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Saline lakes possess substantial carbon storage and play essential roles

in global carbon cycling. Benthic microorganisms mine and decompose

sediment organic matter via extracellular enzymes to acquire limiting nutrients

and thus meet their element budgets, which ultimately causes variations

in sediment carbon storage. However, current knowledge about microbial
nutrient limitation and the associated organic carbon changes especially in

saline lake remains elusive. Therefore, we took Qinghai Lake, the largest saline
lake of China, as an example to identify the patterns and drivers of microbial

metabolic limitations quantified by the vector analyses of extracellular enzyme

stoichiometry. Benthic microorganisms were dominantly colimited by carbon

(C) and nitrogen (N). Such microbial C limitation was aggravated upon the

increases in water salinity and sediment total phosphorus, which suggests

that sediment C loss would be elevated when the lake water is concentrated

(increasing salinity) and phosphorus becomes enriched under climate change

and nutrient pollution, respectively. Microbial N limitation was predominantly

intensified by water total nitrogen and inhibited by C limitation. Among the

microbial drivers of extracellular enzyme investments, bacterial community

structure consistently exerted significant effects on the C, N, and P cycles

and microbial C and N limitations, while fungi only altered the P cycle

through species richness. These findings advance our knowledge of microbial

metabolic limitation in saline lakes, which will provide insights towards a better

understanding of global sediment C storage dynamics under climate warming

and intensified human activity.
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Highlights

- C and P cycles are regulated by sediment pH, while N cycle by
water TN.

- Increasing salinity and sediment phosphorus aggravate
microbial C limitation.

- Microbial N limitation increases with rising water TN and
reducing C limitation.

- Bacterial beta-diversity drives C, N and P cycles and microbial
nutrient limitation.

Introduction

Saline lakes, which account for approximately 50% of total
inland waters (Wetzel, 2001), tend to be essential components
for carbon storage and play important roles in global carbon
cycling (Curtis and Adams, 1995; Waiser and Robarts, 1995;
Song et al., 2018b; Wen et al., 2018; Chen et al., 2021). Saline
lakes contain higher concentrations of dissolved organic carbon
(DOC) than fresh waters due to the evaporative condensation
effect (Curtis and Adams, 1995; Song et al., 2017). Ninety-two
percent of the lakes on the Tibetan Plateau lakes are saline and
located in areas with prolonged sunshine and arid conditions
(Zhang et al., 2011), and they possess 13.39 Tg C, which is
approximately 84.3% of the DOC storage in lakes across China
(Song et al., 2018a). Moreover, the Tibetan Plateau has the
largest inland saline lake in China: Qinghai Lake, which presents
a higher level of buried surficial sediment organic carbon than
many other large freshwater lakes in China, such as Taihu Lake
(Chen et al., 2021). Heterotrophic microorganisms mineralize
organic matter to create the trophic base for detrital food webs
(Benstead et al., 2021), forming the microbial loop that accounts
for a crucial portion of the energy and nutrient flow in most
aquatic ecosystems, thus driving global carbon and nutrient
cycles (Cherabier and Ferriere, 2022; Villalba et al., 2022).
Extracellular enzymes are secreted by the microbial assemblage
to participate in the decomposition of organic sources and
subsequent acquisition of limiting nutrients (Hill et al., 2006).
Typically, microbial activity and extracellular enzyme activity
(EEA) are the highest in the top surficial layer of sediments
(Arnosti, 2011). Nutrient limitation may induce microbial
mining for resources from persistent organic matter in deeper
layers, which may influence ecosystem carbon storage (Hicks
et al., 2021). However, current knowledge about microbial
nutrient limitation and associated organic carbon dynamics in
saline lake sediments remains elusive.

The degradation of organic matter by extracellular
enzymes is a rate-limiting process for the detrital food webs
in transferring energy and nutrients to the heterotrophic
microorganisms from autotrophic producers (Nannipieri
et al., 2002). In lake sediments, microorganisms often face

an imbalance in resources availability and thus suffer from
nutrient limitation (Hill et al., 2018). To adapt to resource
constraints, microbes regulate their relative allocation of EEA
directed toward the acquisition of C, N, and P to meet their
elemental budgets (Sinsabaugh and Moorhead, 1994; Penton
and Newman, 2008). Ecoenzymatic stoichiometry is defined
as the relative activity of extracellular enzymes involved in
C, N, and P cycling, and it is primarily applied to indicate
the microbial nutrient limitation (Sinsabaugh et al., 2009;
Moorhead et al., 2016). Sinsabaugh et al. (2008, 2009) and
Sinsabaugh and Shah (2012) revealed that the activities of key
enzymes that catalyzing the hydrolysis of principal C, N, and P
compounds are characterized by similar scaling relationships,
with a mean ratio for C:N:P extracellular enzyme activities
near 1:1:1 in soils, biofilms and sediments. Based on these
ecoenzymatic stoichiometry ratios, Moorhead et al. (2013,
2016) proposed a method of vector analysis to quantify the
relative investments in C vs nutrient acquisition and P vs N
acquisition by calculating the length and angle of vectors in
plots of C:N vs. C:P enzymes activities, respectively (). The
vector lengths and angles reflect the relative resource limitations
co-existing in microbial communities, and their values are
independent of variations in total enzyme activity (Moorhead
et al., 2013, 2016).

