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Type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) are the most problematic
metabolic diseases in the world. NAFLD encompasses a spectrum of severity, ranging from simple steato-
sis to non-alcoholic steatohepatitis (NASH) and fibrosis, increasing the risk of cirrhosis and hepatocellular
carcinoma. Importantly, NAFLD is closely linked to obesity and tightly interrelated with insulin resistance
and T2DM. T2DM and NAFLD (T2DM-NAFLD) are called as the Xike Rixijing Disease and Tonglaga
Indigestion Disease respectively, in Mongolian medicine. Xike Rixijing Disease maybe develop into
Tonglaga Indigestion Disease. Forturnately many Mongolian medicines show efficient treatment of
T2DM-NAFLD, such as Agriophyllum squarrosum, Haliyasu (dried powder of camel placenta), Digeda-4
(herbs of Lomatogonium carinthiacum, rhizomata of Coptis chinensis, ripe fruits of Gardenia jasminoides,
herbs of Dianthus superbus), Guangmingyan Siwei Decoction Powder (Halite, ripe fruits of Terminalia che-
bula, rhizomata of Zingiber officinale, fruit clusters of Piper longum), Tonglaga-5 (ripe fruits of Punica
granatum, barks of Cinnamomum cassia, ripe fruits of Amomum kravanh, fruit clusters of Piper longum,
flowers of Carthamus tinctorius), Tegexidegeqi (rhizomata of Inula helenium, ripe fruits of Gardenia jasmi-
noides, rhizomata of Platycodon grandiflorum, rhizomata of Coptis chinensis, heartwood of Caesalpinia sap-
pan), Ligan Shiliu Bawei San (ripe fruits of Punica granatum, barks of Cinnamomum cassia, ripe fruits of
Amomum kravanh, fruit clusters of Piper longum, flowers of Carthamus tinctorius, ripe fruits of Amomum
tsao-ko, rhizomata of Zingiber officinale), etc. Principles of Mongolian medicine in treating diseases: by
balancing ‘‘three essences or roots” and ‘‘seven elements”, strengthening liver and kidney function, trans-
porting nutrients to enhance physical strength and disease resistance, and combined with drugs for com-
prehensive conditioning treatment. However, their molecular mechanisms remain unclear. In this review,
we prospect that Mongolian medicines might be a promising treatment for T2DM-NAFLD by activating
P2X7R/NLRP3/NF-jB inflammatory pathway via lipid-sensitive nuclear receptors (i.e., FXR and LXR).

� 2022 Tianjin Press of Chinese Herbal Medicines. Published by ELSEVIER B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Diabetes is a metabolic disease characterized by increased glu-
cose levels (Sun et al., 2020). Diabetes is known as Xike Rixijing
Disease in modern Mongolian medicine. In Mongolian medicine,
diabetes is believed to be induced by the imbalance of ‘‘three
essences or roots” and ‘‘seven elements” in the human body, which
leads to overaccumulation of Badagan and fat. Meanwhile, Bada-
gan and fat may interact with Heyi and Xila (Ao, ALG, & Chen,
2019), causing heat and dryness in the liver and kidney, leading
to liver and kidney function decline and making the needed
essence unabe to produce and the dross decomposition abnormal.
In other words, when Badagan and fat levels increase, they cannot
become the essence but become urine transported to the bladder,
leading to diabetes. Fat overaccumulation in the liver can easily
cause Tonglaga (food essence) Indigestion Disease (Ba, 1988;
Yuan, 1977), which is nonalcoholic fatty liver disease (NAFLD).
Here, patients may develop costal distention or dull pain, anorexia,
abdominal distention, fatigue, dull pain in the liver area, and a
sense of compression or fullness in the right upper abdomen. Insu-
lin resistance (IR) and inflammation can continue to aggravate
NAFLD and promote its progression to nonalcoholic steatohepatitis
(NASH), and advance liver fibrosis and cirrhosis (Kim et al., 2020;
Manne, Handa, & Kowdley, 2018). NAFLD affects 25%–30% of the
general population and may increase to 80%–90% of patients with
type 2 diabetes mellitus (T2DM) (Polyzos & Mantzoros, 2016;
Younossi et al., 2016). The risk factors for T2DM complicated with
NAFLD (T2DM-NAFLD) mainly include obesity, IR, and fat meta-
bolic disorder (Wang, 2014). They are mutually causal, not only
increasing the difficulty of blood glucose control but also accelerat-
ing the progression to cirrhosis which may further increase the risk
of other critical complications (Wang & Li, 2019). Studies have
demonstrated that the degree of liver fibrosis is the most powerful
predictor for all-cause death. Although most patients with NAFLD
do not reach the stage of cirrhosis, patients with T2DM show a rel-
atively faster progression as well as higher risks of NASH and liver-
related death, one of the main causes of death in patients with dia-
betes (Ciardullo et al., 2020). The mechanisms of NAFLD incidence
may be related to oxidative stress, inflammation, and metabolic
disorder. However, the specific underlying mechanisms remain
unclear (Neuschwander-Tetri, 2017; Otterdal et al., 2015). Several
studies have highlighted the strong interaction between T2DM
and NAFLD and describe a complex bidirectional relationship.
Indeed, the coexistence of these two conditions pejoratively affect
the course and prognoses of both diseases (Birkenfeld & Shulman,
2014; Caussy, Aubin, & Loomba, 2021; McPherson et al., 2015;
Wang, Kang, Cao, Wang, & Liu, 2012; Watt et al., 2020).

