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N-type fast inactivation of a eukaryotic
voltage-gated sodium channel
Jiangtao Zhang 1,2,9, Yiqiang Shi3,9, Junping Fan4,9, Huiwen Chen5,6,9, Zhanyi Xia2, Bo Huang 7,

Juquan Jiang 6, Jianke Gong1✉, Zhuo Huang 3✉ & Daohua Jiang 2,8✉

Voltage-gated sodium (NaV) channels initiate action potentials. Fast inactivation of NaV
channels, mediated by an Ile-Phe-Met motif, is crucial for preventing hyperexcitability and

regulating firing frequency. Here we present cryo-electron microscopy structure of NaVEh

from the coccolithophore Emiliania huxleyi, which reveals an unexpected molecular gating

mechanism for NaV channel fast inactivation independent of the Ile-Phe-Met motif. An

N-terminal helix of NaVEh plugs into the open activation gate and blocks it. The binding pose

of the helix is stabilized by multiple electrostatic interactions. Deletion of the helix or

mutations blocking the electrostatic interactions completely abolished the fast inactivation.

These strong interactions enable rapid inactivation, but also delay recovery from fast inac-

tivation, which is ~160-fold slower than human NaV channels. Together, our results provide

mechanistic insights into fast inactivation of NaVEh that fundamentally differs from the

conventional local allosteric inhibition, revealing both surprising structural diversity and

functional conservation of ion channel inactivation.
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Ion channels play a fundamental role in electrical signaling,
which is crucial for numerous physiological processes
including neuronal excitability, muscle contraction, secretion

and perception of environmental changes1–4. Voltage-gated
sodium (NaV) and potassium channels work in concert to gen-
erate action potentials in electrical excitable cells2. These channels
activate in response to depolarizing stimuli and inactivate rapidly
to terminate ion flux. Both activation and inactivation are critical
for tuning cellular excitability1. Dysfunction of either process
causes abnormal channel function and leads to life-threatening
diseases5–7.

The four-domain NaV channel from eukaryotes usually inacti-
vates within a few milliseconds8. Extensive studies had identified a
three-residue hydrophobic motif, Ile-Phe-Met (IFM), located in
the intracellular linker between domain III (DIII) and DIV, which is
responsible for the fast inactivation4,8–10. By contrast, prokaryotic
NaV channels lack the IFM-motif and have slow inactivation over
hundreds of milliseconds11,12. The fast N-type inactivation of
potassium channels is controlled by their N-terminus or by a
cytoplasmic auxiliary subunit, which are thought to work through
a “ball-and-chain” mechanism13–17. Recent structural advances
revealed that the IFM-motif of NaV channels serves as a hydro-
phobic latch that allosterically closes the activation gate18–21. The
IFM-motif binds to a hydrophobic pocket adjacent to the activa-
tion gate, and its binding shifts the pore-lining S6 helices to close
the gate. A recent structural study revealed that the N-terminus of
the potassium channel MthK functions as a tethered “ball” phy-
sically blocks the open activation gate13. Those structural obser-
vations highlighted the distinct mechanisms for fast inactivation of
eukaryotic metazoan NaV and potassium channels.

Surprisingly, despite lacking the signature IFM-motif, a family
of eukaryotic protozoan homotetrameric NaV channels from the
ubiquitous marine plants coccolithophores Emiliania huxleyi and
Scyphosphaera apsteinii, exhibit fast inactivation property on the
millisecond timescale similar to human NaV channels22,23, sug-
gesting an unknown alternative mechanism for NaV channel fast
inactivation. Here, we employed cryo-electron microscopy (cryo-
EM) and electrophysiological voltage clamp approaches to
investigate the molecular mechanism for fast inactivation of the
sodium channel NaVEh from the coccolithophore Emiliania
huxleyi. Our results reveal an unexpected structural basis for the
N-type fast inactivation of an NaV channel, mediated by its
N-terminus and unrelated to the IFM-motif.

