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Efficacy of histology-agnostic and molecularly-driven HER2 
inhibitors for refractory cancers
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ABSTRACT

 A targeted therapy is recommended in case of ERBB2 alteration for breast and 
gastric carcinomas, but miscellaneous other tumor types are ERBB2-altered at low 
prevalence. Broadening the administration of HER2 inhibitors across tumor types 
and genomic alterations could benefit to patients with refractory metastatic tumors.

Targeted next-generation-sequencing (tNGS) and comparative genomic 
hybridization array (CGH) have been performed on fresh tumor biopsies of patients 
included in the MOSCATO-01 and ongoing MOSCATO-02 trials to administrate HER2 
inhibitors in case of ERBB2 pathogenic mutation of amplification. 

Between December 2011 and January 2017 a molecular analysis was performed 
for 934 patients (759 CGH and 912 tNGS). A novel ERBB2 alteration has been found 
in 4.7% (n = 44/934), including 1.5% (n = 14/912) ERBB2 mutations, and 4% (n = 
30/759) ERBB2 amplifications. 

A matched HER2 inhibitor was administrated to 70% (31/44) of patients and 
consisted in trastuzumab plus chemotherapy for 90% of them (28/31). On the 31 
evaluable patients, 1 complete response (CR), 10 partial response (PR) and 2 stable 
disease (SD) >24 weeks were observed accounting for a clinical benefit rate (CBR) of 
42% (n = 13/31, 95% CI 25–61%). Besides breast and oesogastric carcinomas, 19 
patients affected by 8 different tumor types had a CBR of 25% for ERBB2 mutations 
(n = 2/8, 95% CI 3%–65%, with 2 PR) and 64% for ERBB2 amplifications (n = 7/11, 
95% CI 31%–89%; with 1 CR, 4 PR, 2 SD).

                                                       Research Paper



Oncotarget9742www.impactjournals.com/oncotarget

ERBB2 genomic alterations were diffuse across metastatic tumor types and 
signs of efficacy emerged for HER2 targeted treatments, especially in case of ERBB2 
amplifications or a p.S310Y ERBB2 mutation.

INTRODUCTION

The diagnostic of amplification in the ERBB2 
oncogene leading to the overexpression of the HER2 
protein constitutes a paradigm for the use of biomarkers 
in oncology since trastuzumab, an anti-HER2 antibody, 
have revolutionized the outcome of ERBB2-amplified 
metastatic breast cancer patients [1]. Routine screening of 
HER2 overexpression or ERBB2 amplification is therefore 
recommended for breast and oesogastric adenocarcinomas 
on the tumor sample used for the diagnosis [2, 3]. HER2 
overexpression or ERBB2 amplification are observed in 
approximately 20% of metastatic breast cancers [4] and 
20% of metastatic oesogastric adenocarcinomas [5]. In 
breast cancer, it has been shown that ERBB2 amplification 
is a marker of poor prognostic that can be reversed by the 
administration of HER2 inhibitors [4]. This has been one 
of the best examples of a biomarker that is both prognostic 
and predictive of treatment response. Trastuzumab has also 
demonstrated an OS benefit in oesogastric and colorectal 
adenocarcinomas [6, 7]. 

Besides trastuzumab, several HER2-directed 
agents have been successfully developed in the clinic; 
lapatinib, a reversible tyrosine kinase inhibitor (TKI) of 
EGFR and HER2, trastuzumab emtansine (T-DM1), an 
antibody-drug conjugate, and pertuzumab in association 
with trastuzumab have also demonstrated an OS benefit in 
breast cancer [8–10].

In addition to amplification, mutations have been 
described in ERBB2 that occur at low frequency in several 
tumor types, especially in breast (3%) [11], colon (2-
3%) [12] and lung cancers (1-2%) [13]. The sensitivity 
of ERBB2 hotspot mutations p.S310Y, p.L755S and 
p.V842I to HER2-directed treatments have been recently 
investigated [14–17]. 