IR is the common pathophysiological basis of T2DM and NAFLD.
During the pathogenesis, fatty acid stimulation and inflammatory
response activation can cause or aggravate IR. P2X7, a subtype of
P2X receptors, plays an important role in inflammation (Xue
et al., 2018). The NOD-like receptor family pyrin domain contain-
ing 3 (NLRP3) inflammasome has been linked to metabolic disease,
including high uric acid and IR (Yu, Chen, Zhao, Zhu, & Dong, 2021).
The NLRP3 inflammasome together with the P2X7 receptors
(P2X7R) release a large of cytokines such as interleukin-1b (IL-
1b), interleukin-6 (IL-6), interleukin-18 (IL-18), and those cytoki-
nes release activated inflammatory nuclear transcription factor
(NF) jB (NF-jB) pathway and amplified the inflammatory process
(Gora, Ciechanowska, & Ladyzynski, 2021). Farnesoid X receptor
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(FXR) is a master regulator of bile acid metabolism, lipid metabo-
lism, and hepatic glucose metabolism. In patients with NAFLD,
triglycerides accumulate in the liver leading to steatosis from
increased de novo lipogenesis and fatty acid uptake in addition to
reduced fatty acid oxidation and very-low-density lipoprotein
(VLDL) export (Albillos et al., 2020). Liver X receptors (LXRs) are
a group of ligand-activated transcription factors (Dixon et al.,
2021). In NAFLD patients, the nuclear receptors FXR and LXR are
master regulators of metabolism and liver physiology (Welch
et al., 2022). Therefore, regulating fat metabolism and improving
inflammatory response are the conventional approaches in the
treatment of T2DM-NAFLD.

The mainstay of NAFLD management is currently to reduce
modifiable metabolic risk. Achieving good glycaemic control and
optimising weight loss are pivotal to restricting disease progres-
sion (Hazlehurst, Woods, Marjot, Cobbold, & Tomlinson, 2016).
There is no cure for T2DM so far, but it can be treated and con-
trolled. Synthetic drugs and/or insulin may be required to maintain
the blood glucose level as near as possible to normal and to delay
or possibly to prevent the development of diabetes-related health
problems (Artasensi et al., 2020). Furthermore, Biguanide,
glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl
peptidase 4 (DPP-4) inhibitors, and sodium-glucose cotransporter
2 (SGLT2) inhibitors have been successfully introduced for the
treatment of T2DM. However, those drugs have the adverse effect,
such as nausea, vomiting, diarrhea (Gilbert & Pratley, 2020; Ma
et al., 2021).

