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Abstract. Polyunsaturated fatty acids (PUFAs) play a role in a wide variety of physiological processes. They are
produced by a series of desaturation and elongation reactions. A-6-desaturase is a membrane-bound enzyme that
catalyzes the conversion of «-linolenic acid (C18:3x-3) and linoleic acid (C18:2n-6) to stearidonic acid (18:4n-
3) and y-linolenic acid (18:3n-6). It is encoded by the FADS2 gene located on bovine chromosome 29. The aim
of this study was to identify a single nucleotide polymorphism in the FADS2 gene and to determine possible
associations with milk fatty acid composition in two breeds of dairy cattle, i.e., Jersey and Polish Holstein-
Friesian. Direct DNA sequencing revealed the presence of an A-to-G substitution in intron 3 of the FADS?2
gene (rs209202414). Both populations were genotyped with an appropriate PCR-RFLP assay. The following
genotype distributions were observed: for Jerseys, AA =0.24, AG =0.63, and GG = 0.13; for Polish Holstein-
Friesians, AA=0.17, AG=0.40, and GG =0.43. In Jerseys, statistically significant relationships were found
between the FASD2 genotypes and the following milk fatty acids: lauric (P = 0.0486), behenic (P = 0.0199),
lignoceric (P = 0.0209), oleic (P = 0.0386), eicosatrienoic (P = 0.0113), and docosadienoic (P = 0.0181). In
Polish Holstein-Friesian cows, significant associations were observed for erucic (P = 0.0460) and docosahex-
aenoic (P = 0.0469) acids. The study indicated the A-to-G substitution (rs209202414) in the bovine FADS2

gene as a potential genetic marker for fatty acid composition in cattle milk.

1 Introduction

The feeding of dairy cows is the main factor impacting milk
fat composition. Pasture intake reduces the concentration of
saturated fatty acids (SFAs) in the milk of grazing cows
(Couvreur et al., 2007; Frigo et al., 2015; Hanus et al., 2016;
Ponnampalamet al., 2018). Furthermore, genetic factors in-
fluence fatty acid (FA) variability. The FA profile in milk
changes during lactation, emphasizing the relationship be-
tween the physiological status of cow and milk composition
(Bastin et al., 2011). The effects on milk FA composition
are also breed-dependent. The greatest breed differences are
observed between Holstein and Jersey milk (with the higher

concentrations of SFAs in Jerseys) (Arnould and Soyeurt,
2009). Some authors have reported that milk fat composi-
tion is modulated by the polymorphisms in genes involved in
milk fat synthesis processes, like DGAT! and SCD! (Carva-
jal et al., 2016, Tzompa-Sosa et al., 2016).

Dietary long-chain polyunsaturated fatty acids (PUFAs)
increased intestinal FADS2 mRNA abundance but had mod-
est effects on its level in the liver of suckling pigs (Jacobi
et al., 2011). PUFAs regulate fatty acid desaturase (FADSI,
FADS2) activity in the liver and adipocyte tissue (Naka-
mura and Nara, 2004; Ralston et al., 2015). Hatanaka et
al. (2016) reported that long-chain polyunsaturated fatty acid
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(LC-PUFA, >C20) intake is crucial for the growth of §-
6-desaturase knockout (D6D-KO) mice. The FADS2 indel
polymorphism in the European grayling was found to be
associated with muscle FA composition (Renaville et al.,
2013). Matsumoto et al. (2014) found that the SNP (g.
—823G > A) in the FADS2 promoter had a significant ef-
fect on several beef quality traits, including beef marbling
score, whereas Takahashi et al. (2016) reported a highly sig-
nificant association between the rs211580559 SNP in exon 7
of the FADS2 gene and intramuscular C18:2(n-6) composi-
tion. In the transcriptomic study, Wang et al. (2017) pointed
to FADS?2 as a strong candidate gene that may be associated
with intramuscular fat deposition. Recently, Gol et al. (2018)
reported that the polymorphism in the porcine FADS2 gene
is linked to arachidonic acid metabolism.

