Plateau pressure, SBP = Systolic blood pressure, Pmean = Mean airway pressure. Panel 2c: Odds ratio for heterogeneity of treatment effect in clusters for each algorithm
(odds ratio > 1 was associated with harm, p-value represents the significance of the coefficient of the interaction term of randomised intervention and clusters in a logistic regres-
sion model with mortality at day 90 as the dependent variable; P-values were generated for the interaction term using the ANOVA likelihood ratio test).

4 P. Sinha et al. / EBioMedicine 74 (2021) 103697
3. Results

The baseline characteristics of the three RCTs and the predictor
variables are summarised in Table S1. Among the unsupervised clus-
tering approaches, the number of clusters identified across the
cohorts were largely consistent across the three trials. LCA and k-
means consistently identified two clusters, whereas PAM and HC
identified five clusters (Fig. 2a). Spectral identified two classes in
ALVEOLI and SAILS, and five classes in FACTT. The differences in mor-
tality at day-90 between the identified clusters for each algorithm in
each trial is summarised in Table 1.

Among the unsupervised methods, pro-inflammatory biomarkers,
such as interleukin (IL)-8, IL-6 and soluble tumour-necrosis factor
receptor (sTNFR)-1, were prominently and consistently featured as
important variables (Fig. 2b). In the supervised approaches, however,
no discernible patterns were observable across the three trials. Even
within a trial, the pattern of variable importance differed between
the supervised algorithms.

Significant HTE interaction with clusters was observed using LCA
and X-learner RF clusters in ALVEOLI and FACTT (Fig. 2c). Using CF,
significant HTE were observed in FACTT and SAILS. Using K-means,
PAM, HC and XL-BART, significant HTE interactions were only
observed in one out of the three trials. No significant HTE interactions
were observed in clusters identified by either spectral clustering or
MOB. In clusters where significant HTE interactions were observed in
the same trial, there were substantial differences in patient composi-
tion of clusters across the algorithms (Fig. S1). For example, in FACTT,
where LCA and XL-BART both identified two clusters with significant
HTE, more than half the patients from the increased-mortality cluster
in XL-BART crossed over to the lower mortality cluster in LCA and
vice versa.

In all trials, with both the supervised and unsupervised algo-
rithms, permutations in random seed initialisation in sequential runs
led to several HTE interaction terms no longer being significant
despite the same number of clusters being identified. In ALVEOLI, in
10 consecutive runs, significant HTE interactions were observed only
in 2 of 10 runs in HC, 3 of 10 runs in XL-RF and 1 of 10 runs in MOB
(Fig. S2a). In FACTT, significant HTE was more consistently observed
in the supervised approaches (CF and XL-BART; 6 and 4 out of 10
runs respectively) but were inconsistent in the unsupervised
approaches (Figure S2b). In SAILS, the findings of HTE were consis-
tent in k-means and XL-BART, however, in CF and XL-RF HTE was
observed in only 1 out of 10 runs (Fig. S2c). The mean Adjusted Rand
index, a measure of pairwise similarity, for each trial varied widely in



Table 1
Mortality at day 90 in the three trials stratified by the clusters identified by each algorithm. P-values represent chi-
squared tests between cluster category and death.

% Died in each Cluster

Trial Method Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 p-value

ALVEOLI Unsupervised LCA 20.0 46.2 � � � < 0.01
K-means 23.0 43.8 � � � < 0.01
PAM 20.3 24.0 46.4 10.2 43.2 < 0.01
HC 21.5 13.5 30.3 34.5 50.7 < 0.01
Spectral 22.0 43.3 � � � < 0.01

Supervised MOB 25.0 25.0 � � � 0.31
CF 27.8 29.2 � � � 0.65
XL RF 27.0 27.0 � � � 0.99
XL BART 19.4 35.2 � � � < 0.01

FACTT Unsupervised LCA 22.1 45.1 � � � < 0.01
K-means 24.4 41.1 � � � < 0.01
PAM 14.2 25.1 31.8 38.3 52.9 < 0.01
HC 42.5 18.3 20.3 29.9 28.5 < 0.01
Spectral 18.1 30.4 36.1 23.0 47.4 < 0.01

Supervised MOB 25.0 32.6 � � � 0.01
CF 26.9 33.6 � � � 0.06
XL RF 26.1 33.9 � � � 0.02
XL BART 32.4 23.1 � � � < 0.01

