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Abstract
Introduction: Cognitive deficits occur frequently in diffuse glioma patients, but are 
limitedly understood. An important marker for survival in these patients is isocitrate 
dehydrogenase (IDH) mutation (IDH‐mut). Patients with IDH‐mut glioma have a bet‐
ter prognosis but more often suffer from epilepsy than patients with IDH‐wildtype 
(IDH‐wt) glioma, who are generally older and more often have cognitive deficits. We 
investigated whether global brain functional connectivity differs between patients 
with IDH‐mut and IDH‐wt glioma, and whether this measure reflects variations in 
cognitive functioning in these subpopulations beyond the associated differences in 
age and presence of epilepsy.
Methods: We recorded magnetoencephalography and tested cognitive functioning 
in 54 diffuse glioma patients (31 IDH‐mut, 23 IDH‐wt). Global functional connectiv‐
ity between 78 atlas regions spanning the entire cortex was calculated in two fre‐
quency bands (theta and alpha). Group differences in global functional connectivity 
were tested, as was their association with cognitive functioning, controlling for age, 
education, and presence of epilepsy.
Results: Patients with IDH‐wt glioma had lower functional connectivity in the alpha 
band than patients with IDH‐mut glioma (p = 0.040, corrected for age and presence 
of epilepsy). Lower alpha band functional connectivity was associated with poorer 
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1  | INTRODUC TION

Diffuse gliomas are characterized by poor survival and cognitive 
deficits (Taphoorn & Klein, 2004). An important marker for sur‐
vival in patient with diffuse glioma is isocitrate dehydrogenase 
(IDH) mutation (IDH‐mut), which is associated with better prog‐
nosis but higher epilepsy prevalence (Chen et al., 2017; Yan et al., 
2009). Patients with wildtype glioma (IDH‐wt) are generally older 
and more often have cognitive deficits (Wefel, Noll, Rao, & Cahill, 
2016), even though they less often have epileptic seizures that are 
generally linked to poorer cognitive functioning (Chen et al., 2017; 
Klein, Engelberts, et al., 2003). Although the relevance of IDH status 
for survival is relatively straightforward (Yan et al., 2009), the higher 
occurrence of cognitive deficits at diagnosis in patients with IDH‐wt 
glioma as compared to patients with IDH‐mut glioma is incompletely 
understood. This is in part because of the mentioned group differ‐
ences in age and prevalence of epilepsy. IDH‐wt‐related cognitive 
deficits have been linked to deterioration in cortical thickness net‐
works (Kesler, Noll, Cahill, Rao, & Wefel, 2017). However, cortical 
thickness is highly age‐dependent (Thambisetty et al., 2010), indicat‐
ing that age differences between IDH‐mut and IDH‐wt patients may 
obfuscate how much variance in this brain correlate of cognition is 
explained by the mutation itself.

Regardless of IDH‐mutation status, cognitive deficits in glioma 
patients are associated with altered brain functional connectivity. 
Functional connections are statistical correlations between regional 
activity as for instance measured with magnetoencephalography 
(MEG) (Bartolomei et al., 2006; Bosma et al., 2008, 2009; Carbo 
et al., 2017; van Dellen et al., 2012, 2013, 2014; Derks, Reijneveld, 
& Douw, 2014; Douw et al., 2008, 2010; Guggisberg et al., 2008; 
Tarapore et al., 2012). Cognitive variation, and presence and fre‐
quency of epilepsy in glioma patients, has been related to altered 
theta (4–8 Hz) (Bosma et al., 2008; van Dellen et al., 2012; Douw et 
al., 2010) and alpha (8–13 Hz) (Bosma et al., 2009; Carbo et al., 2017; 
van Dellen et al., 2013) band functional connectivity.

We performed MEG and cognitive testing in a cohort of de novo 
glioma patients and investigated whether theta and alpha global 
brain functional connectivity differed according to IDH‐mutation 
status and whether this measure reflects cognitive functioning in 
these subpopulations beyond differences in age and presence of 

epilepsy. We expected lower functional connectivity to relate to 
poorer cognitive functioning (when correcting for age and presence 
of epilepsy), and thus functional connectivity to be lower in IDH‐wt 
patients as compared to IDH‐mut patients.

