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risk ratios using modified Poisson
regression in multi-center studies
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Abstract

Background: Multi-center studies can generate robust and generalizable evidence, but privacy considerations and
legal restrictions often make it challenging or impossible to pool individual-level data across data-contributing sites.
With binary outcomes, privacy-protecting distributed algorithms to conduct logistic regression analyses have been
developed. However, the risk ratio often provides a more transparent interpretation of the exposure-outcome
association than the odds ratio. Modified Poisson regression has been proposed to directly estimate adjusted risk
ratios and produce confidence intervals with the correct nominal coverage when individual-level data are available.
There are currently no distributed regression algorithms to estimate adjusted risk ratios while avoiding pooling of
individual-level data in multi-center studies.

Methods: By leveraging the Newton-Raphson procedure, we adapted the modified Poisson regression method to
estimate multivariable-adjusted risk ratios using only summary-level information in multi-center studies. We
developed and tested the proposed method using both simulated and real-world data examples. We compared its
results with the results from the corresponding pooled individual-level data analysis.

Results: Our proposed method produced the same adjusted risk ratio estimates and standard errors as the
corresponding pooled individual-level data analysis without pooling individual-level data across data-contributing
sites.

Conclusions: We developed and validated a distributed modified Poisson regression algorithm for valid and
privacy-protecting estimation of adjusted risk ratios and confidence intervals in multi-center studies. This method
allows computation of a more interpretable measure of association for binary outcomes, along with valid
construction of confidence intervals, without sharing of individual-level data.

Keywords: Distributed analysis, Modified Poisson regression, Multi-center studies, Odds ratio, Privacy protection,
Risk ratio
Background
In studies where the outcome variable is binary, a logis-
tic regression model is commonly used for convenient
estimation of the adjusted (i.e., conditional on measured
covariates) odds ratio comparing exposed to unexposed
individuals [1, 2]. However, the odds ratio is not easily
interpretable because, unlike the risk ratio, it is not a dir-
ect measure of a ratio of probabilities, often of primary
interest to patients and clinicians [3]. Although the odds
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ratio approximates the risk ratio under the rare disease
assumption (e.g., odds of the outcome < 10% in all ex-
posure and confounder categories) [4], it can be quite
different from the risk ratio and produce misleading re-
sults when this assumption is not met [3, 5–8].
Log-binomial regression can directly estimate adjusted

risk ratios without requiring the rare disease assumption,
but it is susceptible to non-convergence issues when the
maximum likelihood estimators lie near the boundary of
the parameter space [9, 10]. Poisson regression is another
approach to estimating adjusted risk ratios and does not
have any known convergence problems in its parameter
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space. This approach provides consistent estimates of ad-
justed risk ratios but incorrect estimates of the variance
because it relies on a Poisson distributed, rather than bi-
nomially distributed, outcome. In practice, standard im-
plementation of Poisson regression tends to produce
conservative confidence intervals [11]. As a solution to
these challenges, Zou [12] proposed a modified Poisson
regression approach that allows direct estimation of ad-
justed risk ratios even when the rare disease assumption is
not met. This approach avoids the convergence issues typ-
ically observed in log-binomial regression and, unlike con-
ventional Poisson regression, provides consistent variance
estimates and confidence intervals with the correct nom-
inal coverage.
A growing number of studies are now conducted

within multi-center distributed data networks [13]. Such
collaborations combine data from multiple sources to
generate more reliable evidence using larger and more
representative samples. Within these networks, each
data-contributing site (i.e., data partner) maintains phys-
ical control of their data and may not always be able or
willing to share individual-level data for analysis. For ex-
ample, the Sentinel System is a national program funded
by the U.S. Food and Drug Administration to proactively
monitor the safety of regulated medical products using
electronic healthcare data from multiple data partners
[14]. In multi-center studies like those conducted within
the Sentinel System, it is often crucial to minimize shar-
ing of sensitive individual-level data to protect patient
privacy. The development and applications of analytic
methods that enable valid statistical analysis without
pooling individual-level data are therefore increasingly
important.
Privacy-protecting distributed algorithms to conduct