SAILS Unsupervised LCA 21.4 37.5 � � � < 0.01
K-means 24.4 34.7 � � � 0.01
PAM 23.9 19.6 38.2 20.9 43.8 < 0.01
HC 22.4 33.3 44.0 20.0 18.6 < 0.01
Spectral 26.6 40.5 � � � 0.07

Supervised MOB 30.4 18.5 � � � < 0.01
CF 28.3 20.8 � � � 0.16
XL RF 29.9 19.9 � � � 0.01
XL BART 25.1 31.7 � � � 0.06

ALVEOLI = Assessment of Low Tidal Volume and Elevated End-Expiratory Pressure to Obviate Lung Injury (N = 549),
FACTT = Fluids and Catheters Treatment Trial (N = 1000), SAILS = Statins for Acutely Injured Lungs from Sepsis (N = 745).
LCA = Latent class analysis, PAM = partitioning around medoids, HC = Hierarchical clustering, MOB = model based recur-
sive partitioning, CF = Causal Forest, XL-RF = X-learner with Random Forest (RF); XL-BART = Bayesian Additive Regression
Trees (BART).
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each algorithm, and its value was generally low throughout, indicat-
ing poor overlap between clusters identified using the various ran-
dom seed runs for the same algorithm in the same trial cohort
(Fig. 3).

When the above analyses were repeated with protein biomarkers
excluded, as partitioning variables the optimal number of clusters
across each algorithm mostly remained the same, albeit, the propor-
tion of observations in each cluster were markedly different (Fig. 4a).
Important predictor variables across supervised and unsupervised
approaches were more similar, however, there remained notable het-
erogeneity across the various algorithms (Fig. 4b). Among all the
clustering algorithms, without protein biomarker variables, signifi-
cant HTE interaction was only observed in clusters derived using LCA
in the FACTT trial (Fig. 4c).
4. Discussion

In this study, we found wide variations between ML algorithms in
their abilities to identify clusters in which significant HTE was
observed. Even among algorithms where significant HTE was
observed, changing the initiation seed frequently led to the interac-
tion terms no longer being significant. Further, in most clustering
algorithms, seed changes also led to heterogeneity in the cluster com-
position across the different runs. Additionally, as evidenced by the
near ubiquitous lack of significant HTE in their absence, research pro-
tein biomarkers were critical to identifying clusters with HTE. Taken
together, our findings suggest the ability to identify clusters with
HTE in RCTs is dependent on the clustering algorithm and partition-
ing variables used, and no single approach consistently identified
clusters with HTE. Further, the inherent algorithmic instability of
several approaches mandates caution when interpreting research
based on these algorithms.

The relative parity in success of unsupervised and supervised
approaches in detecting HTE is unexpected. It is worth reiterating
that for unsupervised approaches, outcome data and treatment allo-
cation were excluded from the algorithms. In contrast, supervised
approaches were trained directly to detect HTE, and therefore, we
anticipated these approaches to out-perform unsupervised ones. Tra-
ditionally, unsupervised learning approaches are used for discovering
underlying structure in unlabelled data [21,22]. Predominantly, such
approaches have been used for biomarker discovery, however, sev-
eral recent studies have shown that in secondary analyses of RCTs,
clusters identified using unsupervised methods can lead to discover-
ies of differential treatment responses [9,11]. Our findings suggest
that there may be validity in using unsupervised approaches to iden-
tify clusters with HTE, although some algorithms (e.g., LCA) per-
formed better than others.

Another potential reason for the relative underperformance of the
supervised methods in our study was that we coerced coefficients of
individual treatment effect (ITE) into dichotomous subgroups to
make them comparable to the unsupervised clustering algorithms, a
process that is known to cause information loss [23]. Future investi-
gations may need to focus more on maximising ITE, rather than using
more traditional approaches of subgroup / cluster HTE analyses, spe-
cifically when comparing supervised methods to one another.

