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A B S T R A C T   

According to the maintenance hypothesis (Nyberg et al., 2012), structural integrity of the brain’s 
grey matter helps to preserve cognitive functioning into old age. A corollary of this hypothesis 
that can be tested in cross-sectional data is that grey-matter structural integrity and general 
cognitive ability are positively associated in old age. Building on Köhncke et al. (2021), who 
found that region-specific latent factors of grey-matter integrity are positively associated with 
episodic memory ability among older adults, we examine associations between general factors of 
grey-matter integrity and a general factor of cognitive ability in a cross-sectional sample of 1466 
participants aged 60–88 years, 319 of whom contributed imaging data. Indicator variables based 
on T1-weighted images (voxel-based morphometry, VBM), magnetization-transfer imaging (MT), 
and diffusion tensor imaging-derived mean diffusivity (MD) had sufficient portions of variance in 
common to establish latent factors of grey-matter structure for a comprehensive set of regions of 
interest (ROI). Individual differences in grey-matter factors were positively correlated across 
neocortical and limbic areas, allowing for the definition of second-order, general factors for 
neocortical and limbic ROI, respectively. Both general grey-matter factors were positively 
correlated with general cognitive ability. For the basal ganglia, the three modality-specific in
dicators showed heterogenous loading patterns, and no reliable associations of the general grey- 
matter factor to general cognitive ability were found. To provide more direct tests of the main
tenance hypothesis, we recommend applying the present structural modeling approach to lon
gitudinal data, thereby enhancing the physiological validity of latent constructs of brain structure.   

Introduction 

Many cognitive abilities decline in later adulthood [40] with large individual differences in the rate of decline [8,46]. According to 
the maintenance hypothesis [27–29], older individuals’ overall levels of cognitive performance are assumed to reflect the degree to 
which their brains maintain youth-like anatomical macro- and microstructure as well as neurochemical, vascular, and metabolic 
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functions [4,23,26,28,50]. 
Neuroimaging techniques such as T1-weighted structural imaging and diffusion tensor imaging (DTI) approximate macrostructural 

properties of brain tissues at various levels of granularity. Despite recent advances [51,52], the mapping of these properties onto 
physiologically interpretable constructs remains a challenge. Recently, attempts have been made to triangulate the degree of grey- 
matter structural integrity by combining different imaging modalities into a latent construct [20,21]. From a covariance modelling 
perspective, structural integrity is conceived as the variance that is shared across different imaging modalities, in the sense that in
dividuals with more preserved structural integrity would tend to score higher across various indicators of structural properties. In 
earlier work, we have established such multi-modal indices of structural integrity in amygdala [21], and in a number of ROIs belonging 
to the episodic-memory network [20]. Here, we extend this multivariate-modelling approach to grey-matter ROIs across most regions 
of the brain, including neocortex, the limbic system, and the basal ganglia, with the intent to obtain a broader picture of individual 
differences in grey-matter structural integrity. Second, we extend our representation of cognitive ability beyond episodic memory to 
working memory and reasoning. This allows us to establish a general factor of cognitive ability across domains, and to examine the 
relationship between general factors of grey-matter integrity and a general factor of cognitive ability in old age. 

In contrast to longitudinal work [13,14,19,32], the present analyses are cross-sectional in nature and do not provide a direct test of 
the maintenance hypothesis. With these analyses, we tested the more modest proposition that grey-matter integrity and cognitive 
ability are positively associated in old age. This proposition is based on the assumption that associations between constructs repre
senting grey matter and constructs representing cognition age express the combined outcome of individual differences in normal aging 
and more stable individual differences that have emerged during earlier stages of ontogeny [16,34,48]. Hence, we expect a positive 
association between grey-matter integrity and cognition in old age. 

In line with Köhncke et al. [20], we derived grey-matter probability from voxel-based morphometry (VBM; [2], which is based on 
signal intensity on T1-weighted structural MR scans. VBM is commonly used as an indicator of grey-matter volume. As indicators of 
microstructure, we used the magnetization-transfer (MT) ratio derived from MT imaging, and mean diffusivity (MD) derived from 
diffusion tensor imaging (DTI). MT imaging [42,43] is based on the transfer of energy and related magnetization exchange between 
mobile water protons and protons that are immobilized by macromolecules as part of brain tissue [53]. MT ratio values depend on the 
content and concentration of macromolecules bound to water molecules in relation to free water molecules. Lower MT ratio values can 
result from an increase in the mobile proton pool, occurring as a result of inflammation and oedema, or a decrease in the semi-solid 
proton pool, associated with cell damage, axonal loss, and demyelination [43]. 

DTI measures patterns of water diffusion. MD is a DTI-derived metric that reflects the rate of water diffusion in all directions within 
an imaged voxel [31]. It is commonly regarded as an index of white-matter microstructural integrity, but also can be informative of 
grey-matter microstructural properties and age-related differences therein [1,15], with lower MD corresponding to a denser structure, 
presumably indicating more cell membranes and intracortical myelin [15,45]. 