Fatty acid desaturase-2 (FADS2) is a component of the
lipid metabolic pathway and converts essential FA into LC-
PUFA by the introduction of a double bond between carbon
atoms at positions A6 and A7 of FA (14). FADS2 is a rate-
limiting enzyme involved in the conversion of linoleic acid
(LA; 18:2n-6) into y-linolenic acid (GLA; 18:3:n-6) and
that of a-linolenic acid (ALA; 18:3r-3) into stearidonic acid
(SDA; 18:4n-3).

Some genome-wide association studies showed that the
FADS locus is one of the strongest genetic predictors of
plasma phospholipid PUFA (Lemaitre et al., 2011; Tanaka et
al., 2009). Ibeagha-Awemu et al. (2014) demonstrated posi-
tive associations between three SNP within the FADS2 gene
and the milk PUFA in Canadian Holstein cows. Therefore,
the main aim of this study was to analyze the associations
between the FADS2 gene polymorphism and milk fat compo-
sition in two breeds of dairy cattle (Polish Holstein-Friesian
and Jersey).

2 Materials and methods

2.1 Animals

The study involved 150 Holstein-Friesian cows housed in a
conventional free-stall barn in West Pomeranian Province,
Poland, and 104 Jersey cows kept in a tie-stall barn in
Greater Poland Province. Only healthy animals from 2-5
years old were included. The nutrition and management of
cows were quite similar. Feeding was based on a total mixed
ration (TMR), mainly composed of maize silage, grass hay-
lage, maize cereals, oat cereals, soybean meals, and mineral—
vitamin mixtures. No ethical consent was required for the
present study since the milk samples were collected during
milking and the blood samples during routine veterinary vis-
1ts.

2.2 SNP identification and genotyping

Genomic DNA was isolated from whole peripheral blood us-
ing the salting-out method (MasterPure™ DNA Purification
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Kit for Blood, Epicentre, Madison, Wisconsin, USA). Ex-
ons 1, 3, and 12 of the bovine FADS2 gene were amplified
using the primers given in Table 1. The reference sequence of
the FADS?2 gene located on chromosome 29 (GenBank Acc.
No. NC_037356.1) was used.

PCR amplifications were performed in a total volume of
15 uL containing 50ng of genomic DNA, 1.5mM MgCl,,
0.2mM of each dNTP, 15 pmol of each primer, and 0.3 U of
Taq polymerase (Eur,, Poland). The following thermal pro-
file was applied: Smin at 94 °C, 32 cycles of 30s at 94°C,
30s at the annealing temperature, and 30 s at 72 °C; and a fi-
nal extension of 5 min at 72 °C. The PCR products were sep-
arated in agarose gel (1 %, 30 min, 120 V) and then extracted
using the GEL/PCR Purification GPB Mini Kit (GenoPlast
Biochemicals, Poland). Finally, the samples were sent for se-
quencing to an external laboratory (Genomed, Poland). A
PCR-RFLP assay has been developed for the genotyping
of an A-to-G substitution (rs209202414) in intron 3 of the
FADS?2 gene. The PCR conditions were the same as those de-
scribed above (Primers F3 and R3, Table 1). A total of 10 uL
of the PCR product was digested with 2 U of TseFI restriction
enzyme (SibEnzyme Ltd, Russia). Subsequently, the restric-
tion fragments were separated in a 3 % agarose gel (60 min,
120 V) stained with ethidium bromide.