Two potential mechanism that can lead to the discovery of HTE
have been described, 1) prognostic enrichment: whereby the out-
come of interest differs between the identified clusters; 2) predictive
enrichment: which seeks to identify patients that are most likely to
benefit from a therapy. By definition, given that the models are
trained to seek treatment responsive groups, supervised approaches



Fig. 3. Mean adjusted rand index score across the random seed runs for each algorithm in each trial (an adjusted rand index score approaching 1 would represent almost com-
plete agreement between cluster composition in the 10 random seed changes runs, whereas, a score of 0 represents almost no agreement). PAM = partitioning around medoids,
HC = Hierarchical clustering, MOB = model based recursive partitioning, CF = Causal forest, XL-RF = X-learner with Random Forest (RF); XL-BART = Bayesian Additive Regression
Trees (BART).
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are focused towards predictive enrichment. The similarity in out-
comes between clusters, and differences in the most important varia-
bles, for the supervised algorithms between RCTs observed in our
study this. In contrast, the most important variables in the unsuper-
vised approaches that identified clusters with HTE were largely over-
lapping across RCTs. Which, coupled with the large differences in
mortality, is highly suggestive of prognostic enrichment. Prognostic
enrichment approaches, while more generalisable across trials, may
be non-specific to the intervention.

Our findings were also notable for disparities in the variable
importance and cluster composition between algorithms in the same
trial. This finding was even notable among clusters where HTE was
identifiable in the same trial, suggesting that within populations
there may be several different subgroups of patients where HTE is
identifiable or that there are a number of patients where their treat-
ment effects are uncertain. In FACTT, among the unsupervised
approaches, HTE was detectable using LCA and PAM, and clusters
were stratified using IL-8, IL-6, sTNFR-1, and creatinine. Among the
supervised approaches, HTE was detectable in CF, X-learner RF and
BART, and patient clusters were stratified predominantly using sur-
factant protein-D, white cell count, intercellular adhesion molecule-1
and minute ventilation. Coupled with the high crossover of patients
from the treatment-benefit to treatment-harm cluster and vice versa,
our findings suggest that there may be numerous sub-populations
where HTE may be detectable within the same trial population. Even
when the same computational framework, such as X-learner, was
used, the algorithm used to cluster (RF or BART) had a profound
impact on the composition of the clusters as evidenced by crossover
of patients between clusters identified using the two approaches.
These findings further reinforce the necessity to prospectively and
externally validate HTE that has been discovered in secondary
analyses of RCTs and, as such, this has also been emphasised in a
recent multidisciplinary expert panel statement for studies using pre-
dictive approaches to seek HTE [24].

The inherent instability of several of the algorithms to random
seed makes interpretation of such analyses challenging. Random
seed perturbations leading to algorithmic instability have been
described in other machine-learning approaches [25,26]. [pre-print]

However, this phenomenon remains underappreciated in the medi-
cal literature. Inadvertently, investigators may misinterpret local
maxima as the global maxima (i.e., erroneously accept a suboptimal
solution). In algorithms where seed instability is known to be a factor,
investigators should demonstrate the robustness of their findings to
seed iterations. To that end, it is noteworthy that in LCA, a probabilis-
tic algorithm for determining classes, where the model parameters
are subject to statistical assumptions and hypothesis testing is feasi-
ble [20], cluster instability to seed perturbations was not a factor.
This consistency of subgroup identification may partly explain why
LCA was one of the most successful methods at identifying clusters
with HTE.

Alongside seed instability, the algorithmic procedures being con-
cealed in a black box, are some of the greatest barriers to real-life
clinical implementation of many machine learning algorithms. Black
box algorithms generate predictions absent of contemporaneous jus-
tification. From the standpoint of traditional medical practices, a lack
of understanding of the “how” of the algorithm can be counter-intui-
tive and a barrier to adopting machine-learning clinical decision-
making [27]. [pre-print] The first steps towards implementation of
black-box algorithms is to establish its superiority to simpler and / or
more intuitive models such as logistic regression or LCA. Next, as
with any other modelling, the consistency and robustness of its pre-
diction must be demonstrated in a prospective setting. Once the



