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Abstract 

Dementia with Lewy bodies (DLB) is clinically diagnosed when patients develop dementia less than a year after par‑
kinsonism onset. Age is the primary risk factor for DLB and mitochondrial health influences ageing through effective 
oxidative phosphorylation (OXPHOS). Patterns of stable polymorphisms in the mitochondrial genome (mtDNA) alter 
OXPHOS efficiency and define individuals to specific mtDNA haplogroups. This study investigates if mtDNA haplo‑
group background affects clinical DLB risk and neuropathological disease severity. 360 clinical DLB cases, 446 neuro‑
pathologically confirmed Lewy body disease (LBD) cases with a high likelihood of having DLB (LBD‑hDLB), and 910 
neurologically normal controls had European mtDNA haplogroups defined using Agena Biosciences MassARRAY iPlex 
technology. 39 unique mtDNA variants were genotyped and mtDNA haplogroups were assigned to mitochondrial 
phylogeny. Striatal dopaminergic degeneration, neuronal loss, and Lewy body counts were also assessed in different 
brain regions in LBD‑hDLB cases. Logistic regression models adjusted for age and sex were used to assess associa‑
tions between mtDNA haplogroups and risk of DLB or LBD‑hDLB versus controls in a case‑control analysis. Additional 
appropriate regression models, adjusted for age at death and sex, assessed associations of haplogroups with each dif‑
ferent neuropathological outcome measure. No mtDNA haplogroups were significantly associated with DLB or LBD‑
hDLB risk after Bonferroni correction.Haplogroup H suggests a nominally significant reduced risk of DLB (OR=0.61, 
P=0.006) but no association of LBD‑hDLB (OR=0.87, P=0.34). The haplogroup H observation in DLB was consistent 
after additionally adjusting for the number of APOE ε4 alleles (OR=0.59, P=0.004). Haplogroup H also showed a 
suggestive association with reduced ventrolateral substantia nigra neuronal loss (OR=0.44, P=0.033). Mitochondrial 
haplogroup H may be protective against DLB risk and neuronal loss in substantia nigra regions in LBD‑hDLB cases but 
further validation is warranted.
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Introduction
Lewy body dementia are comprised of two distinct, but 
clinically related, disorders—Dementia with Lewy bod-
ies (DLB) and Parkinson’s disease dementia (PDD) [22, 
30]. The timing of dementia onset determines the exact 
clinical diagnosis, whereby dementia onset before or less 
than a year after parkinsonism is classified as DLB, and 
dementia onset more than one year after parkinsonism 
is classified as PDD [30]. DLB is one of the most com-
mon forms of dementia after Alzheimer’s disease (AD), 
accounting for approximately 23% of all dementia cases 
[49]. Currently there is no treatment to prevent or cure 
DLB and disease course is progressive and eventually 
fatal.

Neuropathologically, DLB and PDD are very similar 
and fall under the pathological term of Lewy body dis-
ease (LBD). Lewy body disorders are characterized by 
the presence of Lewy bodies (LB) and Lewy neurites in 
the brain, causing neurodegeneration. LB are complex 
masses of aggregated phosphorylated alpha-synuclein 
(aSyn), p62, and ubiquitin proteins, as well as lipids and 
membranous organelles [29]. The location and distri-
bution of LBs in the brain and the associated neuronal 
dysfunction determines clinical phenotypes observed. 
For example, LB accumulation in the brainstem and 
midbrain regions, and the associated neurodegenera-
tion, typically induces Parkinson’s disease (PD) symp-
toms of tremor, rigidity, and slowness of movement [38], 
whereas LB accumulation in the neocortical and limbic 
regions is associated with cognitive and neuropsychiatric 
symptoms, such as cognitive impairment, fluctuations, 
visual hallucinations, and behavioral changes—which are 
reflective of PDD or DLB [12, 30, 37]. Classical brainstem 
and nigral LB consist of dense, spherical cores with irra-
diating filaments, and a surrounding halo (when stained 
with hematoxylin/eosin), whereas LB in neocortical 
regions typically have pale, fibrillary structures without a 
halo or central core [29, 42]. Paler, fibrillary LB have been 
described as premature and are thought to develop into 
classical LB structures with disease progression [17]. In 
addition to LB, pathological aggregates of extracellular 
amyloid-beta (Abeta) plaques and intracellular neurofi-
brillary tangles of hyperphosphorylated tau proteins are 
often present in LBD making the disease spectrum very 
heterogenous [10]. Neuropathologists use defined cri-
teria to assess aSyn and tau Braak stage, as well as beta-
amyloid Thal phase, to neuropathologically determine 
accurate LBD diagnosis and characterize disease severity, 

and use available medical records to determine the likeli-
hood of clinical phenotypes [6].