We hypothesized that, within a given ROI, these three macro- and microstructural indicators –VBM, MT, and MD– would share 
variance, thereby giving rise to ROI-based latent factors of tissue structural integrity. Based on our previous findings, we expected one 
such factor of integrity to emerge for each ROI. We also expected that ROIs within larger areas of the brain (neocortex, limbic system, 
and basal ganglia) might share variance so that second-order factors of grey-matter integrity across ROIs can be established for each of 
the three systems. As many brain regions work together to enable cognitive functioning, it is reasonable to expect that these second- 
order, or general, factors of grey-matter integrity (GGM), should it be possible to establish them in the first place, would be positively 
associated with general cognitive ability (GCA). 

Methods 

Participants and study design 

For the present analyses, we used data from healthy older participants of the Berlin Aging Study II (BASE-II), a multi-institutional 
and multidisciplinary study assessing variables from a wide range of domains [3]. Participants completed a comprehensive cognitive 
examination at several waves, of which we use the first wave data here [9]. Before or after the cognitive assessment, a subsample of 
eligible participants was invited to take part in a separate MRI session (median time interval 8 weeks, IQR = 19 weeks, range = –27 to 
111 weeks). Eligibility criteria included: (a) no medication that is known to potentially affect memory function; (b) no history of head 
injuries; (c) no medical (e.g., heart attack), neurological (e.g., epilepsy), or psychiatric disorders (e.g., depression); and (d) a 
completion of at least 8 years of education. BASE-II includes a larger sample of persons above age 60 years and a smaller sample of 
participants in early adulthood. Here, we selected only data from participants above age 60, of whom 1,466 had completed cognitive 
testing; of these 1,466 individuals, 319 had also taken part in MR imaging. We had to exclude nine cases with compromised cognitive 
data, two of whom also formed part of the MR subsample. We then excluded univariate outliers on a variable-by-variable basis, and 
multivariate outliers with highly unlikely combinations of values, p <.0001, of robust Mahalanobis distances, which were detected 
using the R-package faoutlier, version 0.7.2 [6], method “mve.” We identified multivariate outliers separately for the cognitive data in 
the total sample (n = 1,477, 11 outliers found, resulting in the effective sample of 1,466 individuals) and for the grey-matter variables 
in the MR sample per group of ROIs, with 10 multivariate outliers in the neocortical ROIs, 4 in the limbic ROIs, and 8 in basal ganglia 
ROIs. For further information on the sample, see the Supplementary Materials. The Ethics Committee of the Max Planck Institute for 
Human Development approved the behavioral testing part of the study, and the Ethics Committee of the German Psychological Society 
(Deutsche Gesellschaft für Psychologie, DPGs) approved the imaging part. Participants received monetary compensation for their 
participation in the cognitive and imaging sessions and provided informed consent in accordance to the Declaration of Helsinki. 
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MRI acquisition 

Images were acquired on a Siemens Tim Trio 3 T scanner (Erlangen, Germany) using a 32-channel head coil. The T1 images were 
obtained using a three-dimensional T1-weighted magnetization prepared gradient-echo (MPRAGE) sequence based on the ADNI 
protocol (https://www.adni-info.org; repetition time (TR) = 2500 ms; echo time (TE) = 4.77 ms; TI = 1100 ms, acquisition matrix =
256 × 256 × 176, flip angle = 7̊; 1 x 1 x 1 mm3 voxel size). Diffusion-weighted images were obtained with a single-shot diffusion- 
weighted spin-echo-refocused echo-planar imaging sequence (FOV 218 mm × 218 mm; 128 × 128 matrix interpolated to 256 × 256; 
TE = 98 ms; TR = 11,000 ms; 73 slices; slice thickness 1.7 mm; b-value 1000 s/mm2; 60 directions). MT ratio images consisting of two 
volumes were acquired with identical settings (transversal, 256 × 256 pixels, TE = 5.5 ms, TR = 28 ms, 48 slices, voxel size 1 mm × 1 
mm × 3 mm). The first sequence (MT) was acquired with a magnetic saturation pulse (1200 Hz off-resonance, 16 ms) and the second 
(noMT) without a magnetic saturation pulse, resulting in a proton-density-like image. 

MR preprocessing 

Voxel-based morphometry (VBM). Structural data were processed with CAT12 (Computational Anatomy Toolbox 12, Structural 
Brain Mapping group, Jena University Hospital, Jena, Germany), a toolbox that is implemented in SPM12 (Statistical Parametric 
Mapping, Institute of Neurology, University College London, UK) for voxel-based morphometry analysis of imaging data. We applied 
the CAT12 default cross-sectional pre-processing stream, which implements correction of the T1-weighted images for bias-field in
homogeneities, segmentation into grey matter, white matter, and CSF, and spatially normalized using the DARTEL (Diffeomorphic 
Anatomical Registration Through Exponentiated Lie Algebra) algorithm. Modulation with Jacobian determinants was applied in order 
to preserve the volume of a particular tissue within a voxel leading to a measure of volume of grey matter. Grey-matter images were 
used for the current set of analyses and smoothed with a Gaussian kernel of 8 mm (full width at half maximum). 