Fig. 4. Summary of the secondary clustering analyses in the three trials where protein biomarker data were excluded as partitioning variables. ALVEOLI = Assessment of Low
Tidal Volume and Elevated End-Expiratory Pressure to Obviate Lung Injury (N = 549), FACTT = Fluids and Catheters Treatment Trial (N = 1000), SAILS = Statins for Acutely Injured
Lungs from Sepsis (N = 745). LCA = Latent class analysis, PAM = partitioning around medoids, HC = Hierarchical clustering, MOB = model based recursive partitioning, CF = Causal for-
est, XL-RF = X-learner with Random Forest (RF); XL-BART = Bayesian Additive Regression Trees (BART). Panel 4a: Optimal number of clusters and proportions of patients in each
cluster per algorithm (The colours are representative of the size of the clusters). Panel 4b: Top 10 variable importance for each clustering algorithm. WBC = White blood cell
count, VE = Minute ventilation, HR = Heart rate, P:F ratio = PaO2/FiO2, White (race), VT = Tidal volume, UO = Urine output, BMI = Body mass index, PEEP = = Positive end-expiratory
pressure, Pplat = Plateau pressure, SBP = Systolic blood pressure, Pmean = Mean airway pressure. Panel 4c: Odds ratio for heterogeneity of treatment effect in clusters for each
algorithm (odds ratio > 1 was associated with harm, p-value represents the significance of the coefficient of the interaction term of randomised intervention and clusters in a logis-
tic regression model with mortality at day 90 as the dependent variable; P-values were generated for the interaction term using the ANOVA likelihood ratio test).
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utility and validity of such black-box models has been established,
efforts need to made towards creating models that accompany con-
cise and clear explanation for the prediction at an individual patient
level. The burgeoning field of explainable machine learning endeav-
ours to create such models by either presenting the most important
variables driving the prediction or an interpretable translation of the
model design or both [28]. [pre-print], [29] Based on these factors, it is
incumbent for investigators to determine the plausibility of the
explanation for the generated prediction and to establish validity
from a scientific / biological standpoint.

Inclusion of research protein biomarkers, such as IL-6, IL-8, sTNFR-
1 and surfactant protein-D, were crucial in identifying clusters with
HTE. These variables consistently featured among the most important
variables and computationally explains why their absence led to
treatment interactions no longer being observed. It may be that the
biological characteristics in clusters derived using these variables
cannot be captured simply using routinely gathered clinical data or
by the clinical data collected at baseline in the included trials. There-
fore, when biomarkers are used for partitioning populations, we
hypothesise that the resultant clusters are more likely to be patho-
physiologically divergent, increasing the possibilities of divergent
treatment responses [10]. Our study’s findings strongly suggest that
inclusion of novel biological data can improve the chances of
discovering clusters with divergent outcomes and treatment
responses in ARDS; how generalisable this finding is to other heter-
ogenous syndromes remains to be tested.

This study has several strengths. Most notably, we used several
machine learning approaches including those that are most widely
used and many that are cutting edge. Throughout, we have used
objective and automated approaches to selecting the optimal number
of clusters. We also evaluated the models in three independent RCTs,
adding validity to the findings.

This study also has limitations. Subsumed within our primary
hypothesis was the assumption that HTE is present in all three RCTs.
However, it is probable this may not be the case. For example, in
SAILS, given how infrequently HTE was observed, and that observed
HTE was in the context of largely imbalanced cluster sizes, it is con-
ceivable that “true” HTE is not present in this population, however,
such a discovery was attributed as unsuccessful in our study. To that
end, when translating the findings of HTE analyses in RCTs, the
ground truth will seldom, if ever, be known. Therefore, caution must
be exercised when designing such studies in order to mitigate bias
associated with overfitted models that are specific to the training
dataset. When reporting findings of such analyses, measure of
robustness should be incorporated, and agreement between multiple
orthogonal approaches should be considered to verify the findings in
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instances where there is uncertainty on the validity of the observed
HTE. It is also worth reiterating that, until tested prospectively, the
validity of the observed HTE in secondary analyses, such those pre-
sented in this study, remains unproven. Additionally, these results
are secondary analyses of RCTs of a single clinical syndrome. The per-
formance of these algorithms prospectively and beyond ARDS is
unknown. Further, these trials can all be considered as “small” data.
It is unclear whether in analyses of larger RCTs, the observed seed
instability of the algorithms and critical importance of protein bio-
markers remain valid. Based on the available data and the presented
analyses, we have not been able to determine which of these algo-
rithms performed best at detecting HTE. It may be that the best algo-
rithm to use may depend on the data structure and size and the
quality of the available predictor variables for use in the models. In
future studies, we hope to develop an investigative pipeline that may
help researchers match their trial data characteristics to the most
appropriate algorithm for detecting HTE.

In conclusion, machine learning algorithms were inconsistent in
their abilities to identify clusters with significant HTE in secondary
analyses of RCTs. Several of the clustering algorithms were suscepti-
ble to significant instability with random seed initiations. This stabil-
ity of algorithms to seed changes should be factored into future
evaluation of such studies. In these populations, inclusion of research
protein biomarkers as partitioning variables greatly enhanced the
ability of the algorithms to identify clusters with HTE. Further studies
are needed to establish machine learning pipelines that can robustly
and consistently identify either at a subgroup or individual level
those that will benefit from therapies in RCTs.
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