Within the past decade, ongoing efforts have continued 
to work towards understanding genetic markers influenc-
ing LB disorders, particularly PD, whereby current case-
control studies consist of tens of thousands of cases [18, 
34, 35]. Recent smaller case-control studies of DLB have 
identified overlapping genetic markers between PD and 
AD [3, 18, 27], further demonstrating the overlapping 
pathologies of these diseases, but despite such efforts, the 
genetic etiology of DLB is yet to be defined. Thus, provid-
ing additional scope to characterize other genetic factors 
which may be driving dementia onset in DLB.

Age consistently remains the major risk factor for neu-
rodegeneration and both healthy ageing and aSyn accu-
mulation is influenced by mitochondrial health, whereby 
increased reactive oxygen species (ROS) production 
accelerates ageing and aSyn aggregation over time [20, 
28]. ROS are a byproduct from oxidative phosphoryla-
tion (OXPHOS) which occurs on the inner mitochon-
drial membrane [26]. Mitochondria contain their own 
genomic information (mtDNA), independent to the 
nuclear genome, which codes for 13 essential subunits in 
OXPHOS complexes. Patterns of stable polymorphisms 
across the mtDNA molecule define individuals to specific 
mtDNA haplogroups, and each mtDNA haplogroup has 
a unique metabolic profile which influences ROS pro-
duction over time [15, 16]. As a result of their distinct 
metabolic backgrounds, mtDNA haplogroups have been 
associated with age-related and multiple neurodegen-
erative diseases, including PD and AD [4, 21], but have 
not been examined in relation to dementia onset in large 
cohorts of patients. Therefore, the aims of this study were 
to evaluate the association between mtDNA haplogroups 
and risk of clinical DLB and pathologically confirmed 
LBD cases with a high likelihood of having clinical DLB 
(LBD-hDLB) in a case-control analysis. In analysis of 
the LBD-hDLB group, we also examined associations of 
mtDNA haplogroups with severity of neuropathological 
measures, such as LB counts and distribution, neuronal 
loss, and dopaminergic degeneration across several brain 
regions.

Material and methods
Study subjects and data collection
A total of 806 DLB subjects (N=360 clinically diag-
nosed DLB cases and N=446 autopsy-confirmed Lewy 
body disease cases that were assessed as having a high 
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likelihood of DLB (LBD-hDLB) – of which N=48 were 
present in both series) and 910 controls were included in 
this study. Clinical DLB patients were diagnosed by neu-
rologists at Mayo Clinic in Jacksonville, FL or Rochester, 
MN and were recruited as part of the Alzheimer’s Disease 
Research Center and the Mayo Clinic Study of Aging. 
Pathologically confirmed LBD cases were obtained from 
the brain bank for neurodegenerative disorders at Mayo 
Clinic in Jacksonville, FL and were evaluated by a single 
neuropathologist (Dr. Dennis Dickson). LBD cases were 
all assessed as having a high likelihood of DLB according 
to the criteria of the fourth report of the DLB consortium 
[30]. Controls were recruited by Dr. Zbigniew Wszolek 
and his colleagues from Mayo Clinic in Jacksonville, FL 
and were absent of neurological disease. All subjects 
provided written consent prior to study commencement 
and were Caucasian, non-Hispanic, and unrelated. Age 
at DLB diagnosis in clinically diagnosed DLB cases, age 
at death in pathologically confirmed LBD-hDLB cases, 
and age at blood draw in controls, and sex was collected 
for all subjects (Table  1). Additionally, neuropathologi-
cal measures for Lewy body counts and substantia nigra 
(SN) neuronal loss were available for 242 (54.3%) LBD-
hDLB cases (Table 1).