2. T2DM-NAFLD in Mongolian medicine

In Mongolian medicine, the human body is considered to con-
sist of ‘‘three essences or roots” (i.e., Heyi, Sheila, and Badakan)
and ‘‘seven elements” (fine food, blood, muscle, fat, bone, bone
marrow, and semen). The ‘‘three essences or roots” refer to three
energy and fundamental substances on which the human body
relies for activities, whereas the ‘‘seven elements” refer to material
basis on which ‘‘three essences” rely. All human life activities are
regulated by the ‘‘three essences”, and all diseases are attributable
to the imbalance of these ‘‘three essences” and ‘‘seven elements”
induced by factors such as diet, daily life, and season change
(Fig. 1). The whole digestive process represented by the biochem-
ical process of the ‘‘seven elements”. Under the action of digestive
function, Shuigu (i.e., food) received by the stomach is further
decomposed into Jinghua (anima) and waste. Of these, Jinghua
are transported to the liver, whereas carried the waste to the large
intestines. Shuigu and Jinghua transported to the liver are bio-
chemically transformed into blood in the liver by the action of heat
energy and discoloration of Sheila and biochemically transformed
into Jinghua such as muscles, fat, bone, bone marrow, and semen
initially. Moreover, the bile generated in the liver (i.e., waste in
blood) is delivered to the gallbladder simultaneously. Blood runs
through the entire body under the action of the heart and the gen-
eral Heyi and constantly breeds and supplements seven elements
consumed in visceral functional activities. From this perspective,
the importance of the liver in the biochemistry of seven elements
is identical to that of modern medicine, which indicates that the
liver is an important organ in the body responsible for detoxifica-
tion, excretion, immunity, hematopoiesis, endocrine regulation,
and the completion of the body’s material metabolism. Long-
term overeating the foods with sweet, salty, cold, and heavy taste



Fig. 1. Fundamental theories of Mongolian medicine.

S. Bao, X. Wang, Q. Ma et al. Chinese Herbal Medicines 14 (2022) 367–375
and sitting and lying on wetlands can cause imbalance of the
‘‘three essences” and ‘‘seven elements”. The overaccumulation of
Badagan and fat, their interaction with Heyi and Sheila, and the
abnormal decomposition of Jinghua and waste can lead to Xike
Rixijing Disease. Moreover, overaccumulation of fat in the liver
can easily cause Tonglaga Indigestion Disease. In other words,
when glucose and fatty acids in the body cannot be utilized well,
lipoprotein synthesis is impaired and most glucose and fatty acids
are transformed into fat in the liver, which eventually induces fat
accumulation in the liver. Overaccumulation of fat in the liver
can easily result in T2DM-NAFLD. According to the theoretical
characteristics of Mongolian medicine and relevant records in clas-
sical works, combined with clinical symptoms, fatty liver disease
can be divided into Badagan Heyi, Badagan Sheila, Qisu Sheila,
and Badagan Qisu. Moreover, the symptoms of the NAFLD, steato-
hepatitis, and steatohepatitis cirrhosis stages are similar to Bada-
gan Heyi, Qisu Sheila, and Badagan Qisu, respectively (Wu & Ha,
2017). Drugs should be selected on the basis of the principle of reg-
ulating three essences and fat metabolism on the basis of strict
control of blood glucose.

The principles of medication and treatment of T2DM-NAFLD in
Mongolian medicine are roughly divided into three major steps:
restoring physical strength, strengthening nutrition; strengthening
kidney function; that is, patients should pay attention to the rules
of life in life, refuse overwork, remember the combination of work
and rest, refuse smoke and drink too much; in diet, they should pay
attention to the combination of coarse and fine grains, meat and
vegetables, main and non-staple food. They should eat black rice,
black beans, black sesame seeds, black fungus often, eat less sugar,
salt, white fat, and monosodium glutamate. Patients should pre-
vent sudden climatic changes in life, prevent wind, cold, heat,
damp, dry, fire climate damage caused by the invasion of the
human body. It is also necessary to avoid diseases caused by strong
mental stimulation of joy, anger, worry, thinking, sadness, fear, and
shock, and combine physical therapy, spiritual (psychological)
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therapy, diet therapy, and drug therapy. Among various treatments
the most important is drug treatment. Our research group found
that Mongolian medicine Agriophyllum squarrosum (L.) Moq. has
the effects of anti-oxidation, hypoglycemic, regulating blood lipids
and improving insulin resistance, and can delay or inhibit the liver
and kidney injury caused by diabetes. The pharmacological effects
of A. squarrosum were summarized in Table 1. Furthermore, we
found that Mongolian medicine extraction of Agriophyllum
oligosaccharides could protect the liver in type 2 diabetes, in part
by activating insulin in the INS-R/IRS2/PI3K/AKT/Glut4/PPAR-c sig-
nal pathway, facilitating hepatocyte proliferation, and further
reducing the blood glucose levels (Bao et al., 2020; Bao et al.,
2021). In addition to this, there are many Mongolian medicines
currently used for T2DM-NAFLD, such as traditional Mongolian
medicine Haliyasu, Digeda-4, Guangmingyan Siwei Decoction
Powder, Tonglaga-5, Tegexidegeqi, Ligan Shiliu Bawei San, etc.
The pharmacological effects were summarized in Table 2. These
medicines combined with a reasonable diet, regular exercise and
psychotherapy have achieved good results in the treatment of dia-
betes, which shows that the effect of Mongolian medicine in the
treatment of diabetes is objective and should be explored.