2.3 Milk samples and fatty acid composition

Milk samples for the determination of fatty acid composi-
tion were collected from cows after the 90th day of lactation
to avoid the period of negative energy balance and to max-
imize the period of de novo milk fat synthesis in the mam-
mary gland. The samples were transported to the laboratory
and kept frozen until further processing. Total lipids were
extracted from each sample using a chloroform—methanol
solution according to Folch et al. (1957). FAs were trans-
formed into fatty acid methyl esters (FAMEs) with the ba-
sic method using boron trifluoride according to the Polish
standards (PN-EN ISO 12966-2: 2011). The FAME compo-
sition was analyzed by gas chromatography with mass spec-
trometer (Clarus 600 GC/MS system, PerkinElmer, USA)
equipped with an Elite-SMS capillary column (length: 60 m;
inner diameter: 0.25 mm; film thickness: 0.25 um). Helium
with a constant flow of 1 mL min~! was used as the carrier
gas. The sample volume was 1 mL (split ratio, 50 : 1). The in-
jector temperature was 290 °C. The column started at a tem-
perature of 110 °C and was ramped up to 180 °C at a rate of
5°C per minute, then 15 min at 180 °C, followed by the gra-
dient of 5 °C per minute up to 290 °C and then 5 min at this
temperature. The temperature of transfer line was 290 °C.
For mass spectrometry, the selected-ion recording technique
was used with the ionization energy of 70eV and an ion
source temperature of 200 °C. The individual FAMEs were
identified by the comparison of their retention times with that
of the standard compound (Supelco™ 37 Component FAME
Mix, Sigma-Aldrich, Germany). A total of 37 fatty acids
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Table 1. Primer sequences used for the amplifications of the bovine FADS2 exons (1, 3, and 12).

Region Primer sequences (5'-3") Product  Annealing
length  temp. (°C)
Exon 1 F1: GGAGGAGAAGACAAAAGCCGA 437 60
RI:TGAGCGCCGTAGACACTTTT
Exon 3 F3: TCCCAGATCACCGAGGACTT 292 60
R3: TTCAGAGCGTTGGCACCTAG
Exon 12 F12: CGGGCAACTGGTCCCTTTAT 389 60

R12: GTCCCATGACCAAGTGCCTC

were investigated in milk samples. However, only fatty acids
with an even number of carbon atoms were considered in
the association analyses, since only these are synthesized de
novo, elongated, and desaturated in the mammary gland. The
peaks were analyzed with TurboMass software (PerkinElmer
Inc., Waltham, MA, USA).

2.4 Statistical analysis

Statistical analyses were performed using the appropriate R
packages (R Core Team, 2015). An additive relationship ma-
trix was constructed based on a three-generation pedigree
using the kinship2 R package (Therneau et al., 2014). The
following linear model (Eq. 1) was constructed and esti-
mated using the Imekin function of the coxme R package
(Therneau, 2015):

Y=u+ G+ LS+ 1A+ BDIM + o + e, (1)

where Y is the phenotypic value of each trait, u is the over-
all mean, G is the fixed effect corresponding to the genotype
of polymorphisms, LS is the fixed effect of lactation num-
ber and lactation season, B is the regression coefficient for
cow age (A), B is the regression coefficient for days in milk
(DIM), « is the random polygenic effect for all known pedi-
gree relationships, and e is the random residual.

3 Results

3.1 SNP identification and genotyping

DNA fragments overlapping exons 1, 3, and 12 with the parts
of adjacent introns of the FADS2 gene were sequenced. These
analyses revealed the presence of an A to G substitution
at position 23 of intron 3 (Fig. 1; GenBank rs209202414).
The PCR products amplified with the F3 and R3 primers
(Table 1) were digested with TseFI restriction enzyme. Af-
ter electrophoresis, the following genotypes were observed:
GG (205, 72, 15bp), AG (205, 87, 72, 15bp), and AA (205,
87bp). The 15 bp fragments were not detectable (Fig. 2). The
following genotype distributions were observed: for Jerseys,
AA=0.24, AG=0.63, and GG =0.13; for Polish Holstein-
Friesians, AA =0.17, AG=0.40, and GG =0.43. According
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Figure 1. The rs209202414 A-to-G polymorphism in intron 3 of
the bovine FADS?2 gene revealed by DNA sequencing.

Table 2. Genotypic frequencies of the rs209202414 SNP in the
bovine FADS?2 gene.