logistic regression analyses have been previously devel-
oped [15–18]. To our knowledge, there are currently no
distributed algorithms to estimate adjusted risk ratios via
modified Poisson regression while avoiding pooling of
individual-level data across data partners. In this paper,
we propose such an algorithm and provide example R
[19] code to implement the algorithm. We also illustrate
in simulated and real-world data examples that our algo-
rithm produces adjusted risk ratio estimates and stand-
ard errors equivalent to those obtained from the
corresponding pooled individual-level data analysis.
Methods
Theory of modified Poisson regression for pooled
individual-level data
We begin by describing the general theory of modified
Poisson regression in single-database studies. Let X be a
vector of covariates, E a binary exposure indicator (E = 1
if exposed and E = 0 if unexposed), and Y the binary
outcome variable (Y = 1 if the outcome occurs and Y = 0
otherwise).
Let Z be a vector of information on the exposure and

covariates. Specifically, Z = (1, g(E, XT))T where g(E, XT)
is a vector containing a specified function of E and X.
Assume the risk of the outcome conditional on E and X
can be written as

P Y ¼ 1jE;Xð Þ ¼ exp βTZ
� � ð1Þ

where β is an unknown vector of parameters. An ex-
ample of model 1 is PðY ¼ 1jE;XÞ ¼ expðβ0 þ βE E
þβT

XXÞ. In this special case, the risk ratio of the outcome
comparing the exposed to unexposed and adjusting for
covariates X is given by P(Y = 1| E = 1, X)/P(Y = 1| E = 0,
X) = exp(βE).
Alternatively, we might assume a more flexible model

that allows interactions between E and X: PðY ¼ 1jX; EÞ
¼ expðβ0 þ βE E þ βTXX þ βTEXEXÞ . Under this model,
the risk ratio of the outcome comparing the exposed to
unexposed and adjusting for covariates X is given by Pð
Y ¼ 1jE ¼ 1;XÞ=PðY ¼ 1jE ¼ 0;XÞ ¼ expðβE þ βT

EXXÞ ,
which depends on the value of X.
Suppose we have an independent and identically dis-

tributed sample of size n. For each individual i, the fol-
lowing variables are measured: Let Xi be a vector of
covariates, Ei a binary exposure indicator (Ei = 1 if ex-
posed and Ei = 0 if unexposed), Yi the binary outcome
variable (Yi = 1 if the outcome occurs and Yi = 0 other-
wise), and Zi a vector of information on the exposure
and covariates, i.e., Zi = (1, g(Ei, Xi

T))T.
Zou [12] provided the theoretical justification for his

proposed approach in the setting of a 2 by 2 table (a bin-
ary exposure and no covariates). The justification for this
approach can be established more generally using the the-
ory of unbiased estimating equations [20]. Provided model
1 is correctly specified, we have E[{Y − exp(ZTβ)}Z] = 0,
which leads to the unbiased estimating equation

Xn
i¼1

Y i− exp Zi
Tβ

� �� �
Zi ¼ 0 ð2Þ

Solving (2) for β gives β̂, a consistent and asymptotically
normal estimator for the true β.

A consistent estimator of the variance of β̂ is then
given by the sandwich variance estimator [20]

dvar β̂
� �

¼ H β̂
� �−1

� 	
B β̂
� �

H β̂
� �−1

� 	
ð3Þ

where Hðβ̂Þ ¼ −
Xn
i¼1

expðZi
T β̂ÞZiZi

T and Bðβ̂Þ ¼
Xn
i¼1fY i− expðZi

T β̂Þg2ZiZi
T . Zou [12] referred to this pro-

cedure as modified Poisson regression because (2) is
equivalent to the score equation for the Poisson
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likelihood but the variance estimator does not rely on
the Poisson distribution assumption (clearly unreason-
able for binary outcomes).

Distributed algorithm for conducting modified Poisson
regression in multi-center studies
Suppose the n individuals’ data are physically stored in K
data partners that are unable to share their individual-
level data with the analysis center. For k = 1, …, K, let Ωk

denote the set of indexes of individuals who are mem-
bers of the k th data partner.
When the individual-level data are available to the

analysis center, the estimator β̂ and its corresponding
variance estimator can be obtained with off-the-shelf
statistical software. However, when the individual-level
data are not available, (2) cannot be directly solved for β

to obtain β̂ , and dvarðβ̂Þ cannot be directly calculated
using (3). Here we describe a distributed algorithm that

produces identical β̂ and dvarðβ̂Þ in multi-center studies
where individual-level data are not pooled.