3. Research progress on T2DM-NAFLD pathogenesis in modern
medicine

T2DM-NAFLD pathogenesis remains unclear, whereas meta-
bolic disorder due to IR increasing triglyceride (TG) levels is a
key reason (Jarvis et al., 2020; Mu et al., 2019). Scholars have also
found that 27 targets are ubiquitous in T2DM-NAFLD–related path-
ways through target fishing and network construction and mainly
involved in IR and inflammation (Qin et al., 2019). The liver is the
target organ of insulin. It has an important role in lipid metabolism
regulating (Titchenell, Lazar, & Birnbaum, 2017). Due to the weight
gain caused by increased appetite and reduced physical activity,
the insulin receptor on hypertrophic fat cell membranes in patients



Table 1
Pharmacological effects of A. squarrosum.

Effects Reported pharmacological effects References

Used parts Extracts Experimental results

Anti-oxidation Shells of
seeds

Flavonoids
compounds

These extracts have the ability to scavenge DPPH radicals and intracellular ROS
and prevented DNA scission. Mechanism: Up-regulated of Nrf2 mediates the
p38 / pJNK / MAPK pathway and increases the expression of Bcl-2 to inhibit
apoptosis.

Xu, Zheng,
Zhang, Zhang,
& Ma, 2018Protocatechuic

acid
Seeds Chlorogenic acid Chlorogenic acid had a stronger ability to reduce potassium ferricyanide than

Vc, when they were at the same concentration. At the concentration of
187.5 mg/L, its antioxidant capacity to lard was stronger than that of BHA and Vc
at the same concentration, but weaker than Trolox.

Wang et al.,
2007

Extracts of
different
solvents

The antioxidant components of A. squarrosum were extracted at different
temperatures (30 �C, 60 �C) and different solvents (80% ethanol, 60% ethanol,
60% acetone, methanol solution) to determine the ability of each extract to
remove hydroxyl radicals. The results showed that the antioxidant effect of the
extract extracted with 60% ethanol was the strongest at 30 �C.

Ding, Hu,
Wang, Sun, &
Jiao, 2008

Above-
ground
plant parts

Aqueous extract It can increase SOD vitality, reduce MDA activity in the serum of streptozotocin
induced diabetic rats, and enhance the ability of the body to scavenge oxygen
free radicals.

Ji RGL, 2016

Hypoglycemic Above-
ground
plant parts

Aqueous extract It has significant hypoglycemic effect on streptozotocin induced SD rats,
improves the disorder of glucose and lipid metabolism, and promotes the repair
of islet b cells.

Ji, 2016

It has hypoglycemic effects and improved IR in KKAy mice. Mechanism: regulate
insulin signal transduction pathway IRS2 / PI3K / AKT / GSK3b / GLUT4.

Saqier et al.,
2019

Extracts of
different
solvents

Ethanol extract, ethyl acetate extract, n-butanol extract and aqueous extract
showed significant hypoglycemic effect in alloxan-induced diabetic mice, with
aqueous extraction and alcohol extract were more obvious, which significantly
improved glucose tolerance.

Ao & Bao, 2014

Agiophyllum
oligo saccharides
(AOS)

AOS can play its hypoglycemic effect by reducing random blood glucose,
improving oral glucose tolerance, increasing insulin sensitivity and improving
pathological changes of islet tissue in Goto-Kakizaki (GK) rats, and the effect is
similar to or even better than glibenuron.

Bao, Han,
Wang, Bao, &
Ao, 2016

In vitro and in vivo experiments proved that AOS reduces blood glucose level,
improves IR and protects pancreatic tissue by improving the function of islet b
cells (MIN6 cells) function. Mechanism: AOS increases insulin signaling INS-R /
IRS / GLUT4 signaling, thus regulating glucose metabolism disorder and
improving IR.

Bao et al., 2021

Regulating blood lipids Above-
ground
plant parts

AOS AOS decreased TG, TC and HDL-c levels in the serum of GK rats, indicating its
effect in improving hyperlipidemia.