Genotype ‘ Allele
Breed n AA AG GG| A G
Jersey 104 024 0.63 0.13 | 0.55 045

Holstein-Friesian 150 0.17 040 043 | 0.37 0.63

to the chi-squared test, these distributions differed signifi-
cantly (x% = 25.63; P<0.01). In the Jersey group, the major
allele was A, while in the Polish Holstein-Friesian group, the
G allele was prevalent (Table 2).

3.2 The association of genotype with fatty acid
composition in the milk of Polish Holstein-Friesian
and Jersey cattle

Fatty acid composition in the milk fat of Jersey and Polish
Holstein-Friesian cows is given in Tables 3 and 4. The asso-
ciation analysis indicated significant differences in some FA
content between cows carrying different FADS2 genotypes.
In Jersey cattle, significant associations were recorded be-
tween the FADS2 (rs209202414) polymorphism and the fol-
lowing milk FA: lauric (P = 0.0486), behenic (P = 0.0199),
lignoceric (P = 0.0209), oleic (P = 0.0386), eicosatrienoic
(P =0.0113), and docosadienoic (P =0.0181). In Polish
Holstein-Friesian cows, significant associations were ob-
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Figure 2. Genotyping the rs209202414 A-to-G polymorphism in the bovine FADS2 gene. Digestion with TseFT restriction enzyme revealed

the AA, AG, and GG genotypes. L is a 600 bp DNA ladder.

served for erucic (P = 0.0460) and docosahexaenoic (P =
0.0469) acids.

4 Discussion

The most important non-genetic factor significantly af-
fecting fat content, and milk fatty acid profile in partic-
ular, is nutrition. It is associated with the fact that the
fats contained in the feed are in part the source of fatty
acids in the milk of ruminants, which are also the prod-
uct of the reactions occurring in the rumen and lactocytes
(Palmquist, 2006). The fatty acid composition in the milk
samples of cows in the present study corresponded with
the results obtained for dairy breeds. The most represented
group of FAs in milk was SFA, followed by monounsat-
urated fatty acid (MUFA) and PUFA, which is consistent
with the previous results (Carvajal et al., 2016; Hanus et
al., 2016; Vrankovic¢ et al., 2017). Vrankovi¢ et al. (2017)
showed a similar FA composition in the milk of Hol-
stein cows (C10:0=3.053, C12:0=3.694, C14:0=12.33
vs. C10:0=3.00, C12:0=3.70, C14:0 = 12.03) at the 150th
day of lactation.

Ibeagha-Awemu et al. (2014) found significant associa-
tions of several polymorphisms in the FADS cluster with
oleic acid, AA, dihomo-y-linolenic acid (DGLA), SFA, and
MUFA indices, but not with C20:51-3, C20:5n-6, or C22:6n-
3 in the milk of Canadian Holstein cows. The authors sug-
gested a possible involvement of these SNPs in FA synthe-
sis and indicated them as potential genetic markers in the
breeding programs increasing the content of milk FAs that
are valuable for human health.

Oleic acid is a health-beneficial product of the delta-
9 desaturation of stearic acid, catalyzed by SCD. Burdge
and Wootton (2002) demonstrated that docosahexaenoic acid
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(DHA) is produced internally through a series of desatura-
tion and elongation reactions from the dietary precursor, o-
linolenic acid. The positive effect of DHA on health has been
extensively reviewed (Calder and Yaqoob, 2009; Ponnam-
palam et al., 2018). However, no associations were found be-
tween the FADS2 polymorphism and the C18:2n-6¢, C18:3n-
3, and D6D indices. This may be a result of dietary PUFA
precursor (LA and ALA) susceptibility to biohydrogenation
in the rumen (Chikunya et al., 2004). Appropriate supple-
mentation of dairy cow diets may change the proportion be-
tween milk SFA and MUFA/PUFA concentrations. In the
study by Kliem et al. (2019) on the use of whey protein
and rapeseed oil gel as feed supplements in Holsteins, an in-
cremental inclusion of whey protein gel caused a linear in-
crease in MUFA and PUFA and the same decrease in SFA.
Bougouin et al. (2019), investigating an effect of starch-rich
or lipid-supplemented diets in lactating Holstein cows, found
a higher milk SFA concentration and lower MUFA and trans-
10 C18:1 concentrations in the animals fed diets containing
the Ca salts of palm oil and starch from maize grain and
wheat in comparison with those comprising extruded rape-
seeds and sunflower seeds, whereas the levels of trans-11
C18:1 were unchanged. Finally, Santillo et al. (2016) ob-
served an increased level of SFA, MUFA (mainly due to the
contribution of C18:1 cis-9), and PUFA in Italian Simmental
cows supplemented with dietary whole flaxseed.