2  | METHODS

2.1 | Patients

Patients visiting the VUmc CCA Brain Tumor Center Amsterdam 
between 2010 and 2017 with suspected diffuse glioma were eli‐
gible to participate. Part of this patient cohort has been reported 
on before (Carbo et al., 2017; van Dellen et al., 2012, 2014; Derks 
et al., 2018). Inclusion criteria were (a) age over 17 years and 
(b) ability to participate in neuropsychological testing. After test‐
ing and MEG recording, all patients were diagnosed with World 
Health Organization (WHO) grade II, III, or IV diffuse glioma ac‐
cording to the WHO 2007 classification (Louis, Ohgaki, Wiestler, 
& Cavenee, 2007). Patients with previous craniotomies or neuro‐
logical/psychiatric comorbidities were not able to participate in this 
study. Information on the presence of epilepsy, use of anti‐epileptic 
drugs, use of dexamethasone, and Karnofsky performance status 
(KPS) was collected (Karnofsky, Abelmann, & Craver, 1948). Level 
of education was gathered based on a commonly used Dutch scale 
for highest obtained educational degree, which ranges from level 
1 (not completed primary education) to level 7 (academic degree) 
(Verhage, 1964). Tumors were manually drawn on 3D anatomical 
magnetic resonance imaging (MRI) images, slice by slice (LD), using 
both contrast‐enhanced T1‐weighted and FLAIR images. Tumor vol‐
ume was assessed by calculating the volume of the voxels contain‐
ing tumor. The ethical review board of the VU University Medical 
Center approved this study, and all patients gave written informed 
consent before participation.

2.2 | IDH‐mutation status

IDH‐mutation status was assessed with immunohistochemistry on 
formalin‐fixed paraffin‐embedded tissue according to IDH‐muta‐
tion diagnostic routine, identifying 90% of all IDH‐mutant diffuse 

cognitive performance (p < 0.034), corrected for age, education, and presence of 
epilepsy.
Conclusion: Global functional connectivity is lower in patients with IDH‐wt diffuse 
glioma compared to patients with IDH‐mut diffuse glioma. Moreover, having lower 
functional alpha connectivity relates to poorer cognitive performance in patients 
with diffuse glioma, regardless of age, education, and presence of epilepsy.
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gliomas (Ichimura, Narita, & Hawkins, 2015). Diagnostic routine 
included detection of IDH1 by IDH1R132H antibody (mouse mon‐
oclonal, clone H09; Dianova GmbH, Hamburg, Germany) using 
a Ventana Benchmark ULTRA (Roche Diagnostics, Mannheim, 
Germany). Pretreatment was done with Cell Conditioner 1 for 
24 min followed by primary antibody incubation diluted (1:1,250) in 
background reducing antibody diluent (DAKO, Glostrup, Denmark) 
for 32 min. Immunostainings were visualized with Optiview DAB 
detection and Optiview amplification (Roche/Ventana Medical 
Systems, Tucson, AZ, USA). Tissue was counterstained with 
hematoxylin.

2.3 | Cognitive functioning

Cognitive functioning was extensively measured preoperatively 
(Douw et al., 2009; Klein et al., 2002; Klein, Postma, et al., 2003; 
Taphoorn & Klein, 2004). As measures of cognitive performance, 
we included the sum score of the five trials, and the delayed re‐
call score of the Rey Auditory Verbal Learning Test (RAVLT) 
(Rey, 1958) (verbal memory), the time measured on part C of the 
Concept Shifting Test (van der Elst, van Boxtel, van Breukelen, & 
Jolles, 2006a) (executive functioning and psychomotor speed), the 
duration of the last and most difficult assessment of the Memory 
Comparison Test (Brand & Jolles, 1987) (working memory), the 
score on the verbal version of the Letter Digit Substitution Test 
(van der Elst, van Boxtel, van Breukelen, & Jolles, 2006b) (infor‐
mation processing speed and psychomotor speed), the time of 
the color–word card of the Stroop Color Word Test (Stroop, 1935) 
(attentional functioning), and by the number of words generated 
during the Categorical Word Fluency test (Luteijn & van der Ploeg, 
1983) (executive functioning).