The microbial resource limitation deduced from the
ecoenzymatic stoichiometry ratio is sensitive to environmental
variations (Wang et al., 2020). For example, in drylands with
aridity >0.70, the enzymatic C:nutrient (N and P) ratios decline
significantly as the aridity increases, and the enzymatic N:P
ratios are generally higher than those with aridity <0.70 (Feng
et al., 2019). The elevated litter N:P increases P limitation
in heterotrophic microbes associated with submerged plant
litter, and thus leads to higher relative activity of P-acquiring
enzymes and lower enzymatic N:P ratio (Francoeur et al.,
2020). Furthermore, the microbial nutrient limitation may
have the potential to predict changes in ecosystem C storage,
which are mainly studied in soil ecosystems (Wang et al.,
2020; Cui et al., 2021). For example, higher soil temperature
and moisture in lower elevations decrease the microbial C
limitations in the rhizosphere, which suggesting that global
warming may decrease the microbial relative investments in
producing enzymes involved in C decomposition and thus
be conducive to the retention of soil organic C (Cui et al.,
2021). On the contrary, N/P addition significantly aggravates
microbial C limitation while alleviates N/P limitation, which
may increase the investments in acquiring C and thus induce
soil C loss (Luo et al., 2017; Chen et al., 2018; Zheng et al.,
2020). Analogously, it’s proved that heavy metal stress aggravates
microbial C limitation and may potentially promote soil C loss
(Wang et al., 2020). These results also emphasize the significance
of research on the ecoenzymatic stoichiometry and its potential
role in the variations in sediment organic carbon in saline lakes;
However, relevant studies have not yet been reported.
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Benthic microbial communities are considered as key
players in sediment biogeochemical cycling through the
absorption, consumption and transformation of resources (i.e.,
C, N, and P) (Battin et al., 2016; Wang et al., 2022). Generally,
nutrient limitation drives the spatial organization of microbial
groups and therefore determines the distribution of extracellular
enzymes released by microbes for nutrient acquisition (Mitri
et al., 2016). Microbial diversity may also affect the enzyme pool
composition and then the potential for synergistic interactions
among extracellular enzymes (Sinsabaugh, 2005). Notably,
resource acquisition by different microbial taxonomic groups,
such as bacterial and fungal communities, proceeds by distinct
pathways (LaRowe et al., 2020; Hicks et al., 2021). Bacteria
possess higher metabolic diversity than fungi because of the
tremendously diverse phylogenetic subgroups that contain
genes encoding secreted enzymes capable of degrading organic
matter, such as proteins and carbohydrates (Orsi, 2018; LaRowe
et al., 2020). For fungi, their hyphal organization is capable of
assimilating nutrients along a distributed network and focusing
the release of the extracellular enzyme at the growing tips
(Frey et al., 2003); thus, they are more efficient at colonizing
and cleaving large detrital particles than bacteria (Sinsabaugh,
2005). Whether bacterial or fungal communities dominate
the response of microorganisms to resource constraints has
not been clarified, and the potential explanations produce
inconsistent results in different situations (Carrara et al., 2018;
Benito-Carnero et al., 2021). For example, strong nutrient
limitations and low-quality carbon favor fungal over bacterial
decomposers, which suggests a dominant functional role of
the fungal community in litter decomposition (Benito-Carnero
et al., 2021). In contrast, N fertilization may reduce belowground
C allocation from plants, thus leading to a shift in bacterial
but not fungal community composition and the accompanying
declines in EEA (Carrara et al., 2018). Therefore, disentangling
the relative contributions of bacterial and fungal communities
to sediment resource acquisition is an indispensable step toward
revealing the mechanism underlying biogeochemical cycling in
saline lake sediment.

Qinghai Lake is located in the northeast of the Tibetan
Plateau, which has faced evident climate changes in recent
decades, such as increased temperature and fluctuating
precipitation (Fan et al., 2021). In recent years, Qinghai
Lake has experienced significant environmental issue such as
nutrient enrichments of nitrogen and phosphorus resulting
from the rapid development of travel, industrial and agricultural
activities (Ao et al., 2014; Chen et al., 2021). In the context
of climate warming and intensified human activity, dissecting
the mechanisms underlying microbial nutrient limitation and
the potential influences of such limitation on C storage
in saline Qinghai Lake will provide insights toward a
better understanding of global C cycling. Accordingly, we
investigated the microbial groups, including bacterial and fungal
communities, and EEAs involved in C, N and P cycling based on

the surface sediments covering Qinghai Lake. We aim to answer
the following questions for saline lakes, such as Qinghai Lake:
(1) What are the patterns of microbial metabolic limitation? (2)
What are the abiotic and biotic drivers of microbial metabolic
limitation and the resultant potential impacts on lake sediment
C storage?