The PUFA level in an organism is related to many positive
health outcomes and plays a crucial role in its function. Some
of these effects are determined by the LC-PUFA (Tosi et al.,
2014). Animals are unable to synthesize essential fatty acids
(EFAs), but they can convert them (from the diet) to more
unsaturated FA with a longer carbon chain (Nakamura and
Nara, 2004). The desaturation and elongation processes of
omega-3 acids are carried out by desaturases and elongases
leading to the formation of LC-PUFA (Cormier et al., 2014).
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Table 3. The association of FADS2 polymorphism with the fatty acid composition (%) in the milk of Jersey cows.

Trait Total (n = 104) Genotype P
AA AG GG
(n=25) (n=65) (n=14)

MY Milk yield (kg) 21.381£3.945 20.048+3.354  21.698+3.763 22.286+£5.295 ns.
FY Fat yield (kg) 1.065+0.213 1.028 £0.186 1.071 £0.215 1.108 £0.251 ns.
FP Fat (%) 5.018£0.706  5.182+£0.791 4953+£0.676  5.024+£0.689 ns.
C6:0 Caproic 2.705+£0.388  2.666+0.326 2.699 £ 0.405 2.84+0.423 ns.
C8:0 Caprylic 1.692 +0.285 1.645+0.2 1.695 £ 0.306 1.763+0.317 n.s.
C10:0 Capric 3.467 £0.447 3.397+£0.412 3.487+£0.479 3.495+£0.363 ns.
C12:0 Lauric 40014055 3914240514  4.026" +£0.588 4.0444+0.43 0.0486
C14:0 Myristic 12459 +£1.172 12356 +1.132 12514+1.24 12384+£0.947 ns.
C16:0 Palmitic 37.721£2.864 37.3694+2926  37.979+£2.955 37.148+£2.297 ns.
C18:0 Stearic 126 £1.645 12.556+1.498 12.625+1.813  12.562+£1.043 ns.
C20:0 Arachidic 0.107£0.02  0.108£0.013 0.107 £0.021 0.109+£0.026 n.s.
C22:0 Behenic 0.028 £0.007  0.0272 +0.006 0.028 £ 0.007 0.03° £0.009  0.0199
C24:0 Lignoceric 0.021 £0.006 0.022 +0.004 0.021+0.006  0.023° +£0.007  0.0209
Cl4:1 Myristoleic 1.333£0.367 1.422 £0.399 1.305£0.346 1.306 £0.404 ns.
Cl6:1 Palmitoleic 1.589+0.374 1.634+0.386 1.565 +0.345 1.623+0.488 n.s.
Cl18:1n-9¢c  Oleic 16.487+£3.085 17.1058+£3.39 16.152° +3.125 16.938+2.147 0.0386
Cl18:1n-9t  Elaidic 1.036 £0.189  0.993£0.185 1.049£0.199 1.053£0.143  ns.
C18:2n-6¢c  Linoleic 1.997 +£0.342 1.992+0.326 1.995+0.357 2.013+0.321 ns.
C18:3n-3  «a-Linolenic 0.115£0.052  0.112+£0.046 0.118 £0.055 0.106 £0.045 n.s.
C18:3n-6  y-Linolenic 0.013£0.004  0.012+£0.004 0.013 £0.005 0.013+£0.004 n.s.
C20:1 Eicosenoic 0.006 £0.002  0.007 +0.002 0.006 £0.002  0.006£0.002 ns.
C20:2 Eicosadienoic 0.006 £0.002  0.007 £0.001 0.006 £0.002  0.006£0.002 n.s.
C20:3n-3  Eicosatrienoic 0.08+0.03 0.076£0.025%  0.082+0.032P 0.082£0.03 0.0113
C20:3n-6  Eicosatrienoic 0.01+0.004 0.01 +£0.003 0.01+£0.004  0.011£0.005 ns.
C20:4n-6  Arachidonic 0.125£0.036  0.125+£0.031 0.124£0.037  0.131£0.043 ns.
C20:5n-3  Eicosapentaenoic 0.023£0.007  0.022£0.005 0.024£0.007  0.025£0.008 n.s.
C22:1n-9  Erucic 0.025+0.007  0.024 +0.005 0.025+£0.007  0.027+0.008 n.s.
C22:2 Docosadienoic 0.002+£0.001  0.0022% £ 0.001 0.0024+0.001  0.003® £0.001  0.0181
C22:6n-3  Docosahexaenoic  0.002 40.001 0.002 £ 0.001 0.002 £ 0.001 0.002+0.001 n.s.
C24:1 Nervonic 0.004 £0.001 0.004 £0.001 0.004 £0.001 0.004 £0.001 n.s.