We leverage the Newton-Raphson method such that β̂ can
be obtained using an iteration-based procedure with only
summary-level information being shared between the data
partners and the analysis center in each iteration. The r th it-
erated estimate of β using the Newton-Raphson method is

β rð Þ ¼ β r−1ð Þ− H rð Þ
n o−1

S rð Þ ð4Þ

where β(r − 1) is the (r − 1) th iterated estimate of β, SðrÞ

¼ Pn
i¼1fY i− expðZi

Tβðr−1ÞÞgZi , and H ðrÞ ¼ −
Pn

i¼1 expð
Zi

Tβðr−1ÞÞZiZi
T :

We observe that S(r) and H(r) can be re-written as
summation of site-specific quantities:

S rð Þ ¼
XK

k¼1

Sk
rð Þ ð5Þ

where

Sk
rð Þ ¼

X
i€Ωk

Y i− exp Zi
Tβ r−1ð Þ

� �n o
Zi ð6Þ

and

H rð Þ ¼
XK

k¼1

Hk
rð Þ ð7Þ

where

Hk
rð Þ ¼ −

X
i€Ωk

exp Zi
Tβ r−1ð Þ

� �
ZiZi

T ð8Þ

Therefore, to calculate S(r) and H(r), each data partner
k = 1, …, K only needs to calculate and share with the
analysis center the summary-level information Sk
(r) and

Hk
(r).

Next, consider estimation of the variance of β̂. We ob-
serve that

H β̂
� �

¼
XK

k¼1

Hk β̂
� �

ð9Þ

where

Hk β̂
� �

¼ −
X
i€Ωk

exp Zi
T β̂

� �
ZiZi

T ð10Þ

and

B β̂
� �

¼
XK

k¼1

Bk β̂
� �

ð11Þ

where

Bk β̂
� �

¼
X
i€Ωk

Y i− exp Zi
T β̂

� �n o2
ZiZi

T ð12Þ

To calculate Hðβ̂Þ and Bðβ̂Þ, each data partner k = 1, …,
K only needs to calculate and share the summary-level

information Hkðβ̂Þ and Bkðβ̂Þ after receiving the value

of β̂ from the analysis center. Unlike in the estimation of
β, no iterations are needed in the sandwich variance
estimation.
We summarize our distributed algorithm for conduct-

ing modified Poisson regression in multi-center studies
below.

Point estimation

Step 0 (Determination of starting values) The analysis
center specifies the starting values for the components
of β(0) and sends these values to all data partners. Then,
for each iteration r until the convergence criteria are
met, the following two steps are repeated:

Step 1 (r th iteration of data partners) Each data part-
ner k = 1, …, K calculates Sk

(r) and Hk
(r) using (6) and

(8), respectively, based on β(r − 1) received from the ana-
lysis center. All data partners then share the values of
Sk

(r) and Hk
(r) with the analysis center.

Step 2 (r th iteration of the analysis center) The ana-
lysis center calculates S(r) and H(r) using (5) and (7), re-
spectively. The analysis center then calculates β(r) using
(4) and shares the value of β(r) with all data partners.
The iteration procedure is considered to have con-

verged when the change in the estimates between itera-
tions is within a user-specified tolerance value. In
numerical studies to be presented later, we considered a
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convergence criterion to be met at the (R + 1) th iteration

if max
l

jδlðRþ1Þj < 10−8 , where δl
(R + 1) = βl

(R + 1) − βl
(R) if

∣βl
(R) ∣ < 0.01 and δl

(R + 1) = (βl
(R + 1) − βl

(R))/βl
(R) other-

wise, and βl
(R) is the l th element of β(R). Once achieving

convergence, the analysis center shares the final estimate

β̂ with all data partners.

Variance estimation

Step 1 (Calculation of summary-level information by
data partners) Each data partner k = 1, …, K calculates

Hkðβ̂Þ and Bkðβ̂Þ using (10) and (12), respectively, and

then shares the values of Hkðβ̂Þ and Bkðβ̂Þ with the ana-
lysis center.