Magnetization transfer imaging (MTI). The MT maps for each participant were calculated on a voxel-by-voxel basis according to the 
formula MT ratio = (noMT − MT) / noMT. The data were then normalized into MNI space. 

Diffusion tensor imaging (DTI). Diffusion-weighted images were pre-processed using the FSL software package [18,44], version 5.0. 
This included corrections of potential head movement and inspection of image quality. The first non-diffusion weighted image of each 
individual image set was used as a brain mask. The difference in alignment between this initial image and recurrent ones in the 
sequence was estimated using FLIRT (FMRIB’s Linear Image Registration Tool; [18]) and then corrected for by means of re-alignment. 
The resulting data was then processed via FSL’s dtifit to fit a diffusion tensor model at each voxel and obtain the MD values. The MNI- 
based maps were produced using the standard TBSS pipeline [44]. 

ROI extraction and adjustment for differences in intracranial volume 

Mean values of CAT12/VBM, MD and MT ratio were extracted bilaterally from ROIs defined by the Automated Anatomical 
Labelling (AAL) atlas [47]. ROI masks were fitted in MNI space after normalization to a standard template. 

We used intracranial volume (ICV from CAT12) to adjust the VBM values for each ROI via the analysis of covariance formula [35]: 
adjusted volume = raw volume − b * (ICV − mean ICV), where b is the slope of regression of the appropriate ROI volume on ICV. 

Cognitive assessment 

All BASE-II participants were invited to two cognitive test sessions with an exact interval of seven days and at the same time of day 
to avoid circadian confounding effects on performance. Each session lasted about 3.5 h. Participants were tested in groups of 4–6 
individuals. Each group was instructed via a standardized session manual. Each task started with a practice trial to ensure that every 
participant understood the task. Depending on the task, responses were given via button boxes, the computer mouse, or a keyboard. 

The cognitive battery of BASE-II covers key cognitive abilities measured by 21 tasks, 4 of which assess aspects of episodic memory, 
3 of which assessed working memory, and 3 reasoning. The tasks are described in more detail elsewhere [9,20]. 

Episodic memory tasks. (i) The Verbal Learning and Memory Task assessed free recall of 15 auditorily presented words that were 
repeatedly presented in the same order in five learning trials. Participants typed the words they recalled on the keyboard. We used the 
sum of remembered words across all learning trials as the score indicating performance in this task. (ii) Face–Profession, testing 
associative recognition memory 5 min after incidental encoding of 45 images of faces combined with a written profession title. 
Participants were instructed to judge for each face–profession pair whether they matched well. During recall, participants were 
presented with 27 old, 9 new, and 18 rearranged (newly combined) pairs and asked to provide old-new judgements. A participant’s 
performance score was computed as hits (correctly identified as previously seen pairs) minus false alarms to rearranged pairs. (iii) The 
Scene Encoding task assessed recognition memory of 88 incidentally encoded scenes. Participants were presented with images of scenes 
and were given the task to judge whether the scenes were indoors or outdoors (with 44 of each type). Recognition was tested after a 
delay of 2.5 h. Participants were shown 44 old and 44 new scenes in random order (22 indoors and 22 outdoors in each of the old and 
the new set). Performance scores were computed as hits minus false alarms. (iv) Object Location task to assess recall of deliberately 
encoded object locations. Sequences of 12 photographs of real-world objects were displayed at different locations in a 6-by-6 locations 
grid. After the sequence, objects appeared at the side of the screen and participants were asked to move pictures to the location they 
were first presented at, by means of clicking the picture and the location with the mouse. The task consisted of one practice trial and 
two test trials. The sum of correct placements across the two test trials is used in this study. 
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Working memory tasks. (i) Spatial Updating Task. Participants were presented with two (load 2 condition) or three (load 3 condition) 
3-by-3 grids for 4 s each. In each of these grids, a blue dot was presented in one of the nine locations. Those two/three locations had to 
be memorized and updated according to shifting operations that are indicated by arrows appearing below the corresponding field. 
After four/six updating operations, the two/three grids reappear and the participants indicate the updated positions by mouse click. 
After 10 practice blocks, of which 8 were with load 2-condition and 2 with load-3 condition, 8 blocks of each condition were con
ducted. A sum score of hits across all 16 blocks is used here. (ii) Letter Updating Task. Participants were presented with 7, 9, 11, or 13 
letters (A, B, C, or D) in a sequence. After a sequence, they were requested to report the last three letters by pressing buttons corre
sponding to the four letters in the correct order. The scores are the sum of recalled letters across 16 sequences. (iii) Numerical N-back 
Task. Three one-digit numbers (ranging from 0 to 9) were presented sequentially in three cells situated horizontally followed by the 
next sequence of three digits (presentation time = 1500 ms/inter-stimulus-interval = 500 ms). This cycle was repeated 30 times. In 
each cycle, participants indicated by button press whether the current stimulus matched the stimulus shown three steps earlier. The 
score we extracted comprises mean hit rate across 6 trials with 30 runs each. 