2.4 | Magnetoencephalography

Participants underwent MEG recording before neurosurgical in‐
tervention, and/or start of any radio‐ or chemotherapy (as de‐
scribed previously (Carbo et al., 2017; van Dellen et al., 2013, 
2014)). In brief, an eyes‐closed resting state recording of 5 min in 
a magnetically shielded room (Vacuum Schmelze GmbH, Hanua, 
Germany) with a 306 channel MEG system (Elekta Neuromag Oy, 
Helsinki, Finland) was acquired. Data were sampled at 1,250 Hz, 
and a high‐pass filter (0.1 Hz) and anti‐aliasing filter (410 Hz) were 
employed online. Malfunctioning channels were excluded after 
visual inspection (JD, SK, TN, LD) of the neurophysiological sig‐
nals after applying the extended Signal Space Separation method 
(xSSS) (van Klink et al., 2017). The removal of artefacts was done 
offline with the temporal extension of SSS in MaxFilter software 
(Elekta Neuromag Oy, version 2.2.15) (Taulu & Hari, 2009; Taulu & 
Simola, 2006), and then visually inspected for quality. For coreg‐
istration of MEG with participants’ MRI, the outline of the scalp 
and four or five head localization coils were digitized using a 3D 
digitizer (3Space Fastrak, Polhemus, Colchester, VT, USA) and 
matched to the MRI scalp surface. The coregistered MRI was then 

spatially normalized to a template MRI, and, using the Automated 
Anatomical Labeling (AAL) atlas (Tzourio‐Mazoyer et al., 2002), the 
centroid voxels (Hillebrand et al., 2016) in the 78 cortical regions 
(Gong et al., 2009) were selected for further analyses after inverse 
transformation to the patient's coregistered MRI. A scalar beam‐
former implementation (Elekta Neuromag Oy, version 2.1.28) was 
used to reconstruct broadband (0.5–48 Hz) time series of neu‐
ronal activity for these centroids (Hillebrand, Barnes, Bosboom, 
Berendse, & Stam, 2012). For each patient, 60 consecutive epochs 
of 3.27 s (4,096 samples) were used to extract theta and alpha 
time series. These were obtained by digitally filtering the selected 
epochs using a fast Fourier transform, after which all bins outside 
the passbands were made zero, and an inverse Fourier transform 
was performed. Theta and alpha powers were calculated, relative 
to the power in the broadband signal.

2.5 | Global functional connectivity

Frequency band‐specific functional connectivity between recon‐
structed time series of each pair of atlas regions was assessed with 
the phase lag index (PLI) implemented in Matlab (version R2012.a, 
Mathworks, Natick, MA, USA). The PLI measures synchronization 
by using the asymmetry of the distribution of phase differences 
(Δφ) between two time series (Stam, Nolte, & Daffertshofer, 2007): 
PLI = |<sign[sin(Δφ(tk))]>|. The phase difference is defined in the in‐
terval [−π,π], <> denotes the mean value, tk is the sample index, and 
|| indicates the absolute value. The PLI ranges between 0 and 1, 
with values closer to 0 indicating lower synchrony between two re‐
gions and values closer to 1 indicating higher synchrony. The PLI is 
minimally affected by volume conduction and field spread because 
the PLI only takes nonzero phase lag between two time series into 
account. The PLI was estimated between all pairs of regions for 
each epoch, forming a 78 × 78 matrix of functional connections. 
The 78 × 78 functional connectivity matrix was then averaged over 
epochs to yield a single measure of global functional connectivity 
per subject and per frequency band. A Box–Cox transformation 
(lambda = −5) (Box & Cox, 1964) was performed on global func‐
tional connectivity measures to ensure normality of the data; the 
transformed data were used in all statistical analyses.

2.6 | Statistical analyses

Statistical analyses were performed using IBM SPSS Statistics for 
Windows (version 22.0.0.0 IBM Corp., Armonk, NY, USA). Group dif‐
ferences between patients with IDH‐mut and IDH‐wt glioma were 
investigated with Student's t tests for independent samples (age), 
Mann–Whitney U tests (tumor volume and education) and exact 
chi‐square tests (sex, WHO grade, tumor lateralization (exclud‐
ing bilateral tumors), frontal versus non‐frontal tumor localization, 
presence of epilepsy, anti‐epileptic drug use, use of dexamethasone, 
and KPS dichotomized into ≤80 and 90–100 (Derks et al., 2017)). 
Group differences in cognitive functioning were established with 
(seven) linear regression models for each cognitive test described 
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above, corrected for age, level of education, and presence of epi‐
lepsy. A log transformation was performed on the raw test scores 
of the Concept Shifting Test, the Memory Comparison Test, and of 
the Stroop Color Word Test to adhere to the assumption of normally 
distributed standardized residuals in linear regression analyses. The 
transformed data were used in all following statistical tests.