Results
Functional analysis of NaVEh and structure determination. The
sodium channel NaVEh from Emiliania huxleyi is composed of a
N-terminal helix (N-helix), 6 transmembrane segments (S1-S6)
and a C-terminal EF-hand like domain (EF-L) with a total of 542
amino acid residues (Fig. 1a), suggesting the channel is formed in
a homotetrameric fashion. It shares amino acid sequence identity
of 27% with the bacterial NaV channel NaVAb and 21% with
human NaV1.7, respectively (Supplementary Fig. 1), indicating
NaVEh is more closely related to bacterial NaV channels. The gene
encoding NaVEh was subcloned into a HEK293-F cell expression
vector fused with a green fluorescent protein (GFP) at the
C-terminus to facilitate tracing protein expression. We examined
the functional characteristics of NaVEh expressed in HEK293T cell
by whole-cell voltage clamp. NaVEh generated rapid inward cur-
rents in response to depolarizing pulses and became inactivated
within 5 ms (Fig. 1b). The V1/2 for voltage-dependent activation
and steady-state fast inactivation are −61.5 ± 2.0mV (n= 15) and
−94.4 ± 2.1mV (n= 9), respectively (Fig. 1b). NaVEh displayed
fast inactivation that closely resembles the asymmetric four-
domain eukaryotic NaV channels20,24,25, and differs markedly

from the homotetrameric NaV channels from prokaryotes that
lack fast inactivation11,12. Surprisingly, no IFM-motif like
sequence was found in the NaVEh protein sequence (Supple-
mentary Fig. 1).

To investigate the molecular mechanism underlying fast
inactivation of NaVEh independent of the IFM-motif, we purified
a homogeneous sample of NaVEh in detergents (Supplementary
Fig. 2a), and performed cryo-EM single-particle analysis of the
purified sample, yielding a final reconstruction map at an overall
resolution of 2.8 Å (Fig. 1c and Supplementary Fig. 2b). The
excellent density map allowed accurate de novo model building of
the region W69-D358 (Fig. 1d and Supplementary Fig. 3). Four
blobs of globular density located in the cytosol may belong to the
C-terminal EF-L domain (Fig. 1c); however, the map quality of
this part was not sufficient to build a reliable model for the EF-L
domain. Strikingly, a strong tubular density of ~26 Å in length
was observed half-embedded in the intracellular activation gate of
NaVEh (Fig. 1c). The tube-like density consistently emerged when
map reconstruction was performed with either C1- or C4-
symmetry imposed (Fig. 1c and Supplementary Fig. 3c), indicat-
ing that the intrinsic density may belong to a helix that extends
into the activation gate.

Architecture of NaVEh and its open activation gate. The NaVEh
structure is assembled by four identical subunits in domain-
swapped organization (Fig. 1d). Each subunit is composed of a
voltage-sensing domain (VSD, S1-S4) and a pore module (PM,
S5-S6). The transmembrane core region of NaVEh resembles the
bacterial NaVAb26 and human NaV1.525 structures with root
mean square deviation (RMSD) of 2.4 Å and 2.9 Å respectively,
highlighting the conserved architecture of NaV channels across a
wide range of species. Distinct from NaVAb, NaVEh has an
extracellular loop (ECL) between S5 helix and pore-helix 1 (P1),
extending the vestibule ~25 Å tall above the ion selectivity filter
(SF) (Fig. 1a, d). Each ECL consists of a pair of anti-parallel beta
sheets and two short helices projecting above the PM, which form
extensive interactions with adjacent ECL to stabilize the vestibule
(Fig. 2a, b). For example, carbonyl oxygen atoms of G237 and
G280 form polar interactions with adjacent R254 and G271,
respectively (Fig. 2b). A blob of strong density for a solvent
molecule, mediates electrostatic interaction between E285 and
N251 of neighboring subunit (Fig. 2b, red sphere). Notably, the
ECL is in rich of acidic residues, which generate a strong elec-
tronegative surface and provide additional anionic coordination
sites for cations (Fig. 2c). The four ECLs form a funnel-shaped
vestibule with a diameter of 23.3 Å on the extracellular end, which
narrows to 7.3 Å at the SF (Fig. 2d). Interestingly, such ECLs are
not found in prokaryotic NaV channels (Fig. 3a), though sig-
nificant differences between the ECLs of NaVEh and mammalian
NaV channels (Fig. 3b, c) remain. At the bottom of the vestibule, a
short loop of 303TGESWSE309 between P1 and P2 helices con-
stitute the SF of NaVEh. The SF loop is highly conserved with the
175TLESWSM181 loop of its prokaryotic analog NaVAb26. Four
Glu residues at the +3 position mainly determine sodium selec-
tivity by forming a high-field strength site for dehydrating Na+