Reasoning tasks. (i) Figural Analogies. This task follows the format “A is to B as C is to?”. A pair of abstract figures with a logical link 
was presented, and a single figure was presented next to it, with 5 possible figures to choose from. Participants were instructed to 
choose a figure that would match with the single figure following the same rule as the example pair. The task terminated when subjects 
made three consecutive errors, when they reached the maximum time limit (10 min), or after they had reached the last test item. Items 
were ordered by difficulty. Scores were the sums of correct responses to maximally 22 items. (ii) Practical Problems. Everyday problems 
related to, e.g., the times in a bus schedule, instructions for medication, or ingredients for a recipe were presented, with four alternative 
responses to choose from by mouse click. The task terminated when subjects made three consecutive errors, when they reached the 
maximum time limit (10 min), or after they had reached the last test item. Items were ordered by difficulty. Scores were the sums of 
correct responses to maximally 18 items. (iii) Letter Series. Each item contained five letters followed by a question mark (e.g., c e g i k?), 
five response alternatives were to be chosen from and indicated with a mouse click. The letter series followed simple rules such as +1, 
–1, +2, or +2 +1 with respect to the letters’ positions in the alphabet. The task terminated when subjects made three consecutive 
errors, when they reached the maximum time limit (10 min), or after they had reached the last test item. Items were ordered by 
difficulty. Scores were the sums of correct responses to maximally 22 items. 

Statistical analyses 

For two reasons, we used structural equation modelling (SEM) to investigate the relationships between cognitive performance and 
grey-matter integrity. First, for each ROI, SEM allows a latent factor of structural integrity that captures the variance shared across the 
three brain-imaging modalities to be estimated. By separating the shared variance (i.e., what is common across measures) from unique, 
modality-specific variance (i.e., what is specific to each measurement), we acquired a more reliable and potentially more valid esti
mate of brain integrity. We also defined latent method factors for each modality, VBM, MT, and MD, that capture the variance common 
to a given modality across all. As a consequence, the estimates of residual variance in our model represent variance that is neither 
shared by all ROIs in a given modality nor shared by all modalities in a given ROI and is therefore not of interest (e.g., can be considered 
as measurement error). 

Second, we used SEM to link general structural integrity with GCA. In this context, a particular virtue of SEM is that we can model 
grey-matter integrity for each of the ROIs (e.g., prefrontal cortex, parietal cortex, occipital cortex) and also estimate a general grey- 
matter integrity factor across all ROIs within a given larger area (neocortex, limbic areas, basal ganglia). Similarly, we can model 
the cognitive domains (working memory, episodic memory, reasoning) as well as a GCA factor across domains. Joining both hier
archical factor models, we can estimate how GCA is related to general grey-matter integrity and then investigate whether there are 
additional associations between the three specific cognitive abilities and ROIs over and above the association observed at the general 
level. We can also integrate relevant covariates such as chronological age, gender, and education into the model to investigate the 
extent to which the associations between brain integrity and cognition are confounded with these variables. 

We specified and estimated structural equation models in lavaan [37], version 0.6–12, a SEM package in R [36], version 4.2.3 
(2023–03-15). To account for missing data, we used full information maximum likelihood estimation. Given that large differences in 
measurement scales, as present in our data, typically pose problems for numerical optimization algorithms, all observed variables were 
rescaled. We chose a scale with a mean of 5 and a standard deviation of 2. To evaluate the fit of the final models, we used the Root Mean 
Square Error of Approximation (RMSEA), the Comparative Fit Index (CFI), and the Standardized Root Mean Residual (SRMR). We 
interpret CFI > 0.90, RMSEA < 0.08, and SRMR < 0.8 as indications of acceptable model fit [41]. To assess statistical significance of 
individual parameter estimates within a model, we used the likelihood ratio test. That is, we compared the model with the parameter of 
interest freely estimated, to a nested model with this parameter fixed to zero, and compared whether the χ2 difference between the 
models indicated a significant difference in fit at a 5 % significance level. For loadings and variance parameters, we used the Z-value (or 
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Wald statistic; parameter estimate divided by its standard error) from the lavaan output as the significance test. 
In a first step, we specified separate confirmatory factor analyses to validate each latent-integrity factor model for the selected ROIs 

defined by the indicators representing the three imaging modalities. In a next set of analyses, we combined the individual, fully 
saturated models to one of three larger structural equation models, in which we combined the ROIs according to larger anatomical 
areas into three different models: (A) the neocortical model with the ROIs dorsolateral prefrontal cortex (DL), medio-orbitofrontal 
cortex (MO), precuneus (PRE), parietal cortex (PAR), occipital cortex (OCC), and Heschl’s gyrus (HES); (B) the limbic model with 
the ROIs dorsolateral parahippocampal cortex (PHG), hippocampus (HC), anterior cingulate cortex (ACC), amygdala (AMY); and (C) 
the basal ganglia model with the ROIs caudate (CAU), putamen (PUT), nucleus accumbens (NAC), and pallidum (PAL).1 First, we 
established a model with one latent factor for each ROI within that area and three method factors (VBM, MT, MD). The ROI factors 
were allowed to covary, and the methods factors were also allowed to covary. This type of model is known as a MTMM (multi-trait 
multi-method) model [5,11]. It is the appropriate measurement model if multiple characteristics (usually traits, but here, ROIs) are 
each measured by several distinct measures (usually raters, but here, imaging modalities), yielding a latent integrity factor for each 
ROI and a latent method factor for each imaging modality. The latent scales of both the ROI factors and method factors were identified 
by fixing the loading of a reference indicator to one (Fig. 1). In a next step, we added a second-order factor of general grey-matter 
integrity (GGM) with freely estimated loadings on all ROIs and a variance fixed to 1 to define the scale of the factor. To establish 
domain-specific ability factors, we combined the tasks for each domain in a factor model, as in previous work [9,21]. We then defined a 
factor of GCA, or g, as a second-order factor expressing the shared variance of the three domain-specific ability factors. The domain 
factors were scaled by the first loading, the GCA factor by a variance of 1. 