Group differences in theta and alpha functional connectivity (de‐
pendent variable) between IDH subgroups (independent variable) 
were computed with linear regression models to account for con‐
founding variables (age and presence of epilepsy). In case of signifi‐
cant results, group differences in frequency‐specific relative power 
were investigated with linear regression as well, to ascertain that con‐
nectivity differences were not driven by differences in relative power.

In case of significant differences in functional connectivity be‐
tween the subgroups, associations between functional connectivity 
and cognitive functioning were assessed. Linear regression models 
were computed for each cognitive test, with (log transformed) test 
score as the dependent variable and functional connectivity, age, 
presence of epilepsy, and level of education as independent vari‐
ables. In addition, tumor volume was also added to these models, 
since tumor volume is possibly associated with cognitive function‐
ing, particularly in patients with IDH‐wt glioma (Kesler et al., 2017).

Post hoc analyses included testing for the possible confounding 
effect of dexamethasone use, which may affect cognition (Kostaras, 
Cusano, Kline, Roa, & Easaw, 2014). First, differences in cognitive 
performance according to dexamethasone use were tested with 
seven linear regression models corrected for age, presence of ep‐
ilepsy, and education. Next, a Student's t test was performed to 
test for differences in alpha functional connectivity according to 

dexamethasone use. Furthermore, histological WHO grade may con‐
found functional connectivity changes beyond IDH‐mutation status. 
Therefore, we tested for differences in alpha functional connectivity 
between grade II/III and grade IV IDH‐wt patients with linear regres‐
sion controlling for age and presence of epilepsy, as this subgroup 
had enough variation in WHO grade to do statistical testing.

All linear regression analyses met the criteria of normally distrib‐
uted standardized residuals and homoscedasticity by visual inspec‐
tion. A p‐value lower than 0.05 was considered significant.

3  | RESULTS

3.1 | Patient characteristics

In total, 54 patients (seventeen females) participated, with a mean 
age of 45.17 (SD 15.22) years. Twenty‐three patients had IDH‐wt 
glioma, while 31 patients had IDH‐mut glioma (Table 1). As ex‐
pected, age and the distribution of WHO grade significantly dif‐
fered between the two groups, with IDH‐wt patients being older 
(t(52) = 3.592, p = 0.001), more often having WHO grade IV glioma (χ2 
(2, n = 54) = 16.517, p < 0.001) and more often using dexamethasone 
(χ2 (1, n = 50) = 6.603, p = 0.010). Patients with IDH‐mut glioma more 
often had epilepsy (χ2 (1, n = 54) = 8.693, p = 0.003) and more often 
used AEDs (χ2 (1, n = 52) = 6.831, p = 0.009). There were no group dif‐
ferences in terms of level of education (U = 335, p = 0.912), sex (χ2 
(1, n = 54) = 0.151, p = 0.697), KPS (χ2 (1, n = 51) = 0.053, p = 0.818), 
tumor lateralization (χ2 (1, n = 52) = 0.171, p = 0.680), non‐frontal lo‐
calization (χ2 (1, n = 54) = 0.833, p = 0.361), or tumor volume (U = 256, 
p = 0.079).

TA B L E  1  Patient characteristics

Patient characteristics Glioma (n = 54) IDH‐wt (n = 23) IDH‐mut (n = 31) p‐value Test statistic

Age (mean/SD) 45.17/15.22 52.97/17.23 39.38/10.48 0.001** t(52) = 3.592

Sex (female/male) 18/36 7/16 11/20 0.697 χ2 = 0.151

Education level (median/range) 6/2–7 6/2–7 6/2–7 0.912 U = 335

KPS (NA/<70/70–80/90–100) 3/1/12/39 2/1/4/16 1/0/8/22 0.818 χ2 = 0.053

WHO grade (II/III/IV) 28/11/15 7/3/13 21/8/2 <0.001** χ2 = 16.517

Tumor hemisphere(left/right/
bilateral)

30/22/2 14/9/0 16/13/2 0.680 χ2 = 0.171

Tumor location (frontal/
frontotemporal/temporal/
parietotemporal/parietal/
frontoparietal/occipital)

20/11/10/4/6/1/2 7/4/4/4/2/1/1 13/7/6/0/4/0/1 NA NA

Epilepsy (yes/no) 43/11 14/9 29/2 0.010* χ2 = 6.627

Anti‐epileptic drug use (NA/yes/
no)