ions26 (Figs. 2c, d and 3d). However, the symmetric SF of NaVEh
differs from the asymmetric SF of metazoan NaV channels, which
feature the signature DEKA sequence27. Structure superposition
revealed that the square SF of NaVEh is nearly identical to that of
NaVAb with van der Waals diameter of 4.6 Å (Figs. 2e and 3d),
indicating the SF of NaVEh is more closely related to NaVAb than
to heterotetrameric eukaryotic Nav channels. Because the Lys
from DIII of the DEKA sequence of heterotetrameric Nav chan-
nels was consistently found pointing inside the SF18–20,25,28, the
asymmetric SF of human NaV channel is shorter than NaVEh in
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one dimension (Fig. 3e). Despite the conformational and com-
positional differences, all three SFs confer Na+ selectivity11,22,27.
Although possible models have been proposed to explain the
sodium selectivity20,26,29–32, the exact structural mechanisms for
discriminating Na+ need further investigation.

The VSD of NaVEh was resolved in an activated conformation,
similar to other NaV channel structures19,20,26. The gating charge
carrier S4 helix adopts 310 helical conformation, with three of its
five gating charges in the activated “up” conformation above the
hydrophobic-constriction site (HCS) (Fig. 3f). Two gating charges
are stabilized by intracellular negatively charged clusters (INC)
below the HCS, suggesting the VSD of NaVEh is less fully
activated than that of NaVAb or VSDI, VSDII, and VSDIII of
human NaV channels (Fig. 4f–i). Activation of the VSDs generally

causes pore opening or channel transition to a non-conductive
inactivated state. We next calculated the pore radius of NaVEh at
the intracellular activation gate, excluding the N-helix. As
illustrated in Fig. 2d, the van der Waals diameter for the
activation gate of NaVEh is ~8 Å, wider than the size of hydrated
Na+ (7.2 Å)33, indicating that the gate of NaVEh is fully open. A
closer look at the gate revealed that the gate is constricted by four
L350 residues, whose distance is 11.5 Å measured from the side-
chain distal carbon atoms of opposing residues (Fig. 2f). In fact,
structural superposition suggests the gate of NaVEh is slightly
wider than the open gate of NaVAb34 and rat NaV1.521 (Fig. 2e, f).
Collectively, the activated VSD, open activation gate and the
presence of a helix blocking the open gate indicate the NaVEh
structure was captured in its open-inactivated state.
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The N-helix mediates fast inactivation of NaVEh. The helical
density blocking the open gate coincides with the C4-symmetric
axis of NaVEh; consequently, the density was averaged during the
final refinement with C4-symmetry imposed (Fig. 1c and Supple-
mentary Fig. 3c). To define which part of NaVEh actually forms the
observed density, we performed electrophysiological studies of
NaVEh variants with deletion or mutation. Deletion of the
C-terminal P518-V542 (NaVEhΔ518-542) caused negligible effect on
fast inactivation or activation compared to the wild-type
(NaVEhWT) (Supplementary Fig. 4a, b). By sharp contrast, dele-
tion of N-terminal I2-R13 (NaVEhΔ2–13) completely abolished the
fast inactivation (Fig. 4a and Supplementary Fig. 4b). In addition,
we found that the fast inactivation of the NaVEhΔ2–13 can be
partially restored when intracellularly applying a synthetic poly-
peptide of the N-helix (peptide2–13) in a concentration-dependent
manner (Supplementary Fig. 4b). At high concentration of
200 μM, the peptide2–13 can restore the fast inactivation of
~88.6 ± 6.1% (n= 9) when test pulse was held at −35 mV (Fig. 4a).
These results strongly indicate that the N-helix is responsible for
the fast inactivation of NaVEh. To confirm that the N-helix blocks
the gate, we purified a NaVEhΔ2–13 protein sample and solved its
cryo-EM structure at 4.0 Å resolution (Supplementary Fig. 5). The
EM map of NaVEhΔ2–13 clearly showed a hollow gate without any
visible density (Supplementary Fig. 5c, d), which confirms that the
N-helix indeed binds in the activation gate and blocks it.