In subsequent analyses, we added age and sex as observed covariates to statistically control for age and sex differences in GCA and 
general grey-matter integrity. In addition, we also tested whether education was related to either of these general factors. 

Models that entailed only brain data were fitted to data from the MR sample, and models that entailed episodic memory data were 
fitted to data from the total sample, under the assumption that the MR data were missing at random [38,39]. This assumption holds as 
long as missingness in the grey-matter variables is either completely random or can be explained by variables in the model. 

Results 

Latent factors were estimable for all ROIs, but with substantial differences in loading homogeneity. The indicators from dorsolateral 
PFC and medio-orbitofrontal cortex were so highly correlated that we decided to merge them into a single PFC ROI, as in [20]. The fit 
of the neocortical brain-only model was within the acceptable range (CFI = 0.90, RMSEA = 0.08, SRMR = 0.08). The fits of the limbic 
and basal ganglia brain-only models were slightly lower than acceptable (limbic: CFI = 0.89, RMSEA = 0.10. SRMR = 0.10; basal 
ganglia: CFI = 0.88, RMSEA = 0.12, SRMR = 0.11). 

Given that the main rationale of our analyses was to build models that include both brain and cognition, we decided to continue 
working with these models despite their inferior fit, and examined them more closely. Loading patterns across the three modalities 
were more homogenous in neocortical areas than in limbic areas, and most heterogeneous in basal ganglia (Table 1A–C: loadings), 
with putamen and pallidum even switching signs for some of the loadings. Across most ROIs, the VBM measures showed the weakest 
loadings, indicating that the variance of the latent ROI integrity factor contained a greater share of the microstructural indicators MT 
and MD. The MD indicators’ loadings were negative (except for putamen), in line with the interpretation that higher MD values 
indicate a less dense structure such that MD is negatively associated with MT. ROIs in the basal ganglia tended to diverge from the 
loading pattern in neocortical and limbic ROIs; specifically, in caudate, the estimates for MD and MT loadings were an order of 
magnitude larger than the volumetric indicator’s loading (the reference loading for scaling) and came with large standard errors. In 
putamen and pallidum, MD loadings and MT loadings partly switched sign. 

For a graphical representation of the models and the most important parameter estimates, see Fig. 1. For a full list of parameter 
estimates, see Table S3 A–C (full sample) and D–F (MR subsample, brain-only model) in the Supplementary Materials. 

The second-order factors captured common variance across ROIs in all three groups of ROIs. See Table 2A–C for the loadings on 
GGM factor. 

Method factors captured modality-specific variance in all three models. We estimated covariances among methods factors in the 
models without covariates first. In the neocortical and limbic model, all method factors were correlated with one another, with weaker 
correlations between VBM and MT (NEOCORTEX: rV,MT = 0.23, p =.02; rV,MD  = -0.451, p < 0.001; rMT,MD = -0.73, p < .001; LIMBIC:
rV,MT = 0.22, p =.079; rV,MD  = -0.52, p < .001; rMT,MD = -0.64, p < .001; BASAL GANGLIA: rV,MT = -0.22, p =.06; rV,MD = 0.35, p = .001; 
rMT,MD = -0.57, p < .001). Non-significant (Wald test) correlations among method factors were tested with a likelihood ratio test to find 
out whether they can be constrained to zero without significant loss of model fit. None of the methods factor covariances could, so we 
had to assume that they are non-orthogonal. 

In the next step, we added the factor models for episodic memory, working memory, and reasoning, and GCA factor to the model, 

1 Originally, our aim was to fit an overall hierarchical brain model to the data that would encompass all ROIs investigated in the present study. 
This model did not converge, presumably due to the fact that the number of parameters was too high relative to the number of participants. By 
grouping the regions based on broad anatomical characteristics into three submodels, we were able to keep the size of the models within bounds that 
allowed for model convergence. We also fitted ROI-specific measurement models as a preparatory step to find out whether loading patterns looked 
similar across ROIs. We noticed that subcortical structures deviated from the loading patterns observed in the other ROIs, which was a further reason 
to group ROIs according to broad anatomical categories, and refrain from trying to establish an overall model. 
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applied it to the data set with a larger sample size with cognitive data (n = 1,466) and estimated the correlations between GGM and 
GCA, for each of the three integrity models separately. First, we allowed for residual covariances of all cognitive domain factors with all 
ROI factors, and then, we constrained the non-significant residual covariances to zero to simplify the models. The fit indices of the final 
neocortical and limbic models were all within the acceptable range (neocortical: CFI = 0.94, RMSEA = 0.03, SRMR = 0.06; limbic: CFI 
= 0.92, RMSEA = 0.03, SRMR = 0.08). For the basal ganglia model, CFI and RMSEA were within the acceptable range, but the SRMR 
slightly exceeded the acceptable value of 0.08 (CFI = 0.94, RMSEA = 0.03, SRMR = 0.09). 