Materials and methods

Study site and sampling

Qinghai Lake (36◦32′–37◦15′N, 99◦36′–100◦16′ E) is the
largest saline lake in China, with an area of approximately
4,472 km2 and an average water depth of 25 m. Located
at the intersection of the eastern Asian monsoon, the
northwestern arid region and the northeastern Tibetan Plateau,
Qinghai Lake has high climatic sensitivity with dry, cold and
windy conditions, strong solar radiation and a large diurnal
temperature change of –10◦C (Dong et al., 2019). In September
2020, 23 surface sediment samples (top of 5 cm) covering
the whole Qinghai Lake were retrieved with a box sampler
(Supplementary Figure 1). Each surface sediment sample was
separated into two subsamples that were stored at –20 and
4◦C until analysis. The former was used for the microbial
community and EEA analyses and the latter was used for
chemical measurements. Freezing is a procedure recommended
for sample preservation when the EEA cannot be determined
immediately (Hewins et al., 2016). For the corresponding
water chemical parameters at each site, 1 L of overlaying
water from the lake surface layer (upper 50 cm) was collected
by a 5-L Schindler sampler. For each sampling site, in situ
measurements of environmental variables were also conducted
including the water depth and Secchi depth (SD) (using a
bathymeter and a Secchi disk, respectively), water temperature,
dissolved oxygen concentration, salinity, pH and conductivity
in the water column (using a multiparameter water quality
detector, YSI Incorporated, Yellow Springs, OH, USA). The pH
and conductivity in the surface sediment were measured by a pH
and a conductivity meter.

Analysis of chemical variables

The surface sediment samples were freeze-dried to constant
weights, ground into a fine powder, and then passed through
a 100-mesh sieve for total carbon (TC), total nitrogen (TN),
and total phosphorus (TP) analyses. The sediment TC and TN
were measured by an elemental analyzer (Flash EA 1112 series,
CE instruments, Italy). The sediment TP was determined by
molybdenum blue colorimetry after a digesting procedure using
hydrofluoric acid (HF)-perchloric acid (HClO4) (Sparks, 1996).
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TN and TP in water were measured following the standard
method (Huang et al., 2000).

Bacterial and fungal communities

The sediment genomic DNA was extracted using the
DNeasy PowerSoil Kit (QIAGEN, Germany) following the
manufacturer’s protocols. For bacteria, we chose the universal
primers [515F, 5′-GTGYCAGCMGCCGCGGTAA-3′ and 806R,
5′-GGACTACNVGGGTWTCTAAT-3′] to amplify the V4
region of the 16S ribosomal RNA gene using the polymerase
chain reaction (PCR) in triplicate and then mixed the replicates.
We obtained the barcoded PCR products and normalized
them at equal molar concentration, and then sequenced the
products on the Illumina HiSeq sequencing platform (Illumina
Inc.) with a 2 × 250 bp paired-end. For fungi, we chose the
universal primers [gITS7F, 5′-GTGARTCATCGARTCTTTG-3′

and ITS4R, 5′-TCCTCCGCTTATTGATATGC-3′] to amplify
the internal transcribed spacer 2 (ITS2) region of the nuclear
ribosome. We pooled the purified amplicons in equimolar
amounts and sequenced the products in the same HiSeq run.
The details for bioinformatic analyses and sequence processing
of bacteria and fungi are described in a previous study (Zhang
et al., 2021a).

Assays of extracellular enzyme
activities

Five key extracellular enzymes involved in catalyzing the
terminal reactions that hydrolyze assimilable products from the
principal C, N and P sources were measured by a fluorimetric
microplate enzyme assay (Pritsch et al., 2004) according to a
published protocol (Liu et al., 2021). β-1,4-Glucosidase (BG)
and cellobiohydrolase (CBH) are related to C cycling for
cellulose degradation, β-1,4-N-acetylglucosaminidase (NAG)
and leucine aminopeptidase (LAP) are related to N cycling for
chitin and polypeptide degradation, respectively; and alkaline
phosphatase (AP) is related to P cycling for phospholipid and
phosphosaccharide degradation. The EEA was finally expressed
as nanomoles of substrate released per hour per gram of dry
sediment (nmol g sediment−1 h−1). So far, the sediment studies
on EEAs and ecoenzymatic stoichiometry are mainly focused on
freshwater ecosystems (Sinsabaugh et al., 2009, 2012; Xiao et al.,
2018; Kohler et al., 2020), while lack in saline lakes especially
lakes in Qinghai-Tibet Plateau. Thus, to recognize the status
and characteristics of EEAs and ecoenzymatic stoichiometry
of Qinghai Lake sediment, we compared them with those in
typical freshwater lakes across China, including Fuxian Lake in
the southwestern Yunnan-Guizhou Plateau, 38 shallow lakes in
the Yangtze–Huaihe River basin (unpublished data) and Hulun
Lake in the northern semiarid area (Zhang et al., 2021a).