Regarding the increasing number of different types 
of ERBB2 alterations described across various tumor 
types, together with the increasing number of HER2-
directed therapies, a prospective and systematic evaluation 
of ERBB2 alterations and drug sensitivity should help 
clarifying future personalized treatment decisions. The 
MOSCATO-01 and 02 programs propose multiple high-
throughput genomic analyses on a fresh tumor biopsy to 
match targeted molecular agents for patients with various 
types of cancers refractory to conventional treatments [18]. 
In the MOSCATO-01 study, on the 1036 adult patients 
included, a molecular analysis has been successfully 
performed in 844 patients that allowed the administration 
of a matched targeted therapy in 199 patients. The 
progression free survival (PFS) with the targeted-therapy 
(PFS2) was 1.3 times superior to the PFS on the previous 

treatment line (PFS1) in 33% of patients. Importantly, the 
highest PFS2/PFS1 ratio in this study has been achieved in 
the subgroup of patients with ERBB2 genomic alterations 
(65%, n = 24), leading us to further analyze in depth this 
molecularly enriched cohort of patients.

The recent approval by the FDA of anti-PD1 
immunotherapies for microsatellite instability-High and 
mismatch repair deficient cancers independently of the 
tumor types pave the way to broader drug approval for 
histology-agnostic but biomarker positive patients [19]. A 
comprehensive evaluation of well-studied biomarkers that 
lead to treatment approval is required [20]. Programs for 
the broad evaluation of these strategies, called “umbrella 
studies”, are ongoing for numerous molecular targeted 
agents [21]. In this regard, we hypothesized that a refined 
analysis focused on patients with various types of somatic 
ERBB2 alterations detected in MOSCATO-01 and ongoing 
MOSCATO-02 would help to precise the landscape of 
drug-target relationship.  

RESULTS

Patient characteristics for pooled MOSCATO-01 
and 02 with ERBB2 alterations

From the beginning of MOSCATO-01 in December 
2011 until January 2017, 1036 patients were included, 
and after 8 months of accrual in the MOSCATO-02, 262 
more patients were included. On these pooled cohorts of 
patients 934 had a successful molecular portrait of their 
tumor (759 CGH and 912 tNGS). A new alteration in the 
ERBB2 gene have been found in 4.7% (n = 44/934) of 
patients including 1.5% (n = 14/912) ERBB2 mutations 
(pathogenic variant), and 4% (n = 30/759) ERBB2 
amplifications. These patients were affected 13 different 
tumor types, and had previously received a median of 3 
treatments lines (Table 1).   

The frequency of newly detected ERBB2 
amplifications were 25% in oesogastric adenocarcinoma 
(n = 6/32), 13% in salivary gland carcinoma (parotid)  
(n = 2/15), 12% in biliary tract cancers (n = 5/42), 5.3% 
in pancreatic adenocarcinomas (n = 1/19), 4.4% in breast 
cancers (n = 6/134), 3% in NSCLC (n = 3/101), 3% in 
colon cancers (n = 2/66), 2.3% in urothelial carcinomas 
(n = 1/44) and 1.9% in carcinomas of the head and 
neck (n = 2/105) (Figure 1). The frequency of ERBB2 
mutations were 10% in cervix carcinomas (n = 2/19), 9% 
endometrial carcinomas (n = 1/11), 3% in NSCLC (n = 
3/101), 4.5% in urothelial carcinomas (n = 2/44), 4.8% in 
biliary tract carcinomas (n = 2/42), 3.1% in oesogastric 
carcinomas (n = 1/32), 1.5% in colorectal carcinomas (n 
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Figure 1: Distribution of ERBB2 genomic alterations, mutation or amplification, among cancers.  ERBB2 amplifications 
were mostly found in: salivary gland carcinoma (13%), biliary tract cancers (12%), pancreatic adenocarcinomas (5.3%), lung cancers (3%), 
with exclusion of breast or oesogastric adenocarcinoma.  ERBB2 mutations were mostly found in: cervix carcinomas (10%), endometrial 
carcinomas (9%), lung cancers (3%), urothelial carcinomas (4.5%), biliary tract carcinomas (n = 4.8%).