GCA was associated with neocortical GGM (rGCA,GGM = 0.29, χ2Δ(df=1) = 18.01, p < .001) and limbic GGM (rGCA,GGM = 0.28, 
χ2Δ(df=1) = 18.28, p < .001), but not with basal ganglia GGM (rGCA,GGM = 0.10, χ2Δ(df=1)= 2.02, p =.15). When we added age and sex as 
predictors, the associations of neocortical and limbic GGM with GCA were somewhat attenuated but still significantly different from 
zero (NEOCORTEX: rGCA,GGM = 0.27, χ2Δ(df=1) = 11.72, p < .001; LIMBIC: rGCA,GGM = 0.25, χ2Δ(df=1) = 14.41, p < .001). 

In the case of the basal-ganglia model, we did not add covariates, as there was no significant GGM-GCA association in the first place. 
Note also that the loading pattern was quite different for the basal-ganglia model, such that the loadings for caudate MD and MT were 
about ten times as high as the VBM loading. Also, putamen and pallidum showed negative MT loadings, and putamen a positive MD 
loading (see Table 1C). All in all, the loadings pattern observed for the basal ganglia was counter to expectations, raising doubts about 
the content validity of the resulting latent factors. 

In the neocortical model, the reasoning factor had a negative residual covariance with precuneus. Apparently, this factor was less 
strongly associated with reasoning than captured by the general GCA-GGM association. 

Tested in brain-only models, education was neither related to neocortical GGM (βstd = 0.07, p = .29) nor to limbic GGM (βstd = 0.06, 
p =.35). Therefore, we refrained from including education as a covariate. 

Discussion 

We recently suggested combining multi-modal imaging with confirmatory factor analysis to approximate constructs of brain 
structural integrity [20,21]. Here, we extended this approach to a comprehensive set of brain regions and a larger set of cognitive 
abilities. Informed by the maintenance hypothesis of cognitive aging [23,28], we expected a positive association between general 
factors of grey-matter integrity and cognitive ability in old age. 

Similar to earlier findings focused on episodic memory by Köhncke et al. [20], we found that three different measures of brain- 
tissue structural characteristics, VBM, MT and MD, shared substantial variance in many ROIs of the human brain. Across the 

Fig. 1A. Multi-trait multi-method (MTMM) model of brain structure: Submodel for neocortical ROIs (see Fig. 1B for abbreviations).  
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neocortex and large parts of the limbic system, the two microstructural parameters, MT and MD, had larger loadings on the ROI-wise 
integrity factors than the index of grey-matter probability, VBM. Thus, the microstructural properties assessed by MT and MD were 
more closely related to each other than each of them was to an estimate of grey-matter volume. 

Building upon the ROI-specific grey-matter factors, we established general grey-matter factors. We found that the neocortical and 
the limbic general grey-matter factors were positively associated with general cognitive ability. Thus, extending the earlier analysis of 
Köhncke et al. [20], we show that the link between grey-matter integrity and cognition in old age generalizes across a comprehensive 
set of neocortical and limbic ROIs on the brain side, and to general cognitive ability, on the behavioral side. These findings are in good 
agreement with the notion that brain maintenance has a general component, in addition to components that are more specific to select 
regions of the brain and select cognitive functions [19]. It has to be kept in mind, however, that the general grey-matter factors 
established in the present study accounted for only six to seven percent of the variance in general cognitive ability. Clearly, the bulk of 
the brain-cognition link remains to be uncovered. 

In contrast to neocortical and limbic areas, findings for the basal ganglia were less clear. The factor loading patterns for the caudate, 
putamen, and pallidum deviated from the expected pattern that was observed in most other regions, thereby reducing the inter
pretability of the basal ganglia model. In the cases of the putamen and the pallidum, the sign of the MT factor loadings switched from 
positive to negative while the sign of the VBM loadings remained positive; hence, the relationship between the indictors was opposite 
to that observed in other regions. We had assumed that lower MT ratio values would result from an increase in the mobile proton pool 
as a result of inflammation and oedema, or a decrease in the semi-solid proton pool as a result of cell damage, axonal loss and 
demyelination. In retrospect, however, it seems plausible that in the basal ganglia of older adults, and especially in the putamen and 
the pallidum [12], MT values might predominantly signal the presence of iron deposits, such that higher values reflect greater iron 
accumulation instead of more intact tissue. This post-hoc interpretation would be consistent with the altered factor loading pattern 
observed here. In addition, the microstructure of subcortical nuclei differs from the laminar structure of cortical areas, which may also 