2/30/12 1/13/9 1/27/3 0.009** χ2 = 6.831

Dexamethasone use (NA/yes/no) 4/8/42 0/7/16 4/1/26 0.010* χ2 = 6.603

Tumor volume cm3 (mean/SD) 57.70/42.96 48.06/38.37 64.85/45.35 0.079 U = 256

Note. Patient characteristics described for patients with IDH‐wt and patients with IDH‐mut glioma.
IDH‐wt, IDH‐wildtype; IDH‐mut, IDH‐mutation; SD, standard deviation; KPS, Karnofsky Performance Status; WHO, World Health Organization; NA, 
not available.
*p < 0.05. **p < 0.01. 
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3.2 | Cognitive functioning

Patients with IDH‐wt glioma performed significantly poorer on 
verbal memory (sum score RAVLT, B = 7.47, confidence interval 
(CI) = 1.39–13.56, p = 0.017; recall RAVLT, B = 3.23, CI = 1.46–5.01, 
p = 0.001; Table 2) compared to patients with IDH‐mut glioma, cor‐
rected for age, presence of epilepsy, and education. Patients with 
IDH‐wt glioma did not significantly differ from patients with IDH‐
mut glioma on the other tests, but on average performed poorer on 
all tests (Table 2). Dexamethasone use was associated with perfor‐
mance on the Stroop Color Word Test (B = 0.171, CI = 0.005–0.337, 
p = 0.043), corrected for age, presence of epilepsy, and education.

3.3 | Functional connectivity differs according to 
IDH status

Patients with IDH‐wt glioma had significantly lower alpha functional 
connectivity compared to patients with IDH‐mut glioma while con‐
trolling for age and presence of epilepsy (B = 138.209, CI = 6.575–
269.842, p = 0.040, Figure 1). We did not control for tumor volume 
in this analysis because tumor volume was not significantly differ‐
ent between groups. These findings were specific to functional 
connectivity, as relative alpha power did not differ between groups 
(B = 0.005, CI = −0.006 to 0.016, p = 0.346), nor did alpha functional 
connectivity differ according to dexamethasone use (t(48) = 1.101, 
p = 0.276). Theta functional connectivity did not differ between 
groups (B = −14.925, CI = −49.732 to 19.883, p = 0.393).

As shown in Table 1, WHO grade varied in the IDH‐wt diffuse gli‐
oma cohort, which may relate to functional connectivity beyond muta‐
tion status. We therefore tested whether alpha functional connectivity 

differed between grade II/III and grade IV IDH‐wt patients with linear 
regression, while controlling for age and presence of epilepsy, which 
was not the case (B = −17.087, CI = −243.159 to 208.985, p = 0.876). 
These findings suggest that despite the presence of some level of ma‐
lignant heterogeneity within patients with IDH‐wt glioma, WHO grade 
did not relate to alpha functional connectivity.

3.4 | Functional connectivity explains cognitive 
variance across groups

In the entire cohort of patients, there were significant associations be‐
tween alpha functional connectivity and cognitive test scores (after false 

TA B L E  2  Linear regression models for IDH status and cognition

Cognitive test

IDH‐wt test 
score, mean 
(SD)

IDH‐mut test 
score, mean 
(SD)

IDH 
status 
p‐value

Age 
p‐value

Education 
p‐value

Presence 
of epilepsy 
p‐value B‐value (CI)

Rey auditory verbal learning 
test sum of trials (N = 49)

40.5 (13.69) 49.93 (10.02) 0.017* 0.007** <0.001** 0.301 7.472 (1.387 to 
13.556)

Rey auditory verbal learning 
test recall (N = 49)

7.60 (3.58) 11.17 (2.65) 0.001**,a 0.032* 0.007* 0.242 3.233 (1.458 to 
5.009)

Concept shifting test (N = 47) 38.91 (25.13) 30.82 (10.09) 0.792 <0.001** 0.002** 0.919 0.12 (−0.080 to 
0.104)

Memory comparison test 
(N = 46)

74.90 (31.31) 62.63 (20.50) 0.197 0.849 0.040* 0.568 −0.068 (−0.172 to 
0.037)

Categorical word fluency 
(N = 48)

21.42 (9.31) 24.45 (6.12) 0.123 0.885 0.001** 0.493 3.630 (−1.028 to 
8.294)