Table 1: Patient characteristics
All patients (N = 44) Evaluable patients (N = 31) 

Age at inclusion
 Median (range) 56 (20–77) 57 (30–77)
Sex
 Male 24 (55%) 17 (55%)
 Female 20 (45%) 14 (45%)
ECOG performance status
 0 14 (32%) 12 (39%)
 1 28 (64%) 18 (58%)
 2 2 (4%) 1 (3%)
Tumor type
 Head and neck 2  (4.5%) 2 (6.5%)
 Colon 3 (7%) 1 (3.2%)
 Lung 6 (13.5%) 4 (13%)
 Biliary tract cancers 7 (16%) 5 (16%)
 Pancreas 1 (2%) 0
    Oesogastric 9 (20.5%) 8 (26%)
 Breast 7 (16%) 5 (16%)
 Cervix 2 (4.5%) 2 (6.5%)
    Endometrial 1 (2%) 1 (3%)
 Urological 3 (7%) 0
 Salivary glands 2 (4.5%) 2 (6.5%)
   Neuroendocrine 1 (2%) 1 (3.2%)
Number of metastatic sites
 Median (range) 2 (1–4) 2 (1–4)
Number of previous therapies for advanced disease
 Median (range) 3 (0–11) 3 (0–8)
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= 1/66), 0.7% in breast cancers (n = 1/134). No ERBB2 
genomic alterations were found in prostate cancers (n = 
54), ovarian cancers (n = 37) or sarcomas (n = 49). 

The known hotspot mutations in ERBB2 were also 
found for several patients in our cohort: p.S310Y (n = 
6), p.L755S (n = 2) and p.V842I (n = 2) (Figure 2A). 
ERBB2 genomic alterations were frequently associated 
with TP53 mutations (58%, n = 25/43), and/or other 
activating or inactivating mutations in the PI3K/AKT/
mTOR or the MAPK kinase pathways (26%, n = 11/43, 
Figure 2B). Interestingly, 4.8 % (n = 6/128) of patient with 
a metastatic breast cancer previously diagnosed as HER2-
negative were found HER2-amplified in CGH, every case 
confirmed by immunohistochemistry, which led to the 
reclassification of these metastatic tumors. 

 Efficacy of anti-HER2 targeted therapies 

On the 31 evaluable patients, 22 were treated with 
a combination of trastuzumab and chemotherapy (mostly 
paclitaxel n = 13), 6 patients with paclitaxel, trastuzumab 
and everolimus (due to concomitant mutations in PiK3CA/
mTOR pathway), one with neratinib and 2 patients with a 
combination of trastuzumab and lapatinib. Five patients 
had breast cancers, 7 oesogastric adenocarcinomas and 
the remaining 19 patients had 8 different tumor types 
(Table 1). Concerning these 19 patients with a tumor type 
other than breast or oesogastric adenocarcinoma, 8 patients 
had an ERBB2 mutation and 11 had ERBB2 amplification.

For the whole cohort of 31 patients, the CBR was 
42% (n = 13/31, CI95% [25–61%], with 1 CR, 10 PR 
and 2 SD). For the 19 patients with tumor types other 
than breast or oesogastric adenocarcinoma, the CBR 
was 25% (n = 2/8 with 2 PR) for ERBB2 mutation and 
64 % (n = 7/11 with1 CR, 4 PR, 2 SD > 24 weeks) for 
ERBB2 amplification. The two patients who had a PR in 
the ERBB2 mutation subgroup received a combination 
of paclitaxel, trastuzumab and everolimus for an 
adenocarcinoma of cervix and an endometrial carcinoma, 
both harboring ERBB2 S310Y mutation. For somatic 
ERBB2 amplification, all patients that achieved CR or PR 
were treated with chemotherapy plus trastuzumab (only 
one received paclitaxel, trastuzumab plus everolimus) 
(Figure 3). For the 19 patients with a tumor type other 
than breast or oesogastric adenocarcinoma, the median 
PFS was 4.6 months CI95% [0.7–8.6]; for patients with 
ERRB2 mutations the median PFS was 2.9 months CI95% 
[2.4–3.3] and for patients with ERBB2 amplification the 
median PFS was 6.5 months CI95% [2–11], without 
statistical difference in PFS relative to amplifications or 
mutations (p = 0.4, Figure 4). 