Neuropathological assessment in LBD‑hDLB
Assessment of neurofibrillary tangles, senile plaques, 
and Lewy bodies
Neuropathological methodologies used to assess neurofi-
brillary tangles (NFTs), senile plaques (SPs), and Lewy 
bodies (LBs) have been described previously [33]. Briefly, 
neuroanatomical sampling and thioflavin-S fluorescence 
microscopy was performed, where counts of NFTs and 
SPs were measured manually in six cortical regions, four 
sections of the hippocampus, and two regions of the 
amygdala [43]. Formalin-fixed, paraffin-embedded tissue 
samples from limbic and cortical regions were sectioned 
and mounted on glass slides. Assessment of LB pathology 
was performed using an aSyn antibody (NACP, 1:3000 
rabbit polyclonal, Mayo Clinic antibody) with formic acid 
pretreatment for 30 minutes and was processed using the 
DAKO Autostainer (DAKO Auto Machine Corporation, 
Carpinteria, CA) with DAKO Envision+ HRP System. 
LB counts were measured in five cortical regions—mid-
dle frontal, superior temporal, inferior parietal, cingulate, 
and parahippocampal. The distribution of LB pathol-
ogy was assessed using the staging scheme defined by 
Kosaka et al. to categorize samples as either brainstem, 
transitional, or diffuse [25]. Braak NFT stage [1] and Thal 
amyloid phase [44] were assigned according to the distri-
butions of NFTs and SPs respectively. These neuropatho-
logic measures are summarized in Table 1.

Quantification of striatal dopaminergic degeneration
Quantitative assessment of striatal dopaminergic degen-
eration by measurement of tyrosine hydroxylase immu-
noreactivity (TH-ir) has been described previously [24]. 
To summarize, the putamen was assessed at the level of 
the anterior commissure from a section made from the 
hemi-brain in a standardized dissection plane defined 
by three points in the fundibulum, uncus, and posterior 
margin of the anterior commissure in the third ventricle. 
Digital images of the putamen were parcelled into ven-
tromedial and dorsolateral areas [19], and dopaminergic 
degeneration was quantitatively assessed.

The basal ganglia section was processed for immuno-
histochemistry with a commercially available antibody 
to TH (rabbit polyclonal, 1:600; Affinity Bioreagants, 
Golden, Colorado) with Proteinase K pretreatment for 5 
minutes. The immunostained sections were captured by 
ScanScope XT (Aperio Technologies, Vista, California), 
and images were annotated with ImageScope (version 
12.1). Regions of interest were manually edited to exclude 
artifacts, large blood vessels and their perivascular 
spaces, and large fiber bundles. The putamen was divided 
into ventromedial and dorsolateral regions. Quantifica-
tion of TH-ir used an algorithm that detected positive 
pixels based on optical density. TH-ir was expressed as 
a percentage, calculated as the number of positive pix-
els divided by the sum of inverse pixels and background 
pixels. A lower TH-ir value represents a greater degree 
of putaminal dopaminergic degeneration. Table  1 sum-
marizes dorsolateral and ventromedial putaminal TH-ir 
in DLB cases.

Assessment of substantia nigra pigmented neuronal loss
The midbrain was a transverse section at the level of 
the third nerve, similar to what has been recommended 
for diagnostic evaluation of PD [7]. A semi-quantitative 
assessment of SN cell groups was ascertained on hema-
toxylin and eosin-stained sections at 100x magnification. 
Our assessment was restricted to pigmented neurons of 
SN pars compacta and divided into medial and ventro-
lateral sections—similar to previous studies [14, 39]. We 
used a human atlas of SN cell groups to identify medial 
and ventrolateral regions of the SN [36]. The density of 
nonpigmented neurons was not taken into consideration 
for the assessment of the semi-quantitative scores, which 
were based on a 4-point scale (0=none, 1=mild, 2=mod-
erate, and 3=severe) (Table 1).

Genetic analysis
Peripheral blood was collected from clinical DLB patients 
and control subjects, and frozen cerebellum brain tissue 
was provided from pathologically confirmed LBD-hDLB 
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Table 1 Patient characteristics

Variable Controls (N = 910) Clinical DLB (N = 360) LBD with a high 
likelihood of DLB 
(N = 446)

Age (years)a 79 (41, 102) 73 (50, 100) 78 (48, 103)

Sex

Male 388 (42.6%) 270 (75.0%) 292 (65.5%)

Female 522 (57.4%) 90 (25.0%) 154 (34.5%)

Braak NFT stage

0 N/A N/A 13 (2.9%)

I N/A N/A 23 (5.2%)

II N/A N/A 138 (30.9%)

III N/A N/A 143 (32.1%)

IV N/A N/A 129 (28.9%)

V N/A N/A 0 (0.0%)

VI N/A N/A 0 (0.0%)