Sequence analysis shows that the first two helical-turns of the
N-helix are composed of hydrophobic or small side-chain residues
followed by five consecutive positively charged residues of Arg9-
Arg13 (Arg-cluster) (Fig. 4b). We found that the N-helix can be
neatly fitted into the density (Supplementary Fig. 3c). In particular,
the first two helical-turns are embedded inside the open activation

gate without clashing with the gate (Fig. 4c). Furthermore, we
noticed that the outer mouth of the activation gate is rich in
negatively charged residues (Fig. 4b, d); therefore, the Arg-cluster
can form multiple electrostatic interactions with the negatively
charged residues on the four S6 helices (Fig. 4c, d). We hypothesize
that the Arg-cluster in the N-helix forms a pre-docking complex for
fast inactivation by interacting loosely with the negatively charged
outer mouth of the gate and moving the N-helix close to it. In this
pre-docking position, the N-helix can plug the gate rapidly after
gate opening. To validate this hypothesis, we mutated the Arg9-
Arg13 to five Glu (NaVEhnE5) and examined the fast inactivation
property of the mutants. Strikingly, the fast inactivation of
NaVEhnE5 was completely removed by the mutations (Fig. 4a).
These results clearly demonstrate that the electrostatic interactions
play critical role in the fast inactivation process.

The N-terminus mediated inactivation in potassium channels
is well-studied and often termed the “ball-and-chain”
mechanism13,15,17,35–37. The fast inactivation of potassium channels
is removed after deletion of the N-terminus15,17,37 and restored by
intracellular application of the N-terminal polypeptide17,37,38,
similar to the results we found for the NaV channel NaVEh
(Fig. 4a). Sequence alignment reveals that the N-terminus of the
three coccolithophore NaV channels, the potassium channels and
their accessory subunits feature a conserved sequence motif with a
short region of hydrophobic residues followed by a positively
charged cluster poised to enter and block the activation gate
(Supplementary Fig. 6a, b). Recent progress from the cryo-EM
structure of a calcium-gated prokaryotic potassium channel MthK
revealed the structural basis for its N-type inactivation13. Even
though the density map was resolved at medium resolution that did
not allow side-chain assignment, it clearly showed an N-terminal
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helical-like density inserted into the open activation gate. Super-
position of the open gates of our NaVEh and the MthK (PDB code
6U68)13 shows that both gates have a helix inserted in the middle;
however, the gate of MthK is ~1.5 Å wider than that of NaVEh
(Supplementary Fig. 6c, d). The smaller gate of NaVEh is caused by
the tight corral formed by four S4-S5 linker helices, which is absent
in the MthK channel (Fig. 1d and Supplementary Fig. 6c).

Nevertheless, these observations indicate that the N-type fast
inactivation of NaVEh is similar to the N-type inactivation of
potassium channels in mechanism.

Unexpected N-type fast inactivation of NaV channels. Fast
inactivation is the hallmark feature of eukaryotic NaV channels.
Structures of eukaryotic NaV channels have established structural
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basis for understanding the molecular mechanism of fast inactiva-
tion mediated by the IFM-motif18–20,25,28. The IFM-motif folds into
the channel structure and binds tightly to a hydrophobic receptor
site adjacent to the S6IV helix, which shifts the S6IV helix and
allosterically closes the activation gate (Fig. 5a). Release of the IFM-
motif from its receptor site leads to pore opening21. This unique
local allosteric inactivation mechanism for NaV channels not only
can rapidly terminate sodium influx to prevent overactivity (Fig. 5c,
τinact= 2.8 ± 1.4 msec at −10mV), but can also ensure that the
channels can quickly recover from fast inactivation in order to
permit repetitive firing in nerve and muscle cells39,40 (Fig. 5e,
τfast= 10.1 ± 2.3 msec). Unlike the canonical IFM-motif mediated
inactivation, our NaVEh structure demonstrates an alternative
mechanism for fast inactivation of NaV channels that is funda-
mentally different. The N-helix of NaVEh plugs into its open
activation gate and physically blocks it (Fig. 5b), similar to the “ball-
and-chain” mechanism observed in potassium channels13. Inter-
estingly, the fast inactivation time course of NaVEh is comparable to
the mammalian sodium channels (Fig. 5d, τinact= 1.3 ± 0.1 msec at
−10mV), indicating that the IFM-motif is not a prerequisite for the
fast kinetics of NaV channel inactivation. Because IFM-motif
mediated fast inactivation depends on activation of VSDIV