a.b Different superscripts within rows indicate statistically significant differences (p < 0.05). n.s. — non-significant.
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In humans, Al-Hilal et al. (2013) reported that the FADS
polymorphisms are very important regulators of LC-PUFA
synthesis and explained the variance of several fatty acids.
Similar results were published by Boschetti et al. (2015),
who demonstrated relationships between genotype and de-
saturating ability and, consequently, a significant impact on
the PUFA content in poultry meat. Fast-growing chickens
showed lower expression of hepatic FADSI and FADS2 and
thus a significantly lower content of, for example, 18:2(n-6)
and 20:4(n-6) FA (P <0.01) in breast meat. Other factors can
also modulate FADS?2 activity. Cho et al. (1999) showed that
dietary PUFA can abolish the level of hepatic FADS2 mRNA
in human. Takeuchi et al. (2010) reported that a high level of
dietary PUFA can suppress the transcription of SREBP-Ic,
a major transcription factor involved in the upregulation of
FADS? expression. Diet components may affect SREBPI ex-
pression or activity. In the study by Li et al. (2018) on fatty
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acid composition in the muscles of Yanbian Yellow steers,
the expression of SREBP] increased with age in the animals
fed a corn-based finishing diet with an increasing proportion
of corn in the ration (every 4 months). Han et al. (2012),
investigating the expression of lipogenic genes in lactating
Holsteins, found that the expression of SREBPI in the mam-
mary gland was downregulated in the animals fed the Ca salts
of conjugated linoleic acid (CLA), whereas Harvatine and
Bauman (2006) reported that treatments causing milk fat de-
pression (in the form of a low forage, high oil diet, and the
trans-10, cis-12 CLA infusions) decreased the expression of
SREBP] in the bovine mammary gland.

In beef cattle, Matsumoto et al. (2014) found a significant
effect of the SNP (g.-823G > A) in the promoter region of
the FADS2 gene on carcass traits and fatty acid composi-
tion. In Japanese Black cattle, the percentage of C14:0 in
the GG animals was higher than that of the GA ones. Sub-

Arch. Anim. Breed., 62, 547-555, 2019
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Table 4. The association of FADS2 polymorphism with the fatty acid composition (%) in the milk of Polish Holstein-Friesian cows.