Bao, Han,
Wang, Bao, &
Ao, 2016

Crude drug
Alcohol extract
Aqueous extract

A. squarrosum has the effect of reducing TC, TG and LDL in the serum of
hyperlipidemia diet induced Wistar rats. It was found by screening the active
ingredients that its main antilipid component was AOS, which had little toxicity
and could relieve the accumulation of fat in the liver tissues of hyperlipidemia
rats.

Bao, 2017

Improve the liver and kidney
damage caused by diabetes
mellitus

Above-
ground
plant parts

AOS AOS significantly decreased the contents of ALT, AST, Cre and UA in serum of GK
rats, and the level of NF-B in liver and kidney tissues was also significantly
inhibited, which could significantly improve the pathological injury of liver and
kidney tissues in diabetic rats.

Bao, Han, Chao,
Che, & Ao, 2018

AOS improved glucose and lipid metabolism disorder and liver function in db /
db mice, and reduced the production of inflammatory factors to inhibit the
development of T2DM-NAFLD. Mechanism: AOS up-regulated PPARc, increased
the phosphorylation of IRS2 and AKT proteins, and then mediated the signal
transduction of insulin signaling pathway INS-R / PI3K / AKT / GLUT4.

Bao et al., 2020
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with T2DM is insensitive to insulin, which results in IR, leading to
the weakening of insulin’s effect on inhibiting free fatty acid (FFA)
release in the plasma and the increase in the levels of FFAs entering
the liver. FFAs form considerable TG deposition in the liver, result-
ing in hepatocyte degeneration and fatty liver disease. The more
serious IR, the more obvious is the lipid metabolic disorder, which
indicates that IR may be important in potential liver diseases sec-
ondary to T2DM (Carolina et al., 2012; Li et al., 2021). In other
words, IR, an independent risk factors for fatty liver disease, may
be the link between T2DM and NAFLD. Pharmacological effect
and mechanism are summarized in Fig. 2.

T2DM causes NAFLD (including NAFLD, NASH, liver fibrosis, and
even cirrhosis); 10%–20% of patients with T2DM have NASH.
NAFLD is only manifested as the fatty degeneration of liver cells,
and liver cell damage does not generally occur at this stage. Liver
function and transaminase can be normal or abnormal. In this
370
stage, the symptoms of poor appetite, nausea, and bloating are
similar to Badagan Heyi in Mongolian medicine of Tonglaga Indi-
gestion Disease.

As NAFLD develops rapidly, the enriched FFA flows from the
dietary fat and white fat tissue into the liver, further stimulating
gluconeogenesis and increasing TG accumulation in the liver cells,
gradually resulting in more pathological changes occurring and
progressing to NASH (Thiyagarajan et al., 2020). According to the
‘‘two hits”, the first attack on the liver leads to IR. Fatty acids
imported into the liver and TG synthesized in the liver are too high
in diabetes, which results in TG accumulation in the liver and
increases oxidative stress. Then, liver is hit twice, resulting in
inflammation, necrosis, and fibrosis in the liver. IR leads to
increased FFA intake by the liver, further leading to a compen-
satory increase in the rate of mitochondrial oxidation and thereby
increasing reactive oxygen species (ROS) production. ROS can



Table 2
Pharmacological effects of traditional Mongolian medicine for treatment of T2DM-NAFLD.

Traditional
Mongolian
medicines

Reported pharmacological effects

Medicinal materials Animal or cells Experimental results References

Haliyasu (Dried
powder of
camel placenta)

� db / db mice Haliyasu has the characteristics of overall regulation, which can significantly
reduce food intake, inhibit appetite, improve abdominal obesity, reduce
blood glucose, TC, TG and LDL-C levels, improve the proliferative capacity
and functional status of T and b cells in spleen, increase the ratio of CD4+ /
CD8+ in peripheral blood, and improve endocrine and immune dysfunction.

Xu, Xie, Wang, &
Zhang, 2021

Digeda-4 Herbs of
Lomatogonium
carinthiacum (Wulf)
Reichb.
Rhizomata of Coptis
chinensis Franch.
Ripe fruits of Gardenia
jasminoides Ellis
Herbs of Dianthus
superbus L.

3T3-L1adipose
cell

Digeda-4 promotes fatty acid oxidation in adipocytes. Mechanism:
increasing PPARa, PPARb, IjBa, AKT, p-AKT and down-regulating LXRa and
iNOS protein expression.