19,20,41,
its time course is voltage-dependent (Fig. 5c). In contrast, the time
course of fast inactivation for NaVEh is independent of voltage
(Fig. 5d), suggesting that the N-helix mediated fast inactivation is
open-state inactivation. Strikingly, the recovery of NaVEh from fast
inactivation is about 157-fold slower than human NaV1.7 (Fig. 5f,

τfast= 1584 ± 473 msec). The recovery rate is even slower than
human NaV1.7 and NaV1.8 recovery from slow inactivation42,
which were reported to be less than 1 s. Our NaVEh structure
provides key structural information that explains the dramatic
differences in recovery rate between NaVEh and NaV1.7 (Fig. 5a, b).
The binding of the IFM-motif to its receptor site buries a total of
866-Å2 solvent accessible surface. However, the N-helix embedded
inside the activation gate buries a total surface of 1688-Å2, almost
2-fold greater than the IFM-motif. In addition, the multiple elec-
trostatic interactions between the Arg-cluster on the N-helix and
the negative charges on the S6 helices further strengthen the
binding of the N-helix (Fig. 4c, d). The stronger binding interac-
tions of the N-helix indicate that the energy barrier for releasing the
N-helix from the open gate would be much higher than releasing
the IFM-motif from its receptor site.

Discussion
In this study, we presented high-resolution cryo-EM structure of
the eukaryotic sodium channel NaVEh from the unicellular
phytoplankton Emiliania huxleyi. The NaVEh structure shares a
conserved core region with NaV channels from bacteria and
mammals19,20,25,26,28, but it is more closely related to the bacterial
NaV channels, especially in its homotetrameric assembly and
selectivity filter. However, NaVEh possesses an additional ECL
domain and intracellular EF-L domain that might regulate
channel function compared to NaVAb. More importantly, NaV
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channels from the unicellular phytoplankton like NaVEh have
gained the ability of fast inactivation similar to metazoan NaV
channels, unlike its prokaryotic homologs that are inactivated at
much slower pace, possibly through a C-type slow inactivation
mechanism43–46. We identified the N-helix of NaVEh as the key
determinant for its fast inactivation, revealing the N-type like fast
inactivation for NaV channels that is similar to the “ball-and-
chain” mechanism for potassium channels13,15,17. Our high-
resolution structure, complemented with electrophysiological
results, provides detailed mechanistic insights into N-helix
mediated inactivation, and structural information that poten-
tially explains its similar fast inactivation but much slower
recovery from fast inactivation compared with the canonical
IFM-motif mediated fast inactivation. The fascinating marine
plants coccolithophores are critical for the marine ecology and are
highly relevant to climate change47,48. The fast inactivation of
NaVEh may be important for the unicellular phytoplankton to
tolerate the high concentration of sodium in the living

environment22, but the slow recovery may prevent use of this
mechanism in metazoan that require high-frequency electrical
signaling. It will be of great interest to determine the precise
physiological role of NaVEh and its unique fast-inactivation
process in coccolithophores and other single-celled organisms.

Methods
Whole-cell voltage-clamp recordings of NaVEh in HEK293 T cells.
HEK293 T cells were cultured with Dulbecco’s Modified Eagle Medium (DMEM)
(Gibco, USA) supplemented with 10% (v/v) fetal bovine serum (FBS, PAN-Biotech,
Germany) at 37 °C with 5% CO2. HEK293 T cells were transfected with plasmids of
NaVEh WT or mutants using Lipofectamine 2000 Reagent (Thermo Fisher Sci-
entific, USA) for 12 h. Experiments were performed 12–24 h post transfection at
room temperature (22–25 °C). In brief, cells were placed on a glass chamber
containing 140 mM NaCl, 3 mM KCl, 10 mM HEPES, 10 mM D-Glucose, 1 mM
MgCl2, 1 mM CaCl2, (pH= 7.3 with NaOH and osmolarity of ~310 mOsm/L).
Whole-cell voltage-clamp recordings were made from isolated, GFP-positive cells
using 1.5 ~ 2.5 MΩ fire polished pipettes (Sutter Instrument, USA) filled with
standard internal solution, containing 140 mM CsF, 10 mM HEPES, 1 mM EGTA,
10 mM NaCl, (pH= 7.3 with CsOH and osmolarity of ~300 mOsm/L). Whole-cell
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currents were recorded using an EPC-10 amplifier (HEKA Elektronik, Germany) at
20 kHz sample rate and was low pass filtered at 10 kHz. The series resistance was
2~6MΩ and was compensated 70~90%. The data was acquired by PatchMaster
program (HEKA Elektronik, Germany).