Step 2 (Calculation of the variance estimate by the
analysis center) The analysis center calculates Hðβ̂Þ
and Bðβ̂Þ using (9) and (11), respectively, and then cal-

culates the estimated variance dvarðβ̂Þ using (3).
Due to mathematical equivalence, the above procedure

would provide the same point estimates and sandwich
variance estimates as the analysis that uses individual-
level data pooled across data partners.

Results
Analysis of simulated data
We considered a simulation design that enabled us to as-
sess the performance of the proposed summary-level modi-
fied Poisson method in the presence of multiple data
partners, multiple covariates (including but not limited to
data source indicators), and differences in exposure preva-
lence and outcome incidence across data partners. Al-
though modified Poisson regression is broadly applicable
with rare and common outcomes, here we considered a
scenario with common outcomes, where logistic regression
would provide biased estimates of adjusted risk ratios.
Specifically, we simulated a distributed network with

three (i.e., K = 3) data partners and n = 10000 individuals
Table 1 Point Estimates and Standard Errors Using the Summary-Le
Analysis: Analysis of Simulated Data

Covariates Summary-Level Modified Poisson Method

Parameter Estimates Standard Er

Intercept −0.09702882 0.037519

Exposure −0.48776703 0.034624

X1 −0.38249121 0.029684

X2 −0.62968463 0.051610

X3 −0.50382664 0.023897

X4 −0.09079213 0.033891

X5 0.13274741 0.038142
with 5000, 2000, and 3000 individuals contributing data
from the first, second, and third data partners, respect-
ively. We considered five covariates X1, X2, X3, X4 and
X5. We generated X1 as a Bernoulli variable with a mean
(i.e., P(X1 = 1)) of 0.6, X2 as a continuous variable follow-
ing the standard uniform distribution, X3 as a continu-
ous variable following the unit exponential distribution,
X4 as an indicator that an individual contributed data
from the first data partner, and X5 as an indicator that
an individual contributed data from the second data
partner.
The exposure E was generated from a Bernoulli distribu-

tion with the probability of being exposed (E = 1) defined as
1/{1 + exp(0.73−X1 −X2 +X3 − 0.2X4 + 0.2X5)}, indicating a
non-randomized study. This setting led to different expos-
ure prevalences across data partners. The resulting expos-
ure prevalence was approximately 40% overall, 43% for the
first data partner, 34% for the second data partner, and 38%
for the third data partner. The outcome Y was generated
from a Bernoulli distribution with the probability of having
the outcome (Y = 1) defined as exp(ZTβ) = exp(−0.1 − 0.5E
− 0.4X1 − 0.6X2 − 0.5X3 − 0.1X4 + 0.1X5) such that the true
adjusted risk ratio comparing the exposed to unexposed
was exp(−0.5) = 0.61. The resulting outcome incidence (i.e.,
risk) varied across the three data partners. This incidence
was about 30% for the entire pooled data, 27% for the first
data partner, 35% for the second data partner, and 31% for
the third data partner.
As the reference, we first fit a modified Poisson re-

gression model using pooled individual-level data
(Table 1). We then implemented our proposed dis-
tributed algorithm that did not require sharing of
individual-level data to estimate β. Based on the start-
ing value β(0) = 0, the analysis took seven iterations to
converge. The individual-level and summary-level
methods produced identical point estimates and sand-
wich variance-based standard errors (Table 1). The
Additional file 1 provides the summary-level informa-
tion shared between the data partners and the ana-
lysis center during each iteration.
vel Modified Poisson Method and Pooled Individual-Level Data