Calculation of microbial metabolic
limitation

Stoichiometric approaches based on nutrient chemistry and
extracellular enzymes were used to evaluate the relative nutrient
limitation in water and sediment, respectively. For water, the
well-known Redfield ratio of 16N: 1P was applied (Redfield,
1958). For sediment, a vector analysis based on ecoenzymatic
stoichiometry for both the determination and quantification of
metabolism limitation (Moorhead et al., 2016) was performed,
and it reflects the relative resource demands of the microbial
community independent of the variations in total EEAs. The
vector analysis of ecoenzymatic stoichiometry was conducted
according to the following equations (Moorhead et al., 2016).

C limitation = Vector length = x2
+ y2 (1)

Vector angle (◦) = DEGREES
(
ATAN2

(
x, y

))
(2)

N limitation = 90◦ − Vector angle (3)

where x is the relative activity of C versus P-acquiring enzymes;
y is the relative activity of C versus N-acquiring enzymes; Vector
length is the square root of the sum of x2 and y2, which is used to
quantify microbial C limitation (Eq. 1); and Vector angle is the
arctangent of the line extending from the plot origin to point
(x, y), which is used to quantify microbial N or P limitation
(Eq. 2). Higher vector length values indicate higher microbial C
limitation. Vector angles >45◦ and <45◦ represent microbial P
limitation and N limitation, respectively. Microbial P limitation
is positive to the vector angle, while N limitation is negative
to it. For a better understanding, we defined 90◦ minus the
vector angle as the value of N limitation, which is positive to
the intensity of microbial N limitation (Eq. 3).

Statistical analysis

The C, N, and P cycles that characterize nutrient
acquisition efforts through enzymatic activities, were calculated
by summing enzyme activities involved in acquiring C
(AG+BG), N (NAG+LAP) and P (AP), respectively. Pearson
correlation analysis was performed to explore the relationships
of the five enzyme activities and microbial metabolic limitations
with abiotic variables. Ordinary least squares (OLS) regression
was adopted to confirm the relationships between microbial C
limitation and microbial N limitation as well as the correlations
of microbial metabolic limitations or the C/N/P cycle with
environmental variables and microbial species richness. Linear
models were applied to visualize the relationships underlying
the differences in microbial metabolic limitation, the C/N/P
cycle or the element-cycle with the Bray-Curtis dissimilarity
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of the bacterial and fungal community compositions, and then
the Mantel test (999 permutations) was performed to evaluate
the significance of these linear models. The element cycle is a
matrix that includes the activity of five enzymes involved in
the C, N and P cycles, and the difference in the element cycle
was calculated by the Euclidean distance between each pair
of sampling sites. We did not use the sum value of the five
enzyme activities to represent the element cycle due to the large
differences among the values of EEAs involved in the C, N and
P cycles which might underestimate the weight of variations in
enzymes with lower activities.

Random forest (RF) analysis was used to quantify the
relative contributions of environmental factors to microbial
species richness, microbial metabolic limitation and the C/N/P
cycle. Redundancy analysis (RDA) was used to determine the
abiotic factors with a significant effect on the bacterial and
fungal community structures. Finally, the structural equation
model (SEM), which aims to quantify the potential causal
relationships among variables (Grace et al., 2012), was simulated
to clarify the relationships among abiotic factors, bacterial
and fungal community attributes including species richness
and community compositions, the C/N/P cycle and microbial
metabolic limitations. In the SEM, the abiotic factors were
selected based on the multiple stepwise regressions of the
microbial C and N/P limitations. We Z score-transformed the
input variables to allow cross-comparisons and performed an
analysis of variance (ANOVA) to estimate the significance of
the standardized path coefficient (β) and the model. The final
selected model met the criteria as previously mentioned (Zhang
et al., 2021b). The standardized total effect (SE) of each variable
on microbial C or N limitation was then calculated by the
significant path coefficient, which included both direct and
indirect correlations.

Results

Physiochemical properties, microbial
community compositions, EEAs, and
the patterns of microbial metabolic
limitation

A low nutrient level with a mean water TP content
of 0.04 mg L−1 was observed across the Qinghai Lake
(Supplementary Table 1), and the mean value of the water
TN:TP ratio was above the Redfield ratio of 16N: 1P, indicating
P limitation. For the surface sediments of Qinghai Lake, the
mean values of TC, TP and TN contents were 65.25, 0.62, and
2.89 g kg−1, respectively (Supplementary Table 1), and the
mean value of the sediment TN:TP ratio was 10.19.

A total of 78 phyla and 337 families of bacteria, and 8
phyla and 144 families of fungi were determined across the

sediments of Qinghai Lake. For bacteria, Proteobacteria,
Bacteroidetes and Chloroflexi were the top phyla with the mean
relative abundances of 37.48, 15.01, and 13.88%, respectively,
followed by Firmicutes (6.57%), Actinobacteria (3.88%),
Planctomycetes (3.80%), and Chlorobi (3.26%) (Supplementary
Figure 2A). For fungi, the most dominant phyla identified were
Ascomycota (33.32%) and Basidiomycota (15.79%), followed
by Rozellomycota (1.57%) and Chytridiomycota (1.03%)
(Supplementary Figure 2B).

For EEA alone, BG and NAG (458.12 and 114.38
nmol MUF g−1 h−1, respectively) were respectively the
primary decomposers of C- and N-containing substrates,
which showed absolute advantages over CBH (159.11
nmol MUF·g−1 h−1) and LAP (24.9 nmol AMC·g−1 h−1),
respectively (Supplementary Table 1).