To characterize the activation properties of NaVEh channels, cells were held at
−150 mV and then a series of 100 ms voltage steps from −100 mV to +20 mV
(5mV increments) were applied. The time constant (τ) of fast inactivation was
from single exponential fits of NaVEh activation in response to depolarization using
this voltage protocol. The fast inactivation properties of NaVEh channels were
assessed with a 500 ms holding-voltages ranging from −140 mV to −20 mV (5mV
increments) followed by a 50 ms test pulse at −50 mV. The recovery properties
were assessed by a double-pulse protocol using a varying interval between the two
voltage pulses. Holding potential was −150 mV and prepulse was −50 mV for
20 ms, followed by a recovery test pulse of −50 mV for 5 ms at 32–4096 ms. The
currents elicited by the test pulse were normalized to construct the recovery curve.

As for the voltage-clamp recording analyses, all data were reported as
mean ± SEM. Data analyses were performed using Origin 2019b (OriginLab, USA),
Excel 2016 (Microsoft, USA), and GraphPad Prism 8.0.2 (GraphPad Software, USA).

Steady-state activation curves were generated using a Boltzmann equation.

G
Gmax

¼ 1
1þ exp½ðV � V0:5Þ=k�

ð1Þ

where G is the conductance, Gmax is the maximal conductance of NaVEh during the
protocol, V is the test potential, V0.5 is the half-maximal activation potential and k
is the slope

Fast inactivation curves were generated using a Boltzmann equation.

I
Imax

¼ 1
1þ exp½ðV � V0:5Þ=k�

ð2Þ

where I is the current at indicated test pulse, Imax is the maximal current of NaVEh
activation during test-pulse, V is the test potential, V0.5 is the half-maximal
inactivation potential and k is the slope factor.

Recovery curves from fast inactivation were fit using a single exponential of the
following equation.

Itest
Ipre

¼ y0 � 1
� � � exp � t

τ

� �
þ 1 ð3Þ

where Ipre is the current at prepulse, Itest is the current at test pulse, y0 is the non-
inactivated current at the first pulse, t is the delay time between prepulse and test-
pulse, and τ is the time constant of recovery from fast inactivation.

Expression and purification of NaVEh. The codon-optimized gene encoding
NavEh (Emiliania huxleyi) was synthesized and was subcloned into the modified
pEG BacMam vector49 (Supplementary Table 1). In order to monitor protein
expression and purification, a green fluorescent protein (GFP) and a Twin-Strep
tag were fused to the C-terminus of NavEh. All constructs were confirmed by DNA
sequencing. HEK293-F cells were cultured with Freestyle 293 medium at 37 °C,
supplied with 5% (v/v) CO2. When the cell density reached 2.5 × 106 cells/mL, a
mixture (3:1) of expression plasmid and polyethylenimine (Polysciences) was
added to the cell culture following a standard transfection protocol. After 12 h,
sodium butyrate (Sigma, USA) was added to the culture at a final concentration of
10 mM, and the cells were incubated for another 48 h before harvesting.