Thal amyloid phase

0 N/A N/A 40 (10.7%)

1 N/A N/A 37 (9.9%)

2 N/A N/A 23 (6.1%)

3 N/A N/A 129 (34.4%)

4 N/A N/A 56 (14.9%)

5 N/A N/A 90 (24.0%)

LBD subtype

Transitional N/A N/A 89 (20.0%)

Diffuse N/A N/A 357 (80.0%)

Lewy body counts

Middle frontal gyrus N/A N/A 5 (0, 35)

Superior temporal gyrus N/A N/A 10 (0, 50)

Inferior parietal gyrus N/A N/A 4 (0, 30)

Cingulate gyrus N/A N/A 12 (2, 32)

Parahippocampal gyrus N/A N/A 16 (1,45)

Putaminal TH-ir

Dorsolateral N/A N/A 2.93 (0.26, 21.61)

Ventromedial N/A N/A 8.99 (0.26, 27.42)

Substantia nigra neuronal loss score

Ventrolateral

 0.0 = none N/A N/A 0 (0.0%)

 0.5 = none/mild N/A N/A 2 (1.0%)

 1.0 = mild N/A N/A 10 (5.1%)

 1.5 = mild/moderate N/A N/A 7 (3.6%)

  2.0 = moderate N/A N/A 21 (10.8%)

 2.5 = moderate/severe N/A N/A 23 (11.8%)

 3.0 = severe N/A N/A 132 (67.7%)

Medial

 0.0 = none N/A N/A 2 (1.1%)

 0.5 = none/mild N/A N/A 1 (0.6%)

 1.0 = mild N/A N/A 25 (14.0%)

 1.5 = mild/moderate N/A N/A 16 (8.9%)

 2.0 = moderate N/A N/A 26 (14.5%)

 2.5 = moderate/severe N/A N/A 25 (14.0%)

 3.0 = severe N/A N/A 84 (46.9%)
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cases. Genomic DNA was extracted from peripheral 
blood lymphocytes and cerebellum tissue using Autogen 
Flex Star and Autogen 245T (Holliston, MA) methods 
respectively. DNA was diluted to 15 ng/µl and 39 unique 
mitochondrial DNA variants were genotyped by a single-
user (RRV) using two custom-designed Agena Bioscience 
iPLEX arrays on Sequenom MassARRAY technology 
[11]. More detailed methods for genetic assessments have 
been previously published [46, 47]. Individual mitochon-
drial DNA haplogroups were defined to mitochondrial 
phylogeny for each subject [48] (Table  2). Phylogeneti-
cally related haplogroups were also grouped into family 
haplogroups (e.g. sub-haplogroups H, H1, H2, H3, and 
H4 are all part of the family H haplogroup) and four dif-
ferent super-haplogroups (e.g. family J and family T hap-
logroups are super-haplogroup JT) for secondary analysis 
assessments. Haplogroups that occurred in fewer than 10 
subjects in a given association analysis were not analyzed 
in that specific analysis. All cases were examined for pop-
ulation stratification prior to conducting this study [3].

Statistical analysis
Associations of mitochondrial haplogroups with risk 
of clinical DLB and LBD-hDLB, each separately versus 
controls, were examined using logistic regression mod-
els that were adjusted for age and sex. Odds ratios (ORs) 
and 95% confidence intervals (CIs) were estimated. Addi-
tionally, clinical DLB and LBD-hDLB series were com-
bined into one overall DLB series, and associations of 
haplogroups with risk of DLB in comparison to controls 
were assessed. The 48 cases that were present in both the 
clinical DLB series and the LBD-hDLB series, were only 
included once in the overall DLB series.

In the LBD-hDLB series, associations of haplogroups 
with each different neuropathological outcome meas-
ure were assessed using age at death and sex-adjusted 
regression models that are appropriate for the nature 
of the given outcome measure. Specifically, associa-
tions of haplogroups with dorsolateral and ventromedial 
putaminal TH-ir were examined using linear regression 
models, where due to their skewed distributions, lat-
eral putaminal TH-ir was considered on the logarithm 
(base-10) scale and medial putaminal TH-ir was con-
sidered on the square root scale. Regression coefficients 
and 95% CIs were estimated and are interpreted as the 
additive increase on the mean outcome measure (on the 

logarithm or square root scale) for the given haplogroup. 
Associations of haplogroups with ventrolateral and 
medial SN neuronal loss scores were assessed using pro-
portional odds logistic regression models. ORs and 95% 
CIs were estimated and are interpreted at the multiplica-
tive increase on the odds or a more severe neuronal loss 
score for the given haplogroup. Neuronal loss scores ≤1 
(ventrolateral) and ≤1.5 (medial) were combined into one 
category in proportional odds logistic regression analysis 
due to their low frequencies. Associations between hap-
logroups and cortical LB counts were evaluated using 
negative binomial regression models. Multiplicative 
effects and 95% CIs were estimated and are interpreted as 
the multiplicative increase on the mean LB count for the 
given haplogroup. Finally, binary logistic regression mod-
els were used to assess associations between haplogroups 
and LBD subtype. ORs and 95% CIs for presence of dif-
fuse LBD were estimated.