DISCUSSION

This study has demonstrated that ERBB2 genomic 
alterations can be found beyond oesogastric and breast 

cancers in a wide variety of tumor types at low to moderate 
frequency (between <1% and 13%). The molecular 
profiling of patients with refractory metastatic tumors 
allowed identifying non previously detected ERBB2 
amplifications in 6 out of 134 patients with breast cancers 
[22, 23]. We have also confirmed the high frequency of 
ERBB2 amplifications for 13% of patients with salivary 
gland carcinoma and 5.2% of patients with biliary tract 
cancers [24].

ERBB2 genomic alterations are supposed to be 
driver mutations, but patients from our cohort did not 
receive anti-HER2 therapies prior to the molecular analysis 
neither performed prior molecular analysis. Therefore, 
we could not affirm that these ERBB2 alterations were 
founder or acquired events.

Targeting HER2 in altered tumors led to a CBR 
of 42% (n = 13/31, CI95% [25–61%]), and this benefit 
was particularly pronounced for ERBB2 amplifications 
with a CBR of 64%. These results suggest a strong 
oncogene addiction to ERBB2 alterations. In patients 
with breast and oesogastric adenocarcinoma, results of 
HER2-directed therapy were consistent with other studies  
[1, 6]. Trastuzumab plus chemotherapy, mainly paclitaxel, 
was efficient in patients with ERBB2-amplified tumors, 
as previously described in breast, colon, oesogastric 
adenocarcinoma [1, 6, 7] and biliary tract cancer [24]. In 
lung cancer, recent studies showed that a subset of NSCLC 
is HER2 driven and suggests potential opportunity for 
HER2 inhibitors in monotherapy or in combination with 
chemotherapy [13, 14]. Moreover in bladder cancer and 
colon cancer, several studies have showed promising 
results of HER inhibition in advanced cancer patients  
[7, 17, 25].

As patients in the MOSCATO trial were highly pre-
treated, the activity of HER2 directed agents may have 
had a major contribution in the responses even in case 
of treatment combinations with chemotherapy. We have 
observed responses for patients with tumor types other 
than oesogastric or breast and ERBB2 amplifications. 
However, we cannot definitely conclude whether the 
clinical benefit observed in patients was secondary to anti-
HER2 directed therapy, chemotherapy or the combination 
of both. Recently at AACR-NCI-EORTC meeting 2017, 
E.Ileana et al. found ERBB2 amplifications in 4–14% of 
various cancer types [26]. In their study they could also 
confirm that anti-HER2 therapies conferred clinical benefit 
to patients with tumors beyond classical recommendations. 

We found in our study that patients with ERBB2 
mutations had a lower CBR than patients with ERBB2 
amplification, suggesting an influence of the type of 
alteration on anti-HER2 therapy. However, we should 
be cautious before drawing a definitive conclusion, since 
the treatments were not homogeneous and only two 
patients were treated with a dual anti-HER2 therapy or 
an irreversible anti-HER2 TKI such as neratinib. The 2 
responders treated by chemotherapy plus trastuzumab 
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Figure 2A: ERBB2 mutation mapping for drivers mutations (n = 14). The HER2 protein is represented with known functional 
sites mapped with different colors reported in the figure legend. The most recurrent hotspot mutations in ERBB2 were p.S310Y (n = 6), 
and the tyrosine kinase domain mutations p.L755S (n = 2) and p.V842I (n = 2).