Pooled Individual-Level Data Analysis

rors Parameter Estimates Standard Errors

91 −0.09702882 0.03751991

85 −0.48776703 0.03462485

48 −0.38249121 0.02968448

73 −0.62968463 0.05161073

81 −0.50382664 0.02389781

26 −0.09079213 0.03389126

72 0.13274741 0.03814272
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Analysis of real-world data
To further illustrate our method, we analyzed a dataset cre-
ated from the IBM® Health MarketScan® Research Databases,
which contain de-identified individual-level healthcare claims
information from employers, health plans, hospitals, and
Medicare and Medicaid programs fully compliant with U.S.
privacy laws and regulations (e.g., Health Insurance Portabil-
ity and Accountability Act). The study dataset included 9736
patients aged 18–79 years who received sleeve gastrectomy
or Roux-en-Y gastric bypass between 1/1/2010 and 9/30/
2015. The outcome of interest was any hospitalization during
the 2-year follow-up period after surgery. The exposure vari-
able was set to 1 if the patient received sleeve gastrectomy
and 0 if the patient received Roux-en-Y gastric bypass. We
estimated the risk ratio of hospitalization comparing sleeve
gastrectomy with Roux-en-Y gastric bypass using the pooled
individual-level data analysis and the summary-level informa-
tion approach, adjusting for the following covariates identi-
fied during the 365-day period prior to the surgery: age; sex;
Charlson/Elixhauser combined comorbidity score; diagnosis
of asthma, atrial fibrillation, atrial flutter, coronary artery dis-
ease, deep vein thrombosis, gastroesophageal reflux disease,
hypertension, ischemic stroke, myocardial infarction, pul-
monary embolism, and sleep apnea; use of anticoagulants, as-
sistive walking device, and home oxygen; unique drug classes
dispensed and unique generic medications dispensed.
Of the 9736 patients in the study dataset, 7877 (81%) pa-

tients underwent the sleeve gastrectomy procedure and 1859
(19%) patients had the Roux-en-Y gastric bypass procedure.
The outcome event was not rare in the study, with 1485
(19%) sleeve gastrectomy patients and 608 (33%) Roux-en-Y
gastric bypass patients having at least one hospitalization
during the two-year follow-up period. We randomly parti-
tioned the dataset into three smaller datasets with 2000,
3000 and 4736 patients to create a “simulated” distributed
data network. As the reference, the pooled individual-level

data analysis produced β̂E ¼ −0:4632219 with a standard
error 0.0422368, and a 95% confidence interval: − 0.5460061,
− 0.3804377. These results corresponded to an adjusted risk

ratio of expðβ̂EÞ ¼ 0:63 with a 95% confidence interval:
0.58, 0.68. Based on the starting value β(0) = 0, the proposed
summary-level modified Poisson method took seven itera-
tions to converge and produced point estimates and sand-
wich variance-based standard errors identical to those
observed in the corresponding pooled individual-level data
analysis (Table 2). The adjusted odds ratio from logistic re-
gression was 0.53. As expected, interpreting the estimated
adjusted odds ratio as an estimate of the adjusted risk ratio
amplified the protective effect of sleeve gastrectomy com-
pared to Roux-en-Y gastric bypass, resulting in an effect esti-
mate that was further from the null (suggesting a 10%
greater relative protective effect) than the modified Poisson
regression estimate.
As expected, we had difficulty fitting a log-binomial re-
gression model within this bariatric surgery dataset. Under
the starting value β(0) = 0, the first iterated estimate β(1)

could not be calculated because the formula for β(1) under
the log-binomial regression model includes 1 −
exp(Zi

Tβ(0)) in the denominator, which takes the value 0
when β(0) = 0. We also considered three non-zero starting
values. We first set the starting values for all parameters
to 0.05, but the analysis stopped at the second iteration
due to matrix singularity. We then let the starting values
be the estimates obtained from a logistic regression model
fit using the entire bariatric surgery dataset, and the ana-

lysis converged with β̂E ¼ −0:7369683. Finally, we speci-
fied the starting values as the estimates obtained from the
modified Poisson regression fit using the entire bariatric

surgery dataset, and the analysis converged with β̂E ¼ −0:
4544135. These results illustrated the convergence prob-
lems of log-binomial regression and the sensitivity of this
method to starting values. In comparison, the modified
Poisson analysis had no convergence problems and its es-
timates remained the same as those presented in Table 2
when using these alternative starting values.
Discussion
In this paper, we proposed and demonstrated – in
both simulated and real-world data – a method that
adapts the modified Poisson approach to directly esti-
mate adjusted risk ratios in multi-center studies where
sharing of individual-level data is not always feasible
or preferred. Our method produced the same risk ra-
tio estimates and sandwich variance estimates as the
corresponding pooled individual-level data analysis
without pooling individual-level data across data part-
ners. The required summary-level information does
not contain any potentially identifiable individual-level
data and therefore offers better privacy protection.
Analytic methods like the one we proposed here com-
plement appropriate governance and data use agree-
ments to enable the conduct of multi-center studies,
especially when sharing of individual-level data is
challenging.
In terms of privacy protection, the proposed summary-

level modified Poisson method serves as an intermediate
approach between meta-analysis of site-specific effect esti-
mates from modified Poisson analyses and modified Pois-
son analysis using pooled individual-level data. Compared
to meta-analysis of site-specific effect estimates, our
method requires more granular information, but the
shared information is summary-level without detailed
individual-level data. Unlike meta-analysis that generally
only produces approximate results, our method produces
results identical to those obtained from the corresponding
pooled individual-level data analysis.