We utilized a Bonferroni correction for multiple test-
ing separately for each outcome measure in the primary 
analysis that did not involve super-haplogroups (P-values 
<0.05 were considered statistically significant in second-
ary super-haplogroup analysis). As haplogroups that 
occurred in less than 10 subjects in a given association 
analysis were not analyzed in that specific analysis, and 
the degree of missing data differed between outcomes, 
the Bonferroni-corrected statistical significance level 
correspondingly varied between outcomes (see table 
footnotes for details). All statistical tests were two-sided. 
Statistical analyses were performed using R Statisti-
cal Software (version 3.6.2; R Foundation for Statistical 
Computing, Vienna, Austria).

Results
Associations of haplogroups with risk of clinical DLB and 
LBD-hDLB are detailed in Table  2. After adjusting for 
age and sex, no statistically significant associations were 
observed after Bonferroni correction (P <0.0024 con-
sidered significant). However, a nominally significant (P 
<0.05) association was reported between sub-haplogroup 
H and lower risk of clinical DLB (OR=0.61, P=0.006). 
This association was consistent when additionally adjust-
ing for the number of apolipoprotein E4 (APOE4) alleles 
(OR=0.59, P = 0.004). No other associations approached 
statistical significance in any other series (all P ≥ 0.057, 
Table  2). Interestingly though, despite mitochondrial 

Table 1 (continued)
Sample median (minimum, maximum) is given for continuous variables

For LBD cases with a high likelihood of DLB, information was unavailable for Thal amyloid phase (N = 71), middle frontal gyrus Lewy body count (N = 211), superior 
temporal gyrus Lewy body count (N = 213), inferior parietal gyrus Lewy body count (N = 211), cingulate gyrus Lewy body count (N = 213), parahippocampal gyrus 
Lewy body count (N = 232), dorsolateral putaminal TH-ir (N = 250), ventromedial putaminal TH-ir (N = 250), ventrolateral substantia nigra neuronal loss score 
(N = 251), and medial substantia nigra neuronal loss score (N = 267).
a Age represents age at blood draw for controls, age at DLB onset for clinical DLB cases, and age at death for LBD with a high likelihood of DLB cases
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sub-haplogroup H not being strongly associated with 
LBD-hDLB (OR=0.87, P = 0.34), the protective associa-
tion observed in the clinical DLB series was almost nomi-
nally significant when examining the combined DLB 
series (OR=0.78, P = 0.057) (Table 2).

In an exploratory analysis, we also evaluated asso-
ciations of haplogroups with disease risks separately for 
males and females (Additional File 1: Tables S1 and S2). 
The aforementioned protective association between sub-
haplogroup H and clinical DLB was observed relatively 
consistently in males (OR=0.64, P = 0.042) and females 
(OR=0.56, P = 0.066). Also, haplogroup HV/HV0a was 
suggestively associated with an increased risk of LBD-
hDLB in males (OR=3.33, P = 0.044) and haplogroup V 
suggested an association with increased risk of both clini-
cal DLB (OR = 4.29, P = 0.009) and overall DLB (OR = 
3.56, P = 0.006) in females.

Associations of individual mitochondrial haplogroups 
with putaminal TH-ir and SN neuronal loss (Table  3), 
cortical Lewy body counts (Table  4), and diffuse LBD 
subtype (Additional File1: Table  S3) were also assessed. 
No statistically significant associations were observed 
after correcting for multiple testing. A nominally sig-
nificant association was noted between sub-haplogroup 
H and a less severe ventrolateral SN neuronal loss score 
(OR = 0.44, P = 0.033, Table  3) and also between sub-
haplogroup T2 and a lower superior temporal LB count 
(multiplicative effect: 0.76, P = 0.044, Table  4). Both 
nominally significant associations remained consistent 
when additionally adjusting for the number of APOE ε4 
alleles (P = 0.033 and P = 0.036 respectively). No asso-
ciations between super-haplogroups and either risk of 
DLB or neuropathological outcomes were observed (all P 
≥ 0.21).