Figure 2B: Co-occurrence between ERBB2 mutation/amplification and other mutations. Waterfall representation of the 
altered genes identified in targeted NGS and CGHa, organized relatively to the tumor types. The type of genomic alteration and its 
functional impact are reported with colors. ERBB2 genomic alterations were frequently associated with TP53 mutations (58%), and/or 
other activating or inactivating mutations in the PI3K/AKT/mTOR or the MAPK kinase pathways (26%).
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had an ERBB2 S310Y mutated tumor, affecting 
the extracellular domain of HER2, confirming the 
preclinical demonstration of sensitivity to trastuzumab 
[17]. Moreover, in vitro and in vivo data suggest that 
ERBB2-mutated breast cancer are sensitive to neratinib 
(irreversible anti-HER2 TKI) [27] and that ERBB2-
mutated colon cancers are more sensitive to dual HER2 
inhibition (TKI + Mab) compared to monotherapy or 
reversible TKI [16, 17]. In the clinic, various HER2-
directed therapies have demonstrated an overall response 
rate of 51% (n = 101) in ERBB2 mutated metastatic 
lung cancer [14]. Another phase II study evaluating 

dacomitinib, an irreversible tyrosine kinase inhibitor of 
HER2, EGFR and HER4, has achieved partial responses 
in 3 of 26 patients with tumors harboring ERBB2 exon 
20 mutations [28]. Concerning ERBB2-mutated breast 
cancers, a phase II has reported a CBR of 31% in 22 
patients treated with neratinib [15]. Such approaches 
have been substantiated in preclinical findings where dual 
therapy or irreversible anti-HER2 TKI have been shown 
effective in case of ERBB2 hotspot mutations [16, 17, 27]. 
These observations support the need to tailor the treatment 
of patients to the type of alterations found in the ERBB2 
gene. Moreover, recent evidences suggest that HER2 

Figure 4: Progression free survival (PFS) according to ERBB2 mutation or amplification therapy with exclusion 
of breast or oesogastric adenocarcinoma. Survival curves were computed with Kaplan Meyer estimation and compared with an 
unstratified log-rank test.

Figure 3: Best overall response rate during anti-HER2 therapy with exclusion of breast or oesogastric adenocarcinoma. 
Best overall response rate was the greater disease in tumor volume under treatment assessed with RECISTS1.1. Patients with early clinical 
deterioration were arbitrarily put at the maximum observed increase.



Oncotarget9747www.impactjournals.com/oncotarget

inhibitors may be efficient in broader molecular alterations 
such as ERBB3 [25, 29, 30].

Large cohorts of patients, multi histology basket 
trials or tumor agnostic meta-analysis would be required 
to clarify the algorithm of treatment decision in case 
of ERBB2 and ERBB3 alterations, based on previous 
preclinical and clinical data available. Hopefully the 
increasing size of molecular screening programs for 
metastatic tumors such as MSKCC IMPACT study [31], 
the Michigan Center [32] or large screening in lung cancer 
[33] or MULTIPLI program should help in this direction.

In addition to molecular screening programs, 
the access to targeted treatment should be reinforced in 
personalized medicine trials as suggested in SHIVA, 
SAFIR, MOSCATO and NCI-MATCH trials [18, 34–36]. 
Furthermore, for relatively frequent alterations across 
tumors such as ERBB2, umbrella or basket designs may 
be proposed such as in the Acsé programs in France [37]. 
For example, Hymans and colleagues showed that it is 
possible to evaluate the efficacy of targeted therapies in 
an enriched population with a low prevalence molecular 
alterations such as AKT1 mutations [38], BRAF mutation 
[21], or NTRK translocation [39].

In conclusion, our data advocate for an enlargement 
of the screening of ERBB2 mutations and amplifications 
beyond breast or oesogastric cancers. Furthers studies 
are warranted to improve the robustness of the relation 
between the type of molecular alteration and the clinical 
effect of the drugs.