Chen, 2011

Hyperlipid-
induced
NAFLD rats

Digda-4 reduced the levels of TG, LDL-C, FFA, AST, FINS, and FIRI in the serum
of NAFLD rats, while reducing TG, TC, and MDA in liver tissue.Its effects in
the treatment of NAFLD are related to lowering blood lipid, improving liver
function, antioxidant effect, and improving IR. Mechanism: increases the
expression of PPARs, IjBa, AKT, p-AKT and reduces the expression of LXRa
and iNOS to improve IR and oxidative stress.

Tian, Su, Zhao, Meng,
& Bao, 2010; Chen,
2011

Carbon
tetrachloride
induced rats

Digeda-4 increase the value of TC and HDL in rat serum, reduce the
abnormally elevated NEFA value, LPL and HL vitality in liver tissue, increase
the level of TC in liver tissue, reduce pathological changes such as liver tissue
degeneration and necrosis, and regulate lipid metabolism.

Zhao, Zhang, Wang,
Zheng, & Bao, 2012

Guangmingyan
Siwei Decoction
Powder

Halite
Ripe fruits of
Terminalia chebula
Retz.
Rhizomata of Zingiber
officinale Rosc.
Fruit clusters of
Piperlonguml.

Hyperlipid-
induced
NAFLD mice

Guangmingyan Siwei Decoction Powder can decrease the levels of TG and TC
in the serum of NAFLD mice, reduce liver wet weight and liver index, have
obvious lipid-lowering effect and inhibit the lipidation deposition in liver
tissue, and lipid-lowering effect is better than Tiopronin enteric-coated
tablets.

Na & Bao, 2017

3T3-L1adipose
cell

Guangmingyan Siwei Decoction Powder can activate PPARa / PGC-1a
signaling pathway to promote energy and fat metabolism, prevent
intracellular fat deposition, and then correct liver lipid metabolism disorder.

Na, 2017

Tonglaga-5 Ripe fruits of Punica
granatum L.
Barks of Cinnamomum
cassia Presl
Ripe fruits of Amomum
kravanh Pierre ex
Gagnep.
Fruit clusters of Piper
longum L.
Flowers of Carthamus
tinctorius L.

3T3-L1adipose
cell

Tonglaga-5 can up-regulate PPARa, PPARb, LXRa, IjBa, AKT, p-AKT and
down-regulate iNOS expression in 3T3-L1 adipocytes, promote insulin-
mediated glucose uptake and improve IR.

Chen, Wang, Jiang,
Bao, & Chen, 2011;
Tian, 2011

Hyperlipid-
induced
NAFLD rats

Tonglaga-5 decreased the levels of TG, TC, LDL-C, FFA, AST, FINS and FIRI in
serum, while reducing the levels of TG, TC and MDA levels in liver tissue, and
increasing SOD level in NAFLD rats.The expression of PPARa, PPARc, IjBa,
AKT, p-AKT and LXR and i NOS were increased in liver tissues to treat NAFLD.

Tian, Su, Zhao, Meng,
& Bao, 2010; Chen,
2011

Tegexidegeqi Rhizomata of Inula
helenium L.
Ripe fruits of Gardenia
jasminoides Ellis
Rhizomata of
Platycodon
grandiflorum (Jacq.) A.
DC.
Rhizomata of Coptis
chinensis Franch.
Heartwood of
Caesalpinia sappan L.

Alloxan
induced
diabetic mice

Tegexidegeqi reduces the contents of FBG, TC, TG, LDL-C, IL-6, TNF-a in
diabetic mice, increase HDL-C and insulin levels, increase the effects of SOD
and GSH in liver and kidney, reduce pancreatic islet damage, reduce the
oxidative stress state of liver and kidney tissues, increase the protein
expression of GLUT-4 in skeletal muscle and adipose tissue, and improve IR.

Wu, 2020

Ligan Shiliu Bawei
San

Ripe fruits of Punica
granatum L.
Barks of Cinnamomum
cassia Presl
Ripe fruits of Amomum
kravanh Pierre ex
Gagnep.
Fruit clusters of Piper
longum L.
Flowers of Carthamus
tinctorius L.
Ripe fruits of Amomum
tsao-ko Crevost et
Lemaire
Rhizomata of Zingiber
officinale Rosc. Halite

3T3-L1adipose
cell

Ligan Shiliu Bawei San promotes fglucose uptake in adipocytes. Mechanism:
increasing PPARs, IjBa, AKT, p-AKT and down-regulating LXRa and iNOS
protein expression.