Discussion
Efforts to understand the genetic etiology of DLB have 
identified shared genetic markers between PD and AD 
[3, 23, 27, 34]. Physiologically, mitochondrial dysfunction 
is consistently reported in synucleinopathies [32] and 
mitochondrial phenotypes are predisposed by variation 
in mtDNA [15, 16]. Interestingly, LB pathology is more 
prevalent in older individuals with mitochondrial dis-
ease compared to controls [9], further emphasizing the 
importance of mtDNA in disease pathology.

Acknowledging this, our examinations of mtDNA vari-
ation, in the form of mitochondrial haplogroups, with 
DLB risk and neuropathological measures in this study 
reported no statistically significant associations after 
applying Bonferroni correction. However, mtDNA sub-
haplogroup H reported a suggestive protective effect 
with clinical DLB risk (OR=0.61, P = 0.006) which was 
not observed in LBD-hDLB cases (OR=0.87, P = 0.34). 

Interestingly though, sub-haplogroup H also indicated 
an association with less severe ventrolateral SN neuronal 
loss (OR=0.44, P = 0.033) in LBD-hDLB cases.

Mitochondrial haplogroup H is the most common hap-
logroup in European populations, accounting for more 
than 40% of individuals [45]. Mitochondrial haplogroup 
H has more than 80 sub-haplogroups which are predomi-
nantly defined by variation in mtDNA coding regions 
[48], with sub-haplogroups H1 and H3 being the most 
common. Mitochondrial haplogroup H has previously 
been associated with increased risk of PD [21] and DLB 
[5]. Notably, the results reported in Hudson and col-
leagues’ study was not an exact association of haplogroup 
H with PD risk, as they grouped haplogroup H and hap-
logroup V cases together. Although this was statistically 
more reliable, genetically the results do not clarify what 
mtDNA variants are driving PD risk because haplogroups 
H and V are phylogenetically related but are genetically 
different. Moreover, Chinnery et al. reported increased 
risk of haplogroup H with DLB in only 84 DLB cases and 
did not evaluate H sub-haplogroups. In this study, we 
assessed associations between mtDNA haplogroups and 
sub-haplogroups with DLB risk more comprehensively 
and in a much larger DLB cohort. It is possible that the 
elevated risk of DLB with mtDNA haplogroup H back-
ground reported by Chinnery et al. may be an artefact of 
common H sub-haplogroups, such as H1 and H3, induc-
ing more detrimental risk outcomes with DLB—which is 
also observed in our data. Overall, these studies demon-
strate the functional heterogeneity even within a given 
haplogroup and reinforce the need to stratify haplo-
groups into sub-haplogroups in genetic studies [13]. Rep-
lication will be important to validate our findings.

Disappointingly, we did not replicate the sub-haplo-
group H association with reduced DLB risk in pathologi-
cally confirmed LBD-hDLB cases, nor in the combined 
cases group. This may be because one cohort was clini-
cally defined whereas the other cohort was neuropatho-
logically defined. Neuropathologically confirmed cases 
were included in this study if they were deemed as hav-
ing a high likelihood of clinical dementia—which was 
determined from pathology propensity in cortical regions 
and available medical records. It is possible that the neu-
ropathologically defined LBD-hDLB cohort may also 
contain clinical PDD cases. PDD has a different disease 
course to DLB and is diagnosed when dementia devel-
ops more than a year after parkinsonism onset and can 
be considered a much slower progression of dementia 
than DLB [30]. Interestingly, this data suggests that mito-
chondrial sub-haplogroup H may be protective against 
DLB but not PDD, which may suggest that mitochondrial 
background influences rate of dementia progression in 
PD.
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Table 3 Associations of haplogroups with putaminal TH‑ir (dorsolateral and ventromedial) and substantia nigra neuronal loss 
(ventrolateral and medial)