Table 2 Point Estimates and Standard Errors Using the Summary-Level Modified Poisson Method and Pooled Individual-Level Data
Analysis: Analysis of Real-World Data

Covariates Summary-Level Modified Poisson Method Pooled Individual-Level Data Analysis

Parameter Estimates Standard Errors Parameter Estimates Standard Errors

Intercept −1.5653147 0.1040146 −1.5653147 0.1040146

Exposurea −0.4632219 0.0422368 −0.4632219 0.0422368

Demographics

Age (years) 0.0029253 0.0018694 0.0029253 0.0018694

Female sex 0.0860355 0.0478638 0.0860355 0.0478638

Combined comorbidity score 0.0543412 0.0125169 0.0543412 0.0125169

Diagnosis of

Asthma −0.0212109 0.0538624 −0.0212109 0.0538624

Atrial fibrillation 0.0835820 0.1249359 0.0835820 0.1249359

Atrial flutter 0.1638268 0.2598721 0.1638268 0.2598721

Coronary artery disease 0.1597157 0.0746721 0.1597157 0.0746721

Deep vein thrombosis 0.1738365 0.1371837 0.1738365 0.1371837

Gastroesophageal reflux disease −0.0586971 0.0393428 −0.0586971 0.0393428

Hypertension 0.0046885 0.0448018 0.0046885 0.0448018

Ischemic stroke −0.1592596 0.1986055 −0.1592596 0.1986055

Myocardial infarction 0.2069423 0.1509918 0.2069423 0.1509918

Pulmonary embolism 0.2846648 0.1436404 0.2846648 0.1436404

Sleep apnea −0.0261550 0.0396516 −0.0261550 0.0396516

Use of

Anticoagulants 0.1064905 0.1205252 0.1064905 0.1205252

Assistive walking device 0.0908909 0.1394227 0.0908909 0.1394227

Home oxygen 0.0732620 0.1162295 0.0732620 0.1162295

Number of drug dispensing

Unique drug classes −0.0579458 0.0166577 −0.0579458 0.0166577

Unique generic medications 0.0673783 0.0136406 0.0673783 0.0136406
asleeve gastrectomy vs. Roux-en-Y gastric bypass
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Compared to the pooled individual-level analysis,
however, our method requires multiple file transfers
between the data partners and the analysis center. Al-
though this need for information exchange at each
iteration means that our proposed method is more
labor-intensive to implement in practice, recent
advancements in bioinformatics now allow semi-
automated or fully-automated file transfers between
data partners and the analysis center [17, 21–27]. For
general users who may not have access to such tech-
nical infrastructure, we have developed R code that al-
lows manual implementation of our proposed method.
This R code (available in Additional file 2) illustrates
the analysis of the simulated data from this study but
can be easily modified to accommodate different num-
bers of covariates or different numbers of participating
data partners.
We assumed the outcome occurrence between individ-

uals to be independent in our analysis. In some real-
world situations, this independence assumption may be
violated. In our case, it is possible that individuals who
seek care in the same delivery system have correlated
outcomes. To account for correlated data, Zou and Don-
ner [28] extended the modified Poisson approach to set-
tings with correlated binary outcomes in single-database
studies. Future work will extend the proposed summary-
level modified Poisson method to analyze correlated data
in multi-center distributed data environments.
Conclusions
In conclusion, we proposed a privacy-protecting ap-
proach to directly estimate adjusted risk ratios using
modified Poisson regression analysis for multi-center
studies. This approach does not require sharing of
individual-level data across data partners but produces
results that are identical to those obtained from the cor-
responding pooled individual-level data analysis.
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-019-0878-6.

Additional file 1. Reports the shared summary-level information in the
simulated data example.

Additional file 2. Provides replication R code for the data generation
and analysis of the simulated data example.
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