Colimitations of carbon and nitrogen characterized the
sediment microorganisms of Qinghai Lake according to the
vector analysis of enzymatic stoichiometry. On the one hand,
EEAs involved in C acquisition were consistently higher than
those involved in N and P acquisitions (Figures 1A,B), which
implied a greater C constrain than N and P constraints. On
the other hand, almost all data points were below the diagonal
line and had vector angles <45◦ (Figure 1C), which indicated
microbial N limitation rather than P limitation. Additionally,
significant negative correlations between C limitation and N
limitation were identified by linear regression (p < 0.05,
Figure 1D).

Effects of single physiochemical
properties and microbial community
attributes on microbial metabolic
limitation

Microbial C limitation increased significantly with increases
in water salinity, sediment TP and water depth (p < 0.05,
Figures 2A–C and Supplementary Figure 3). Microbial N
limitation decreased and increased significantly with increasing
water temperature and water TN, respectively (p < 0.05,
Figures 2D,E and Supplementary Figure 3). For the enzymes
involved in C cycle, CBH was positively related with water
temperature (p < 0.05, Supplementary Figure 3). For those
involved in N cycle, NAG and LAP were both promoted by water
TN (p < 0.05, Supplementary Figure 3), NAG was negatively
related to the water depth and SD, while LAP was positively
associated with sediment TC. For the enzyme involved in P
cycle, AP was negatively related to sediment TP (p < 0.05,
Supplementary Figure 3). Under the slight fluctuation of pH
values from 9.40 to 10.25 across Qinghai Lake, the activities
of BG, CBH, NAG, and AP changed in the hump-shaped
patterns according to the quadratic regressions (p < 0.05,
Supplementary Figures 4B,D,G).
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FIGURE 1

Stoichiometry of the relative proportion of C- versus N-acquiring enzymes (A), C- versus P-acquiring enzymes (B) and enzymatic C:N versus
C:P (C), and linear correlations between microbial C and N limitation (D) of Qinghai Lake sediments. BG, β-1,4-glucosidase; CBH,
β-D-cellobiosidase; NAG, β-1,4-N-acetylglucosaminidase; LAP, L-leucine aminopeptidase; AP, alkaline phosphatase. A 1:1 dotted line is
superimposed (A–C), which indicates equal acquisition effort by the compared element-acquiring EEA on the x and y axis (Sinsabaugh et al.,
2009). Deviations from the 1:1 line imply limitation in favor of the enzyme group where more acquisition effort is directed.

Among the microbial community attributes, including
the richness (Figures 2F,I) and community structures
(Figures 2G,H,J,K) of bacteria and fungi, we found the
consistent influences of bacterial community structure
on element cycling and microbial metabolic limitations.
Specifically, increases in the bacterial Bray-Curtis dissimilarity
significantly increased the differences in C, N, P, and element
cycles (p < 0.05, Supplementary Figures 6A–C,G) and
the differences in microbial C and N limitations (p < 0.05,
Figures 2G,H). For fungi, however, it only inhibited the P
cycle via the variation in richness (p < 0.01, Supplementary
Figure 7).

Relative contributions of factors that
driving the variations in microbial
community attributes, the C/N/P cycle
and microbial metabolic limitation

For bacteria, the richness was influenced by the sediment
TC and water ORP (p < 0.05, Figure 3A) and the community
structure was influenced by water TN and sediment variables,
including conductivity, pH and TP (p < 0.05, Figure 3C). For
fungi, water depth accounted for 31.23% of the variations in
richness (p < 0.05, Figure 3B), while abiotic factors showed
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FIGURE 2

Correlations of the microbial metabolic limitations with physiochemical factors in water and sediment (A–E) or bacterial and fungal community
richness (F,I). And the relationships between bacterial (G,H) or fungal (J,K) community composition represented by Bray-Curtis dissimilarity and
difference in microbial metabolic limitations. The orange dot indicates the vertical axis variable as microbial C limitation or difference in
microbial C limitation. The blue dot indicates the vertical axis variable as microbial N limitation or difference in microbial N limitation. The lines
represent the fitted linear regressions with 95% confidence intervals indicated by the shaded areas, where only significant relationships are
shown. The adjusted R2 or r values of the linear models are denoted. *p < 0.05, **p < 0.01.

a weak influence on the community structure with a low total
explanation of 5.02% from the first and second axes of the RDA
(Figure 3D).

Microbial C limitation was mainly altered by the C
and N cycles with relative contributions of 30.73 and
14.87%, respectively (p < 0.05, Figure 4D), followed by
water temperature, salinity, bacterial community structure and
sediment TP with relative contributions of 9.53, 8.83, 7.89,
and 6.75%, respectively (p < 0.1, Figure 4D). Microbial N
limitation was primarily changed by the N and P cycles
with relative contributions of 30.88 and 23.12%, respectively
(p < 0.05, Figure 4E). Sediment pH dominated the variations
in the BG and CBH enzymes and C and P cycles with relative
contributions of 41.48, 31.78, 44.83, and 26.81%, respectively
(p < 0.05, Figures 4A,C and Supplementary Figures 8A,B).
In addition, the water SD and TN dominated variations in

the N cycle with relative contributions of 25.85 and 19.69%,
respectively (p < 0.05, Figure 4B).