Fig. 1B. Multi-trait multi-method (MTMM) model of brain structure: Submodel for limbic ROIs. 
Note. Rectangles represent observed variables, circles latent variables. Single-headed arrows represent regression parameters and loadings, double- 
headed arrows variances (where both arrows point to the same variable) and covariances (where they connect two variables). Parameter estimates 
are standardized. Residual variances of the observed variables, variances and covariances of the covariates, and loadings of the methods factors were 
freely estimated but estimates are not shown here for sake of clarity. EM = episodic memory; VLMT = Verbal Learning and Memory Task; FP =
Face–Profession task; SE = Scene Encoding task; OL = Object Location task; WM = Working Memory; LU = Letter Updating; SU = Spatial Updating; 
NNB = Number N-back; R = Reasoning; FA = Figural Analogies; PR = Practical Problems; LS = Letter Series; PFC = prefrontal cortex; PRE =
precuneus; PAR = parietal cortex; OCC = occipital cortex; HES = Heschl’s gyrus; PHG = parahippocampal gyrus; HC = hippocampus; ACC =
anterior cingulate cortex; AMY = amygdala; INS = insula; _V = voxel-based morphometry; _MT = magnetization transfer imaging; _MD = mean 
diffusivity. 
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Table 1A 
NEOCORTEX ROI factor loadings.  

ROI Factor Indicator variable Loading parameter estimate Standard error z-value p-value Standardized parameter estimate 

PFC DL_V  1.000  0.000    0.489 
PFC DL_MT  1.453  0.224  6.488  0.000  0.678 
PFC DL_MD  − 1.878  0.253  − 7.429  0.000  − 0.870 
PFC MO_V  0.731  0.141  5.172  0.000  0.358 
PFC MO_MT  1.675  0.247  6.792  0.000  0.803 
PFC MO_MD  − 1.481  0.207  − 7.170  0.000  − 0.688 
PRE PRE_V  1.000  0.000    0.399 
PRE PRE_MT  1.495  0.298  5.017  0.000  0.579 
PRE PRE_MD  − 1.751  0.324  − 5.409  0.000  − 0.680 
PAR PAR_V  1.000  0.000    0.252 
PAR PAR_MT  2.533  0.801  3.162  0.002  0.624 
PAR PAR_MD  − 2.096  0.645  − 3.248  0.001  − 0.516 
OCC OCC_V  1.000  0.000    0.412 
OCC OCC_MT  1.682  0.281  5.978  0.000  0.671 
OCC OCC_MD  − 2.026  0.295  − 6.867  0.000  − 0.803 
HES HES_V  1.000  0.000    0.392 
HES HES_MT  2.423  0.426  5.690  0.000  0.935 
HES HES_MD  − 2.217  0.388  − 5.711  0.000  − 0.846 

PFC = prefrontal cortex; PRE = precuneus; PAR = parietal cortex; OCC = occipital cortex; HES = Heschl’s gyrus; _V = voxel-based morphometry; _MT 
= magnetization transfer imaging; _MD = mean diffusivity; estimates from brain-only model with covariates age and sex fit to data from MR 
subsample. 

Table 1B 
LIMBIC ROI factor loadings.  

ROI Factor Indicator variable Loading parameter estimate Standard error z-value p-value Standardized parameter estimate 

PHG PHG_V  1.000  0.000    0.353 
PHG PHG_MT  2.139  0.384  5.571  0.000  0.691 
PHG PHG_MD  − 2.980  0.515  − 5.788  0.000  − 0.974 
HC HC_V  1.000  0.000    0.566 
HC HC_MT  1.769  0.183  9.690  0.000  0.944 
HC HC_MD  − 1.733  0.169  − 10.242  0.000  − 0.908 
ACC ACC_V  1.000  0.000    0.403 
ACC ACC_MT  2.037  0.357  5.710  0.000  0.798 
ACC ACC_MD  − 2.553  0.428  − 5.967  0.000  − 0.984 
AMY AMY_V  1.000  0.000    0.280 
AMY AMY_MT  2.479  0.570  4.349  0.000  0.634 
AMY AMY_MD  − 3.818  0.819  − 4.664  0.000  − 0.996 
INS INS_V  1.000  0.000    0.213 
INS INS_MT  4.439  1.518  2.925  0.003  0.885 
INS INS_MD  − 4.657  1.571  − 2.963  0.003  − 0.943 

PHG = parahippocampal gyrus; HC = hippocampus; ACC = anterior cingulate cortex; AMY = amygdala; INS = insula; _V = voxel-based 
morphometry; _MT = magnetization transfer imaging; _MD = mean diffusivity; estimates from brain-only model with covariates age and sex fit to data 
from MR subsample. 

Table 1C 
BASAL GANGLIA ROI factor loadings.  