Chen, 2011; Tian,
2011

Hyperlipid-
induced
NAFLD rats

Ligan Shiliu Bawei San reduce the rat serum levels of TG, LDL-C, FFA and AST
levels, as well as the contents of TC, TG, and MDA in the liver, elevated the
SOD levels. Mechanism: the expression of PPARs, IjBa, AKT, p-AKT was
increased and LXRa and iNOS were decreased in liver tissue of NAFLD rats, so
as to improve IR and oxidative stress to treat NAFLD.
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attack unsaturated fatty acids by itself, resulting in numerous per-
oxidation products. Therefore, some studies have indicated that
hepatocytes change from NAFLD to NASH when they cannot resist
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the damage due to their defense ability in the process of oxidative
stress. The clinical manifestations are fatigue, nausea, loss of appe-
tite, fullness and pain in the liver area or right upper abdomen,



Fig. 2. Effect and mechanism of IR in T2DM-NAFLD.
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abdominal distention, and other symptoms, including fever in
some cases. The symptoms of liver area pain and fever at this stage
are similar to Qisu Xila in Tonglaga Indigestion Disease in Mongo-
lian medicine.

Studies have demonstrated that NAFLD due to T2DM is associ-
ated with adiponectin and peroxisome proliferator activated
receptors a (PPARa) (Emmanuel, Alexander, Thierry, & Michael,
2021), NF-jB signaling pathway (Krzysztof et al., 2021), FXR
(Alessandro & Andrea, 2021), and endoplasmic reticulum stress
(Kumar et al., 2021). Some researchers are exploring new targets
for T2DM and NAFLD treatment to regulate lipid metabolism and
control inflammation (Hana et al., 2019).

One of the important characteristics of NAFLD is lipid metabo-
lism disorder, and fat cells have been found to have various endo-
crine functions and secrete various cytokines, such as adiponectin
and leptin. Leptin secretion is directly proportional to the body fat
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content, and it has a two-way regulatory effect on insulin. Insulin
can stimulate leptin production, which can reduce insulin secre-
tion by causing pancreatic b-cell hyperpolarization to form a fat–
islet axis, IL-6 and tumor necrosis factor (TNF) a (Rohit, Brijesh,
& Paul, 2018; Sheng et al., 2019). These fat cells can affect glucose
and lipid metabolism through various ways. Therefore, these
cytokines also play an important role in T2DM-NAFLD develop-
ment. Diabetes hyperlipidemia and hyperglycemia can induce the
transcription of proinflammatory cytokines and monocyte
chemoattractant protein (MCP)-1 and then promote NAFLD patho-
genesis. These cytokines also induce of adipokine fatty acid binding
protein 4 (FABP4) transcription through NF-jB (Chang et al., 2021).
Adipokine and proinflammatory cytokine transcription induces
hepatocyte injury and IR. P2X7R is mainly involved in the inflam-
matory reaction released by adenosine triphosphate (ATP) from
damaged cells, where it mediates a series of cellular signal trans-
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duction processes (Virgilio, Ben, Sarti, Giuliani, & Falzoni, 2017).
For instance, it activates multiple pathways such as NLRP3 and
NF-jB in the NLR inflammasome family, induces the release of
IL-1b, IL-18, TNF-a, and other cytokines (Costa-Junior, Sarmento,
& Coutinho-Silva, 2011), and play a key role in inflammatory reac-
tion and immunoregulation. Studies have shown that ATP-P2X7R is
an important signaling pathway for NLRP3 activation (Solini,
Usuelli, & Fiorina, 2015). NLRP3 inflammasome belongs to NOD-
like receptor protein, which can recognize relevant molecular pat-
terns on pathogens. It is mainly composed of NLRP3 apoptosis-
associated spot-like protein (ASC) and caspase-1, playing an
important regulatory role in the occurrence and development of
various inflammatory-related liver diseases (Franchi et al., 2009;
Lee et al., 2012). NLRP3 inflammasome mainly has downstream
effects by IL-1b, IL-18, and TNF-a secretion (Mangan et al., 2018).
The proinflammatory factors TNF-a can activate NF-jB, thereby
mediating cytokine release, inducing inflammatory reaction, and
participating in NAFLD pathology (Zhang et al., 2021).

In NAFLD, P2X7 receptor activation caused by T2DM can acti-
vate NLRP3 and NF-jB inflammasome to cause hepatocyte injury.
The P2X7/NLRP3/NF-jB signaling pathway plays an important role
in maintaining immune homeostasis and downregulating inflam-
matory response and providing a new target for drug-based treat-
ment of T2DM and NAFLD in the future (Fig. 2).