Direct and indirect relationships of
physiochemical properties, microbial
community attributions and the C/N/P
cycle with microbial metabolic
limitation

The multiple stepwise regressions screened water
temperature, salinity, sediment TC and sediment TP as
the main factors responsible for the variation in microbial
C limitation, with a total contribution of 49.8%. Water
temperature and water TN were the dominant variables,
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FIGURE 3

The contributions of abiotic factors on microbial community attributes. The panels include random forest analyses of the richness of bacteria
(A) and fungi (B), and redundancy analysis (RDA) of the community compositions of bacteria (C) and fungi (D) represented by biplot graph. The
columns filled with yellow and blue indicate sediment and water variable, respectively. The significance of each variable was shown above the
column. p < 0.1, *p < 0.05.

which together explained 40.2% of the variations in microbial
N limitation (p < 0.01, Supplementary Table 3). With the
inclusion of these selected physiochemical properties, microbial
community attributes, and C, N, and P cycles, the final SEM
explained 99.1 and 95.8% of the variations in microbial C and
N limitations, respectively (Figure 5). The results show that
microbial community attributes contributed more to both C
and N limitations compared with physiochemical properties
(Figure 6).

For C limitation, water salinity was the largest
physiochemical contributing factor (SE = 0.583), followed
by sediment TP and water temperature (Figure 6, SE = 0.192
and 0.188, respectively). Water salinity indirectly affected C
limitation via C and P cycles and fungal richness (Rf) (Figure 5,
β = 0.365, –0.393 and –0.308, respectively). The most important
microbial attribute for C limitation was bacterial community
structure (Csb) (Figure 6, SE = 1.036), which impacted C
limitation directly (β = 0.108) and indirectly via the C, N and P
cycles (Figure 5, β = 0.748, 0.348 and –0.516, respectively).

For N limitation, water TN and salinity were the first and
second physiochemical contributors (Figure 6, SE = 0.432,
0.312, respectively). N limitation was affected by water TN
directly (β = 0.141) and indirectly via the N cycle (β = 0.39),
and by salinity indirectly via the P cycle with a hump pattern
(β = -0.393, Figure 5) (Supplementary Figure 5). Csb and
Rf presented large and similar contributions to N limitation
(Figure 6, SE = 0.655 and 0.612, respectively), with the former
having an indirect effect via the N and P cycles and the latter via
the P cycle (Figure 5).

Discussion

In this study, we deciphered the patterns of microbial
metabolic limitation and their driving mechanisms in Qinghai
Lake, the largest saline lake in China. Our results indicated
that in the sediments of Qinghai Lake, (1) microorganisms
were dominantly limited by C and N; (2) salinity and sediment
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FIGURE 4

The contributions of abiotic factors on C-/N-/P-cycle (A–C), and of abiotic and biotic factors on microbial C (D) and N (E) limitations based on
random forest analyses. The columns filled with yellow, blue, red and violet indicate sediment variable, water variable, microbial diversity and
enzyme activity, respectively. The microbial diversity includes the richness of bacteria (Rb) and fungi (Rf), and the community structure of
bacteria (CSb) and fungi (CSf) represented by the first axis of detrended correspondence analysis of the communities. The significance of each
variable was shown above the column. p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.

phosphorus enrichments promoted microbial C limitation;
elevated water TN, decreased temperature and reduced C
limitation enhanced microbial N limitation; and the bacterial
community structure consistently dominated variations in
microbial nutrient cycles and C and N limitations.

For the sediments of Qinghai Lake, microbes were primarily
C-limited and secondarily nutrient-limited, with as much as
67% of the EEAs directed toward C acquisition (Supplementary
Table 2). A higher allocation of EEA directed toward C than
nutrient acquisition had also been found in the river and
stream sediments (Hill et al., 2012). However, this phenomenon
was not found in the sediments of some freshwater lakes,
such as Fuxian Lake, which showed almost equal microbial
efforts toward C, N, and P acquisitions (Unpublished data).
Moreover, the higher mean value of vector length indicated a
stronger C limitation in Qinghai Lake than in freshwater lakes,
such as Fuxian Lake, Hulun Lake and lakes in the Yangtze–
Huaihe River basin (p < 0.001, Supplementary Table 2).
We found that the mean value of sediment TC content in
Qinghai Lake was substantially higher than that in freshwater
lakes, including Lake Hulun and Lake Fuxian (p < 0.001,