For purification, the cell pellets were resuspended in Buffer A containing
20 mM HEPES pH 7.5, 150 mM NaCl, 2 mM β-mercaptoethanol (β-ME), and a
protease inhibitor cocktail including 1 mM phenylmethylsulfonic acid Acyl fluoride
(PMSF), 0.8 μM pepstatin, 2 μM leupeptin, 2 μM aprotinin, and 1 mM
benzamidine. Then cells were disrupted with a Dounce homogenizer and
membrane fractions were enriched by ultracentrifugation at 36,900 rpm for 40 min.
Subsequently, the membrane protein fraction was resuspended in buffer B (buffer
A supplemented with 1% (w/v) n-dodecyl-β-D-maltoside (DDM), 0.15% (w/v)
cholesterol Hemisuccinate (CHS), 5 mM MgCl2, and 1 mM ATP), and agitated at
4 °C for 2 h. The insoluble membrane fraction was removed by ultracentrifugation
at 36,900 rpm for 40 min. Then the supernatant was incubated with Strep-Tactin
beads (Smart-Lifesciences), which was pre-equilibrated with buffer C (buffer A
supplemented with 5 mM MgCl2, 5 mM ATP, and 0.06% (w/v) Glyco-diosgenin
(GDN) (Anatrace)). Subsequently, the Streptactin beads were washed with 10
column volumes of buffer C and buffer D (buffer C without 5 mM MgCl2 and
5 mM ATP), respectively. The protein was eluted by 5 ml buffer E (buffer D plus
5 mM desthiobiotin). The elution was concentrated and loaded onto Superose
Increase 10/300 GL (GE Healthcare, USA) pre-equilibrated with 20 mM HEPES,
150 mM NaCl, 0.007% GDN (w/v), and 2 mM β-mercaptoethanol (β-ME), pH 7.5.
Peak fractions were collected and concentrated to 7.8 mg/mL.

Cryo-EM sample preparation and data collection. Aliquots of 2.5 μL purified
sample was placed on glow-discharged holey copper grids (Quantifoil Cu R1.2/1.3,
300 mesh), which were blotted for 2.5–3.5 s and plunge-frozen in liquid ethane
cooled by liquid nitrogen using a FEI Mark IV Vitrobot at 4 °C with 100%
humidity. All data were acquired using a Titan Krios transmission electron
microscope operated at 300 kV, a Gatan K2 Summit direct detector and Gatan

Quantum GIF energy filter with a slit width of 20 eV. All movie stacks were
automatically collected using SerialEM at a calibrated magnification of 105,000×
with a physical pixel size of 1.04 Å (super-resolution mode). The defocus values
were set from −1.2 to −2.2 μm. The dose rate was adjusted to 10 counts/pixel/s. A
total of 1014 and 1119 movie stacks were collected for NaVEhWT and NaVEhΔ2–13,
respectively. Each movie stack was exposed for 6.4 s fractionated into 32 frames
with a total dose of 60 e−/Å2.

Data processing. All the movie stacks were motion-corrected, binned by 2-fold
and dose-weighted using MotionCorr250, yielding a pixel size of 1.04 Å. Defocus
values of each summed micrographs were estimated with Gctf51. A total of 299,062
and 579,023 particles were auto-picked for NaVEhWT and NaVEhΔ2–13, respec-
tively. All 2D classification, 3D classification, polishing, and CTF refinement were
carried out in RELION3.052. The detailed data processing flow was shown in
Supplementary Figs. 2 and 5. The best class containing 61,065 and 64,407 particles
for NaVEhWT and NaVEhΔ2–13 were refined using cryoSPARC53 to 2.83 Å and
4.02 Å resolution, respectively.

Model building. The predicted AlphaFold model of NaVEh was fitted into the
cryo-EM density map of NaVEh using Chimera54, manually checked, and corrected
in COOT55. Then the resulting model were refined in Phenix56. The model vs. map
FSC curve was calculated by Phenix.mtrage. The statistics of cryo-EM data col-
lection and model refinement were summarized in Supplementary Table 2.

All figures were prepared with PyMOL (Schrödinger, LLC), and Prism 8.0.1
(GraphPad Software) and ChimeraX57.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The amino acid and gene sequences of NavEh
(MMETSP transcriptomic datasets [https://www.bco-dmo.org/dataset/665427] ID:
CAMPEP_0187654740, MMETSP0994-7) are provided in Supplementary Table 1.
Atomic coordinates have been deposited in the Protein Data Bank under the accession
code 7X5V (NaVEh), and the corresponding EM map has been deposited in the Electron
Microscopy Data Bank under the accession number EMD-33016 (NaVEh). PDB
accession codes used in this study are 5VB8 (NavAb), 7FBS (Nav1.5), 6J8J (NaV1.7), and
6U68 (MthK). Source data of Figs. 1b, 4a, 5c–f, and Supplementary Figs. 2a and 4a are
provided with this paper.
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