For associations with putaminal TH-ir, regression coefficients, 95% CIs, and p-values result from linear regression models that were adjusted for age at death and sex, 
where due to their skewed distributions, lateral putaminal TH-ir was considered on the logarithm (base-10) scale and medial putaminal TH-ir was considered on the 
square root scale. Regression coefficients are interpreted as the additive increase on the mean outcome measure (on the logarithm or square root scale) for the given 
haplogroup. For associations with ventrolateral and medial substantia nigra neuronal loss scores, ORs, 95% CIs, and p-values result from proportional odds logistic 
regression models; ORs are interpreted at the multiplicative increase on the odds or a more severe neuronal loss score for the given haplogroup. After applying a 
Bonferroni correction for multiple testing separately for each outcome measure, P-values < 0.0045 (associations with lateral putaminal TH-ir, medial putaminal TH-ir, 
and ventrolateral substantia nigra neuronal loss score) and < 0.0050 (association with medial substantia nigra neuronal loss score) were considered statistically 
significant.
a Haplogroups that occurred in < 10 subjects in a given association analysis not examined in that analysis. TH-ir=tyrosine hydroxylase immunoreactivity; CI = 
confidence interval; OR = odds ratio.

Mitochondrial 
DNA Haplogroup

Haplogroup 
frequency,
No. (%), 
N = 242

Association with dorsolateral 
putaminal TH−ir

Association with 
ventromedial putaminal 
TH−ir

Association with 
ventrolateral substantia 
nigra
neuronal loss score

Association with 
medial substantia nigra 
neuronal
loss score

Regression 
coefficient (95% 
CI)

P−value Regression 
coefficient (95% 
CI)

P−value OR (95% CI) P‑value OR (95% CI) P‑value

Na 0 (0.0%) – – – – – – – –

N1a 0 (0.0%) – – – – – – – –

Ia 8 (3.3%) – – – – – – – –

Wa 2 (0.8%) – – – – – – – –

Xa 4 (1.7%) – – – – – – – –

R and  R0a 1 (0.4%) – – – – – – – –

HV and  HV0aa 8 (3.3%) – – – – – – – –

H, H1, H2, H3 and 
H4

91 (37.6%) −0.05 (−0.15, 0.05) 0.32 −0.11 (−0.40, 0.18) 0.45 0.80 (0.43, 1.46) 0.46 1.12 (0.63, 1.97) 0.70

H 40 (16.5%) 0.05 (−0.09, 0.18) 0.51 0.11 (−0.27, 0.49) 0.55 0.44 (0.21, 0.93) 0.033 0.54 (0.26, 1.10) 0.090

H1 27 (11.2%) −0.07 (−0.23, 0.09) 0.42 −0.13 (−0.58, 0.32) 0.57 1.33 (0.48, 3.68) 0.58 1.28 (0.52, 3.13) 0.59

H2a 8 (3.3%) – – – – – – – –

H3a 12 (5.0%) −0.04 (−0.26, 0.19) 0.75 −0.29 (−0.92, 0.34) 0.36 0.90 (0.25, 3.31) 0.88 – –

H4a 4 (1.7%) – – – – – – – –

Va 8 (3.3%) – – – – – – – –

JTa 0 (0.0%) – – – – – – – –

J, J1, J1d, J2a and 
J2b

26 (10.7%) 0.06 (−0.09, 0.21) 0.42 0.05 (−0.37, 0.47) 0.81 0.87 (0.36, 2.09) 0.75 0.62 (0.28, 1.39) 0.25

Ja 0 (0.0%) – – – – – – – –

J1 23 (9.5%) 0.07 (−0.09, 0.22) 0.39 0.06 (−0.38, 0.50) 0.78 0.93 (0.37, 2.33) 0.87 0.72 (0.31, 1.69) 0.46

J1ad 0 (0.0%) – – – – – – – –

J2aa 2 (0.8%) – – – – – – – –

J2ba 1 (0.4%) – – – – – – – –

T, T1 and T2 30 (12.4%) −0.03 (−0.19, 0.13) 0.70 −0.07 (−0.52, 0.38) 0.74 1.42 (0.49, 4.11) 0.52 2.60 (0.87, 7.81) 0.088

T1 0 (0.0%) – – – – – – – –

T1a 4 (1.7%) – – – – – – – –

T2 26 (10.7%) 0.02 (−0.15, 0.19) 0.82 0.14 (−0.35, 0.63) 0.58 1.35 (0.42, 4.30) 0.62 2.52 (0.72, 8.80) 0.15

U, U1, U3, U5, U6 
and U8b’c

41 (16.9%) −0.05 (−0.18, 0.08) 0.47 −0.15 (−0.53, 0.23) 0.44 1.75 (0.72, 4.24) 0.21 1.21 (0.57, 2.55) 0.62