Supplementary Table 2). In saline lakes such as Qinghai
Lake, the stronger C limitation despite the higher sediment
TC contents relative to that in freshwater lakes could be
explained by the following two points. On the one hand,
previous studies on the relationships between C supply and
EEA generally concluded that the absolute enzyme activity, such
as glycosidase and peptidase activity, increases with increasing
sediment organic matter content (Boschker and Cappenberg,
1998; Shackle et al., 2000; Harbott and Grace, 2005). Compared
with freshwater lakes, the higher sediment TC contents in
Qinghai Lake might thus determine its higher EEAs. For
example, the activities of BG, CBH, NAG, and AP in Qinghai
Lake showed dramatically higher values than those in the
freshwater lakes listed in Supplementary Table 2 (p < 0.001).
On the other hand, the EEAs could be influenced by other
factors, such as water salinity. At water salinity >19.5h,
the activities of NAG and AP in Qinghai Lake decreased
quickly with increasing salinity (Supplementary Figures 5D,G),
which increased the gaps between EEAs involved in C and
nutrient acquisition and therefore led to strong C limitation in
Qinghai Lake.
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FIGURE 5

Structural equation model (SEM) showed the effects of main
environmental factors and microbial community attributes on
sediment microbial C and N limitation. The environmental
factors were selected according to stepwise multiple linear
regressions between measured physiochemical factors and
carbon limitation or nitrogen limitation (Supplementary
Table 3). The microbial community attributes include the
richness of bacteria (Rb) and fungi (Rf), and the community
structure of bacteria (CSb) and fungi (CSf) represented by the
first axis of detrended correspondence analysis of the
communities. Continuous and dashed arrows denote positive
and negative relationships respectively at the significance level
of p < 0.05. Numbers adjacent to the arrows are standardized
path coefficients (β) indicating the effect sizes, and the arrow
width is proportional to β.

The sediment N limitation in Qinghai Lake was consistent
with previous sediment studies in lakes and coastal wetlands
(Hill et al., 2006), gulf hypoxic zones (Hill et al., 2014), streams
and rivers (Hill et al., 2012) and lakes such as Hulun Lake
(Supplementary Table 2). However, there are other patterns
of nutrient limitations found such as in some sediments and
wetlands. For example, the sediments of mangroves (Luo and
Gu, 2018) and tidal wetlands (Zhai et al., 2022) are characterized
by P limitation. The great rivers of the Upper Mississippi River
basin (Hill et al., 2009) and the lakes in the Yangtze–Huaihe
River basin (Supplementary Table 2) showed shifts in N and
P limitations of sediment across sites. Sediment N limitation is
generally ascribed to relatively N depletion and P enrichment
due to P adsorption to sediments or P recycling, such as in
streams and rivers (Hill et al., 2012) and the gulf hypoxic zone
(Hill et al., 2014). This might also determine the microbial N
limitation in Qinghai Lake given its similar mean sediment
TN:TP ratio (10.19) to the N-limited streams (9.88) (Hill et al.,
2012).

Increasing sediment phosphorus and salinity aggravated
microbial C limitation, which implies intensifying sediment
C loss. A similar phenomenon was found in a phosphorus
fertilizer addition experiment in forest soil, which showed
that phosphorus addition caused microbial C limitation due
to the relative increases in activity toward C acquisition with

FIGURE 6

The standardized total effects of each explanatory variable for C
and N limitation based on SEM. The microbial community
attributes include the richness of bacteria (Rb) and fungi (Rf),
and the community structure of bacteria (CSb) and fungi (CSf)
represented by the first axis of detrended correspondence
analysis of the communities.

respect to both N- and P-acquiring enzymes (DeForest and
Moorhead, 2020). Intriguingly, these findings provided insights
toward a better understanding of the potential mechanisms of
changes in the carbon storage in saline lakes. For example,
although eutrophic lakes have higher total organic carbon
burial and accumulation rates (Anderson et al., 2014), a higher
organic carbon mineralization rate induced by eutrophication
leads to a low long-term burial efficiency of organic carbon
(Mendonça et al., 2017; Huang et al., 2019). In this scenario,
elevating hydrolysis of organic carbon, i.e., enhanced microbial
C limitation, induced by increasing TP might be an additional
reason for sediment C loss in saline lakes, such as Qinghai Lake.
According to a 42-day laboratory incubation of lake sediments
with three salinity gradients, increasing salinity was shown to
significantly promote the positive priming effect of sediment,
which is defined as an increase in organic carbon mineralization
in response to inputs of fresh organic matter (Yang et al., 2020).
This phenomenon may partly be attributed to the findings in this
study, that is, the increase in salinity promotes the hydrolysis
of organic carbon. In Qinghai Lake, water level monitoring
recorded a continuous water level drop of 3.34 m from 1959 to
2005, which caused a rise of 2.05h in the average water salinity
from 1962 to 2005 (Wang et al., 2008). These records further
emphasized the importance of climate change to the sediment
C cycle of Qinghai Lake through salinity variation. Collectively,
we speculated that sediment C loss would intensify as the lake
water becomes concentrated (higher salinity) and phosphorus
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becomes enriched under climate change and human nutrient
pollution, respectively.