With the development and aggravation of NASH due to T2DM,
the released TGF-b and the platelet derivative lead to hepatic stel-
late cell (HSC) activation, differentiation, and proliferation (Fujii
et al., 2020). Studies (Campisano, Colla, Echarte, & Chisari, 2019)
have confirmed that HSC is a key cell involved in fiber formation.
After activation, it changes from vitamin A into fibroblasts (MFC)
stored in static cells, which is the main driving factor of fibrosis
in liver injury. HSC activation can produce extracellular matrix
(ECM) protein and express a-smooth actin (a-SMA). ECM can also
be used as a medium for promoting inflammation or fibrosis
(Kisseleva, 2017; Trautwein, Friedman, Schuppan, & Pinzani,
2015). Patients at this stage are characterized by anorexia, fatigue,
liver discomfort or pain, abdominal distension, hepatomegaly, gan-
grene, bleeding, loss of appetite, hepatomegaly, hemorrhage, and
other symptoms, which are similar to Badagan Qisu in Mongolian
medicine of Tonglaga Indigestion Disease.

Hepatic steatosis is closely related to the imbalance of TG (Koo,
2013) synthesis and lipolysis. FXR plays a certain regulatory role in
different liver disease stages. Activated FXR can regulate lipid
metabolism related proteins to reduce TG levels (Ding et al.,
2014). FXR reduces TG levels via two means, including the down-
regulation of the expression of sterol regulatory element binding
protein 1C (SREBP 1C) and its downstream target genes
(Watanabe et al., 2004). FXR activation can also induce peroxisome
proliferator activated receptor a (PPAR-a) expression, which in
turn increases lipid oxidative consumption and reduces lipid accu-
mulation (Torra et al., 2003). In addition, FXR protects hepatocytes
from damage by increasing LKB1 levels (Lee et al., 2012). LKB1, an
upstream kinase of AMPK, regulates AMPK phosphorylation. AMPK
activation can inhibit SREBP1 expression and lead to decreased
lipogenesis (Giri et al., 2006). Insulin and glucagon can affect AMPK
activation. In the liver, AMPK mainly regulates liver fatty acid
metabolism by regulating the transcription activity of SREBP-1c,
liver specific transcription factor Ch REBP, and fatty acid receptor
PPAR-a. Moreover, SIRT1 activates AMPK signaling pathway
(Purushotham et al., 2009). In addition to FXR, LXR is a member
of the nuclear receptor family. LXRs comprises two subtypes: LXRa
and LXRb, which are important to regulate cholesterol levels
(Tardelli, Claudel, Bruschi, & Trauner, 2018). LXRa agonists can sig-
nificantly inhibit increase in IL-1b levels caused by NLRP3 inflam-
masome activation by cholesterol crystals in the macrophage
model, and this effect is related to NF-jB signaling pathway inhi-
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bition. In addition to sterol metabolism regulation, LXRs upregu-
late the expression of genes involved in the regulation of lipid
metabolism, which include SREBP-1C (Repa et al., 2000). Evidence
has shown that inflammation leads to liver fibrosis and that the
extracellular signals of inflammatory cells can further regulate
HSC activation (Seki & Schwabe, 2015). Nevertheless, the molecu-
lar mechanism of liver fibrosis warrants further discussion, and
effective liver fibrosis treatment remains limited. Therefore, find-
ing new targets and developing new drugs in antifibrosis therapy
is of great significance.
4. Conclusion

Some studies have shown that Mongolian medicine–based
treatment of T2DM-NAFLD is efficacious. Hence, developing novel
Mongolian medicine-based treatment methods for T2DM-NAFLD
is warranted. Advanced techniques should be used to investigate
the effect of Mongolian medicine on the liver to reduce blood glu-
cose levels and determine whether it may be useful for controlling
the disease course involves lipid metabolism regulation and
inflammation control. FXR and LXR are effective targets for lipid-
related disease treatment as well as important regulators for liver
fibrosis inflammation. P2X7R is also considered a key regulator of
tissue fibrosis development associated with excessive collagen
deposition, which can activate multiple pathway components
including NLRP3 and NF-jB and play an essential role in inflamma-
tion and immunoregulation. Therefore, using P2X7R to activate
NLRP3 and NF-jB inflammasome by regulating FXR or LXR can
become a novel Mongolian medicine approach to treat T2DM-
NAFLD.
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