W. S. Proskura et al.: The effect of polymorphism in the FADS2 gene

Trait Total (n = 150) Genotype P
AA AG GG
(n=25) (n=60) (n=65)
MY Milk yield (kg) 30.842 £ 8.402 31.54+7.276 30.78 £8.004 30.631£9.229 ns.
FY Fat yield (kg) 1.267 £0.357 1.25£0.259 1.288 £0.362 1.254£0.387 ns.
FP Fat (%) 4.147£0.627  4.036+0.695 4.207 £0.55 4.134£0.668 n.s.
C6:0 Caproic 2.2540.437 2.314+£0.377 2.199+£0.416 227240476 ns.
C8:0 Caprylic 1.309 £ 0.245 1.349+0.244 1.307 +£0.242 1.296 £0.251 n.s.
C10:0 Capric 3.053+0.56 3.076 +0.488 3.091 +£0.595 3.01£0.556 n.s.
C12:0 Lauric 3.694 +0.643 3.717+0.597 3.731+£0.706 3.652+0.605 ns.
C14:0 Myristic 12.33+1.444 12.418+1.246 12.229+£1.571 12.391+1.407 ns.
C16:0 Palmitic 41.182+£4.881 41.62+£4.92 41.386+5.032 40.826£4.775 ns.
C18:0 Stearic 9.209+£2.518 8.714 +1.878 9.414+2.83 9.21+2432 ns.
C20:0 Arachidic 0.054+0.019 0.05+0.011 0.055+0.02 0.054£0.02 ns.
C22:0 Behenic 0.017 £0.007 0.016 £ 0.005 0.016 £ 0.007 0.019£0.009 ns.
C24:0 Lignoceric 0.016 £0.01 0.014 £0.005 0.014£0.006  0.018+£0.013 ns.
Cl14:1 Mpyristoleic 1.361 £0.49 1.394+£0.45 1.325+0.476 1.381+£0.522 n.s.
Cl6:1 Palmitoleic 2.175+0.702 2.028 +0.531 2.174+0.783 2.236+£0.68 n.s.
Cl18:1n-9¢c  Oleic 16.523 £3.259 16.558 £3.435 16.258+£3.472 16.753+3.013 n.s.
C18:1n-9t  Elaidic 0.994 +0.297 1.015+£0.319 0.993 +0.263 0.987+£0.322 ns.
C18:2n-6¢c  Linoleic 2.822+0.659 2.754 +£0.603 2.823 £0.564 2.848+0.761 ns.
C18:3n-3  «a-Linolenic 0.282+£0.094  0.262+0.079 0.285+£0.09 0.288+0.102 n.s.
C18:3n-6  y-Linolenic 0.012+0.004  0.0124+0.004  0.012+£0.004  0.012+0.003 n.s.
C20:1 Eicosenoic 0.004 +0.002 0.004 £0.002  0.004+0.002  0.004£0.002 ns.
C20:2 Eicosadienoic 0.004 £0.002 0.004 £0.002  0.004+£0.002  0.004+0.002 n.s.
C20:3n-3  Eicosatrienoic 0.066 + 0.026 0.063+0.02  0.068£0.029  0.065+0.026 n.s.
C20:3n-6 Eicosatrienoic 0.007 £0.003 0.007 £0.003 0.007 £0.003 0.008 £0.003 n.s.
C20:4n-6  Arachidonic 0.139£0.043 0.14£0.027 0.141 £0.05 0.137+£0.043 n.s.
C20:5n-3  Eicosapentaenoic 0.02 +0.006 0.02 +0.005 0.02 +0.006 0.02+0.006 n.s.
C22:1n-9  Erucic 0.022+0.016 0.024£0.015 0.01984+0.014 0.025* £0.018  0.046
C22:2 Docosadienoic 0.004 £0.003 0.003£0.002  0.003+£0.002  0.004+0.003 n.s.
C22:6n-3  Docosahexaenoic 0.0014+0.002  0.001+£0.001  0.0032+£0.001  0.002>£0.003  0.0469
C24:1 Nervonic 0.004+£0.004  0.003 +0.001 0.004 £ 0.001 0.005£0.005 ns.

a.b Different superscripts within rows indicate statistically significant differences (p < 0.05). n.s. — non-significant.