ROI Factor Indicator variable Loading parameter estimate Standard error z-value p-value Standardized parameter estimate 

CAU CAU_V  1.000  0.000    0.131 
CAU CAU_MT  6.217  3.498  1.777  0.076  0.861 
CAU CAU_MD  − 5.256  2.933  − 1.792  0.073  − 0.675 
PUT PUT_V  1.000  0.000    0.488 
PUT PUT_MT  − 0.831  0.204  − 4.072  0.000  − 0.399 
PUT PUT_MD  0.261  0.146  1.781  0.075  0.128 
NAC NAC_V  1.000  0.000    0.579 
NAC NAC_MT  0.959  0.150  6.385  0.000  0.569 
NAC NAC_MD  − 1.150  0.156  − 7.390  0.000  − 0.685 
PAL PAL_V  1.000  0.000    0.437 
PAL PAL_MT  − 0.951  0.303  − 3.140  0.002  − 0.402 
PAL PAL_MD  − 0.355  0.364  − 0.976  0.329  − 0.153 

CAU = caudate nucleus; PUT = putamen; NAC = nucleus accumbens; PAL = pallidum; _V = voxel-based morphometry; _MT = magnetization transfer 
imaging; _MD = mean diffusivity; estimates from brain-only model without covariates fit to data from MR subsample. 
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alter the relations between MT and MD, and their associations with VBM. For instance, atrophy in hippocampus is not closely related to 
atrophy in caudate [26], and it has been proposed that caudate volume might increase in compensation for hippocampal shrinkage 
[30]. 

Normal aging is marked by the loss of dendritic spines, dendritic arbors, synaptic density, and myelinated axons [17,25]; in 
addition, normal aging also involves loss of glia and small blood vessels [33]. All of these processes can contribute to differences in 
average tissue density as captured by MT and MD, and to differences in overall volume as captured by VBM. The relative contribution 
of these underlying biological properties is likely to differ between ROIs. In our previous paper linking cortical ROIs and the hippo
campus to episodic memory [20], we suggested that cortical myelin might be the most prominent factor in terms of relative contri
butions to variations in the MR signal that affect all three parameters, MD, MT, and VBM. However, in the case of subcortical 
structures, the picture might be more complex, and the drivers of the associations might vary across them. It is worthwhile to follow up 
on these considerations using quantitative imaging techniques at higher resolution [10]. In addition, the links of human structural MR 
imaging to histology need to be strengthened [22,51]. 

By far the most serious limitation of the present findings is their cross-sectional nature. The present findings are consistent with a 
maintenance account of cognitive aging, but they do not provide a direct test of it. In particular, an unknown but possibly large portion 
of the positive association between grey-matter integrity and cognition might already have been present early in life, which would 
imply that contributions of differential maintenance to the magnitude of this association in old age are minor; for a general discussion 
of this issue, see [49]. 

It has been proposed that brain maintenance, defined as individual differences in preservation of brain integrity, can occur at the 
level of specific brain circuits and cognitive functions or at a more general level [27]. The longitudinal evidence on this matter is 
mixed. In line with general maintenance, Cox and colleagues reported that a broad, cortex-wide dimension of atrophy was associated 
with declines in general cognitive ability as well as visuospatial ability, processing speed, and memory [7]. In line with a general-as 
well as specific-maintenance account, Johansson and colleagues recently found a reliable association between MTL/hippocampal 
change and episodic memory change after accounting for the covariance among general factors of change in brain and cognition [19]. 
At first sight, the present cross-sectional findings may seem more consistent with the general maintenance account. However, given 
that the dimensionality of change cannot be inferred from cross-sectional data [24], this conclusion is not warranted. Rather, further 
longitudinal data with fine-grained information on physiological brain changes and behavioral changes are needed to examine this 
issue. 

Conclusion 

By extending our previous MTMM modelling work on data from BASE-II participants, we established general factors of grey-matter 
structural integrity across cortical and limbic regions, and found that both of these general factors are positively related to general 

Table 2A 
Neocortex ROI loadings on GGM.  

G Factor ROI Loading parameter estimate Standard error z-value p-value Standardized parameter estimate 

GGM PFC  0.613  0.092  6.673  0.000  0.821 
GGM PRE  0.511  0.101  5.062  0.000  0.850 
GGM PAR  0.344  0.106  3.260  0.001  0.893 
GGM OCC  0.512  0.087  5.908  0.000  0.817 
GGM HES  0.507  0.097  5.229  0.000  0.843  

Table 2B 
Limbic ROI loadings on GGM.  

G Factor ROI Loading parameter estimate Standard error z-value p-value Standardized parameter estimate 

GGM HC  0.663  0.084  7.858  0.000  0.776 
GGM PHG  0.486  0.087  5.560  0.000  0.923 
GGM ACC  0.504  0.090  5.616  0.000  0.801 
GGM AMY  0.343  0.078  4.417  0.000  0.809 
GGM INS  0.296  0.102  2.904  0.004  0.896  

Table 2C 
Basic ganglia ROI loadings on GGM.  

G Factor ROI Loading parameter estimate Standard error z-value p-value Standardized parameter estimate 

GGM CAU  0.234  0.131  1.788  0.074  0.892 
GGM PUT  0.898  0.159  5.645  0.000  0.904 
GGM NAC  0.792  0.146  5.416  0.000  0.679 
GGM PAL  0.382  0.141  2.706  0.007  0.440  
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cognitive ability. Future research needs to extend the present approach to longitudinal observations, and to further clarify and improve 
the physiological validity of latent constructs of brain structure. 
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