U1 12 (5.0%) – – – – – – – –

U1a 2 (0.8%) – – – – – – – –

U3a 1 (0.4%) – – – – – – – –

U5 25 (10.3%) −0.04 (−0.20, 0.12) 0.66 −0.17 (−0.62, 0.28) 0.45 1.59 (0.56, 4.51) 0.39 1.41 (0.56, 3.53) 0.47

U6a 0 (0.0%) – – – – – – – –

U8b’ca 1 (0.4%) – – – – – – – –

K 23 (9.5%) 0.00 (−0.18, 0.17) 0.98 0.04 (−0.45, 0.54) 0.87 0.60 (0.23, 1.59) 0.31 1.29 (0.49, 3.39) 0.61
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Interestingly, we did observe a suggestive associa-
tion between mtDNA sub-haplogroup H background 
and less severe ventrolateral SN neuronal loss in LBD-
hDLB cases. Albeit not statistically significant, this data 
is important because SN degeneration is a classical 
hallmark of PD and may behave as an important medi-
ator in LB spread in LBD and may be a defining media-
tor between DLB and PDD. This concept also supports 
the rationale that sub-haplogroup H may be protective 
against DLB risk, as reported in this study. Functionally 
this could be explained by SN cells being more sensitive 
to physiological pressures than other neuronal types. 
More specifically, dopaminergic SN cells are highly 
metabolically active, long and thin, and have little to no 
myelination [2], and they heavily rely on healthy mito-
chondria for efficient OXPHOS to ensure sufficient ATP 
is produced to maintain their metabolic capacity. Mito-
chondria carrying mtDNA haplogroup H are reported 
to have the most efficient OXPHOS coupling capac-
ity in all European haplogroups and produce more ATP 
and ROS than other groups [50]. This may be advanta-
geous in protecting SN cells from accumulating LB with 
age. On the contrary though, SN cells with a haplogroup 
H background may be more susceptible to physiological 
pressures as functional studies in cybrid cell lines have 
demonstrated these cells have an increased susceptibility 
to oxidative stress compared to non-haplogroup H cells 
[31]. This suggests that mitochondrial background may 
provide cell or regional-specific biological benefits, but 
under additional physiological pressures may enhance 
disease progression.

As LBD pathology is very heterogenous and presents 
with pathological aggregates of tau, beta-amyloid, and 
TDP-43 proteins, it is important to also consider the 
role nuclear genetic risk factors play in driving disease 
risk relative to mtDNA background. More specifically, 
APOE4 is consistently an increased genetic risk factor for 
clinical DLB [18, 40] and AD [23, 41], and APOE4 influ-
ences LB pathology independently to AD pathology [8]. 
The mtDNA haplogroup associations reported in this 
study were all adjusted for APOE4 allele status which did 
not change any observations after adjustments. Reas-
suringly, mtDNA haplogroup associations in DLB and 
AD have been reported independent of APOE4 status 
in prior studies [5], suggesting both mitochondrial and 
nuclear genomic background influence disease pheno-
types. Future studies should consider evaluating major 
nuclear genetic risk factors relative to mitochondrial 
genetic background to avoid any possible bias.

Several limitations of our study are important to note. 
The main limitation being that even though the sample 
size of DLB and LBD-hDLB cases are relatively large given 
the prevalence of DLB, sample numbers are small for a 

genetic association study and therefore the possibility of 
a type II error is important to consider. This is especially 
true when considering adjustment for multiple testing 
and for rare haplogroups. In addition, although all cases 
in this study were examined for population stratification 
prior to conducting this work [3]; population stratifica-
tion in the control cohort may influence false positive 
findings (noting all subjects carried European mtDNA 
haplogroups). Global access to well described cohorts of 
DLB cases is required and validation of this work in larger 
cohorts of DLB and LBD-hDLB cases will be important to 
further investigate the role mitochondrial haplogroup H 
has in DLB risk and neuropathological development.

Conclusions
We have conducted a comprehensive study of the role of 
mitochondrial genomic variation, in the form of mito-
chondrial haplogroups and sub-haplogroups, in clinical 
DLB and pathologically confirmed LBD-hDLB. Moreo-
ver, this is one of the first studies to explore the associa-
tion of mtDNA background with neuropathological LB 
counts and neuronal loss measures in LBD-hDLB brains. 
Our data suggests that mitochondrial sub-haplogroup H 
may be protective against clinical DLB risk, independent 
of APOE4 background, and this may be indirectly influ-
enced by the suggestive association that sub-haplogroup 
H is protective against neuronal loss in substantia nigra 
tissue. Additional assessments and replication studies are 
warranted to further validate and expand on this data.
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