cutaneous fat thickness of the GG individuals was thinner
than that of the GA ones, which led to higher yield esti-
mates for the former. The beef marbling score of Holstein
animals carrying the GG genotype was significantly higher
than that of the GA individuals. An analogous relationship
(although non-significant) was observed in Japanese Black
cattle. Finally, the percentage of C16:0 was higher for the GG
genotype compared with the GA genotype, and the percent-
age of MUFA was higher in the GA animals than that in the
GG animals with a higher percentage of SFA in the latter. A
later study on Japanese Black steers (Takahashi et al., 2016)
showed that a highly significant association existed between
the rs211580559 SNP (C>T in exon 7) and intramuscular
C18:2(n-6) composition (with the CC individuals having sig-
nificantly higher C18:2(n-6) composition than the CT ones),
whereas no significant relationships between this SNP and
other investigated fatty acids (C14:0, C14:1, C16:0, C16:1,
C18:0 and C18:1) were found. Beak et al. (2019) analyzed
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an SNP (rs109772589) in the FADS?2 gene for its possible as-
sociation with the fatty acid profile in Hanwoo beef cattle.
However, all genotyped animals had the same GA genotype.
Therefore, no further analysis was performed.

The differences in the milk FA profile between Jersey and
Polish Holstein-Friesian cows may be determined by inter-
breed variations in milk FA composition, which has been
previously reported (Palladino et al., 2010). A nutrigenomic
study showed that cows fed ALA- or LA-rich diets had in-
creased PUFA and decreased SFA levels in milk compared
with a control diet, which resulted from a diet-specific differ-
ential regulation of genes involved in FA metabolism in the
mammary gland. The authors postulated that a lower level
of SFA was due to the suppression of genes involved in FA
metabolism and synthesis, and a higher level of PUFA was a
consequence of the increased availability and incorporation
of substrates used for milk PUFA synthesis (Ibeagha-Awemu
et al., 2016). Different genetic variants may affect the level of
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FA or indices. In the study by Ding et al. (2016) on the role of
selected SNP in the FADS gene cluster (FADSI, FADS2, and
FADS3) on the PUFA concentration in the breast milk of Chi-
nese women, the rs1535 SNP and two-locus haplotypes in the
FADS? gene as well as a two-locus haplotype in the FADS/
gene were associated with the GLA and AA concentrations
with the minor allele carriers having lower concentrations of
these acids. On the other hand, the three-locus haplotype in
the FADS?2 gene significantly affected concentrations of GLA
but not AA. The cited authors also showed that the individu-
als homozygous for an SNP in the FADS3 gene had lower
concentrations of ALA and LA in their breast milk. My-
chaleckyj et al. (2018), investigating breast milk fatty acid
composition in Bangladeshi mothers, showed that AA is the
primary FA in breast milk influenced by genetic variation at
the FADS1/2/3 locus and that the most significant genetic as-
sociation at this locus was with the fraction of AA at the
rs174556 SNP. Finally, Kgwatalala et al. (2009) reported that
one of the analyzed regulatory variants in the SCD/ gene was
associated with higher C10 and C12 desaturase indices and
higher contents of C10:1 and C12:1 in the milk of Holstein
COWS.

In recent years, there have been several genome-wide as-
sociation studies on milk fat traits (Grisart et al., 2002;
Daetwyler et al., 2008; Moioli et al., 2007). The majority
of associated SNPs were located in intergenic and intronic
regions (Ibeagha-Awemu et al., 2016). Intronic SNPs may
affect highly conserved elements and cis-acting RNA, which
can impact RNA splicing and the rate of mRNA transcription
(Millar et al., 2010; Hong et al., 2018).

5 Conclusions

This study showed a significant association between the
FADS?2 polymorphism and milk fatty acid composition in
Jersey and Polish Holstein-Friesian cattle. The differences
between breeds may result from the inter-individual varia-
tion in milk FA metabolism. The study indicated the A-to-G
substitution (rs209202414) in the bovine FADS2 gene as a
potential genetic marker for fatty acid composition in cattle
milk.
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