PATIENTS AND METHODS

Patients included in the study

The MOSCATO (MOlecular Screening for 
CAncer Treatment Optimisation, NCT01566019) 
trial is a molecular screening program to personalize 
the treatments of patients referred to the early drug 
development department (DITEP) at Gustave Roussy. 
The first part of the MOSCATO program has been 
recently published, and patients accrual is continuing 
ever since in MOSCATO-02 [18]. An on-purpose tumor 
biopsy was performed and immediately fresh-frozen 
for targeted Next Generation Sequencing (tNGS) and 
comparative genomic hybridization array (CGHa) 
after histological control. General inclusion criteria 
of MOSCATO relied on a performance status of 0–1, 
a refractory or incurable tumor, and a tumor location 
accessible to biopsy. Importantly, patients with a known 
molecular alteration that already has a recommended 
targeted treatment in France were excluded from the 
study. In the current study, this exclusion criterion 
concerned patients treated with HER2 inhibitors for an 
ERBB2 amplified breast cancer or oesogastric cancer. 

Compared to the primary analysis of the MOSCATO 
program, our cohort of patients could be treated by 
HER2 inhibitors in a variable timeframe after the 
molecular screening and other patients were included in 
the ongoing MOSCATO02. This observation has limited 
our ability to perform comparative analysis with other 
patients included in MOSCATO-01. 

Tumor samples and molecular analysis

Methods for tumor sampling and molecular analysis 
have been described previously [18]. Briefly, tumor 
biopsies were fresh frozen, tumor cellularity was evaluated 
histologically, tumor DNA was extracted using DNeasy 
tissue kit and Qiamp kit respectively (Qiagen, Hilden 
Germany) according to manufacturer’s instructions. tNGS, 
covering 74 critical oncogenes or tumor suppressor genes 
(TSG), was performed using Ion torrent (Ion Torrent PGM, 
Life Technologies®). Variant calling was performed with 
Torrent Suite™ software, variantCaller (v4.x and higher; 
ThermoFisher Scientific) using GRCh37 (h19) reference. 
Variants were then annotated using dbsnp (v138) (http://
www.ncbi.nlm.nih.gov/SNP), COSMIC (v69), and 
dbNSFP (V2.1), using SnpSift (v4.0E) and somatic 
variant were filtered from the germline analysis [40] 
[41]. CGHa was performed using SurePrint G3 Human 
aCGH Microarray 4 × 180K, Agilent technologies, Palo 
alto, CA [42]. The copy number alterations detected with 
CGHa were classified into 5 categories, namely deletion, 
loss, neutral, gain and amplification, using the GISTIC 
algorithm [43]. Amplifications in GISTIC confirmed by 
a > ×0.7 log2 ratio with a length less than 10 Mb were 
considered of interest for the current study.

Annotation of ERBB2 mutations 

To annotated the pathogenicity of the ERBB2 
mutations, we have used SnpEff (v4.0E) and the cbioportal 
annotation tool [44]. Only pathogenic variants detected in 
the tumor were selected to orientate the patients to HER2 
inhibitors. We have mapped the mutations on a schematic 
structure of the HER2 membranous receptor using the 
GenVisR package [45].

Treatments

Patients harboring a druggable molecular alteration 
were prospectively oriented and treated in either a phase 
1 or an off label use of molecular targeted agent, based on 
the decision of a molecular tumor board. 

Statistics

Progression free survivals (PFS) were calculated 
from the first administration of treatment to the date of 
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progressive disease or death. Progressive diseases and 
response rates were reported according to the RECIST1.1 
criteria. Clinical benefit rate (CBR), defined by partial 
response (PR) or complete response (CR) or stable disease 
(SD) > 24 weeks. Survival curves were compared with 
the use of an unstratified log-rank test. The subgroup 
of patients with ERBB2 alteration in tumor other than 
breast cancer or an oesogastric adenocarcinoma was also 
analyzed independently. 
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