Microbial N limitation was predominantly intensified by
water TN and decreased with increasing C limitation. Water
TN might increase N limitation due to its positive effects
on the N cycle, including the activities of NAG and LAP, as
inferred from the Pearson correlation analyses and the SEM.
The positive effects of water TN on NAG and LAP can be
explained as follows: higher TN in water increased the N
assimilation of phytoplankton and thus the input of organic
nitrogen to sediment in Qinghai Lake (Chen et al., 2012),
which led to the release of NAG and LAP by benthic microbes
to decompose these organic nitrogen materials. In addition,
the decomposition of organic nitrogen (especially proteins)
accelerates the formation of an anaerobic status in sediment
due to the coupling of nitrification-denitrification caused by
ammonium accumulation. This leads to the reduction of ferric
iron to ferrous iron and thus the release of soluble reactive
phosphorus from iron-bound phosphorus in sediments (Li
et al., 2016). Subsequent increases in sediment phosphorus
availability changed the microbial nutrient demand from P to
N, and hence promoted microbial allocations of EEAs toward
NAG and LAP. Furthermore, microbial N limitation was also
intensified with the alleviation of C limitation largely because
the microbial N demand was stimulated by C addition, which
was verified by the positive correlations between sediment TC
and LAP (Supplementary Figure 3). Analogously, a review
of terrestrial ecosystems indicated that the available soil N
becomes increasingly limiting as more carbon is sequestered
in plant biomass and soil organic matter in response to rising
atmospheric CO2 (Luo et al., 2004). It is worth noting that
sediment pH exhibited significant or dominant influences on all
EEAs except LAP, while it failed to affect microbial metabolic
limitations. These results are consistent with previous studies
indicating that sediment pH significantly affected EEAs, such as
AP activity (Ma et al., 2018), while showed no correlations with
enzyme stoichiometry (Luo and Gu, 2018). Comparatively, in
soil ecosystems, we now have evidence that soil pH is a strong
driver of both soil EEA (Malik et al., 2018; Xu et al., 2020)
and enzyme vector length and angle (DeForest and Moorhead,
2020; Wang et al., 2021). The discrepancies in enzymatic
stoichiometry caused by alterations in pH between the soil and
sediment are probably associated with the reduced sediment pH
variation within aquatic sediments caused by the buffering of
dissolved carbonates (Sinsabaugh et al., 2009).

Additionally, the bacterial community structure consistently
drives the C, N, P, and element cycles and microbial nutrient
limitation, while fungal richness only influenced the P cycle.
The associations of the microbial community with EEAs and
enzyme stoichiometry have been extensively reported in soil
ecosystems (Carrara et al., 2018; Dunleavy and Mack, 2021;
Wang et al., 2021), while the opposite is true in aquatic
sediments. In general, the relative contributions of bacterial

and fungal community variations to soil enzyme allocations
are dependent on the ecosystem type. For example, in shrubs
of the arctic tundra, ectomycorrhizal-associated root enzyme
activity profiles are significantly correlated with changes in
fungal community composition (Dunleavy and Mack, 2021). In
successional subalpine ecosystems after glacier retreat, BG:NAG
and BG:AP were tightly linked to the bacterial community
composition, while NAG:AP was strongly associated with the
fungal community composition (Wang et al., 2021). In a
long-term N fertilization experiment in a temperate forest,
declines in EEAs following N fertilization were significantly
related to a shift in bacterial, but not fungal community
composition (Carrara et al., 2018). We proposed that the
observed predominant contribution of bacterial rather than
fungal community structure to both element cycles and relative
investments in enzymes in the sediments of Qinghai Lake
may primarily be associated with two factors. (1) Abundance
advantage of bacteria, i.e., the number of bacteria in surface
sediments is an order of magnitude higher than the number
of fungi (Xu et al., 2014). Similar to our results, a sediment
study of the mangrove ecosystem revealed that bacteria may be
more sensitive to variations in nutrient availability because of
the remarkably higher correlation coefficients between bacterial
abundance and enzyme stoichiometry than between fungal
abundance and enzyme stoichiometry (Luo and Gu, 2018).
(2) High activities of bacteria and low resilience of fungi to
harsh surroundings (Bapiri et al., 2010; de Vries et al., 2012).
For example, a mesocosm experiment in grassland indicated
that drought accelerates the destabilizing properties of bacterial
(rather than fungal) co-occurrence networks and that bacterial
communities are more closely connected to soil functions than
fungal communities during recovery from drought (de Vries
et al., 2018).

Conclusion

This study revealed that the benthic microorganisms were
colimited by C and N in Qinghai Lake, the largest inland saline
lake in China. We showed that the C and P cycles are regulated
by sediment pH while the N cycle is affected by water TN and
transparency in the sediments of Qinghai Lake. We further
found that microbial C limitation was aggravated by increasing
salinity and sediment phosphorus, which implied that sediment
C loss will intensify as the lake water becomes concentrated
and phosphorus becomes enriched under climate change and
human-induced nutrient pollution, respectively. For microbial
N limitation, water TN had the predominant promoting effect
while C limitation had the predominant negative effect. In
addition, the bacterial community structure consistently drove
the changes in the C, N, and P cycles and in microbial
nutrient limitation, while fungi only affected the P cycle through
species richness. These results revealed the patterns and drivers
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of microbial metabolic limitation in saline lakes and further
emphasize the potential effects of climate change and human
interference on global sediment C storage.
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