Letter digit substitution test 
(N = 45)

53.82 (14.51) 57.11 (9.49) 0.574 0.094 0.006** 0.613 2.098 (−5.374 to 
9.570)

Stroop color word test (N = 47) 120.23 (72.96) 97.17 (46.75) 0.755 0.001* 0.011* 0.490 −0.015 (−0.112 to 
0.082)

Note. Linear regression models showing the difference in cognitive performance depending on IDH status, corrected for age, education and presence 
of epilepsy. Mean raw cognitive test scores are given for the IDH‐wt en IDH‐mut group. B‐values and 95% confidence intervals are displayed for IDH 
status.
CI, 95% confidence interval; IDH‐mut, IDH‐mutation; IDH‐wt, IDH‐wildtype; SD, standard deviation.
*p < 0.05, **p < 0.01, asignificant after false discovery rate correction. 

F I G U R E  1  Violin plots showing alpha functional connectivity 
(before normalization) for IDH‐mut and IDH‐wt patients, the 
crosses within the plots indicate mean per group
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discovery rate correction): Letter Digit Substitution Test (B = 0.020, 
CI = 0.007–0.033, p = 0.003), Stroop Color Word Test (B = −2.26e‐4, 
CI = −4.07e‐4 to −0.46e‐4 p = 0.015), RAVLT (recall, B = 0.005, 
CI = 0.001–0.01, p = 0.020), Concept Shifting Test (B = −1.92e‐4, 
CI = −3.66e‐4 to −0.18e‐4, p = 0.031), and the Categorical Word 
Fluency Test (B = 0.10, CI = 0.001–0.019, p = 0.034) while controlling 
for age, education, and presence of epilepsy (Figure 2, Table 3). All re‐
gression models indicate that lower functional connectivity in the alpha 
band is associated with poorer cognitive performance.

Addition of tumor volume to the model did not substantially 
modify these associations: Letter Digit Substitution Test score, 
(B = 0.019, CI = 0.006–0.032, p = 0.007), Stroop Color Word Test 
score (B = −2.08e‐4, CI = −3.92e‐4 to −0.24e‐4, p = 0.028), RAVLT 
(recall, B = 0.04, CI = −0.09e‐4 to 0.008, p = 0.50), Concept Shifting 
Test score (B = −1.62e‐4, CI = −3.38e‐4 to −0.14e‐4, p = 0.070), and 
Categorical Word Fluency Test (B = 0.010, CI = 3.23e‐4 to 0.019, 
p = 0.043).

As noted above, the use of dexamethasone was significantly related 
to performance on the Stroop Color Word Test (B = 0.171, CI = 0.005 
to 0.337, p = 0.043). Therefore, we repeated the linear regression for 
the Stroop Color Word Test and alpha functional connectivity including 
dexamethasone use. Both alpha functional connectivity (B = −2.23e‐4 
CI = −4.09e‐4 to −0.37e‐4, p = 0.020) and dexamethasone use 
(B = 0.164, CI = 0.008–0.321, p = 0.040) were independent predictors 
of Stroop Color Word Test performance.

4  | DISCUSSION

Patients with IDH‐wt glioma have lower functional connectivity in 
the alpha band compared to patients with IDH‐mut glioma, even 
when controlling for age and presence of epilepsy. Moreover, lower 
functional connectivity is associated with poorer cognitive perfor‐
mance in the entire cohort.

Previous studies in glioma patients have amply shown whole 
brain alterations in functional connectivity compared to healthy 
controls (Derks et al., 2014), which are specifically relevant for 
cognition in theta (Bosma et al., 2008; van Dellen et al., 2012; 
Douw et al., 2010) and alpha (Bosma et al., 2009; Carbo et al., 
2017; van Dellen et al., 2013) frequencies. The association be‐
tween alpha band functional connectivity and cognition has been 
evidenced longitudinally as well (Carbo et al., 2017), showing in‐
creases in alpha band connectivity corresponding to improved 
cognitive functioning (van Dellen et al., 2013). Our current results 
build upon these studies, showing a positive correlation between 
alpha band functional connectivity and cognitive functioning, re‐
gardless of IDH‐mutation status.

These previous studies mainly reported on connectivity dif‐
ferences in glioma patients diagnosed according to the 2007 
WHO classification, based on histopathology only (Derks et al., 
2014; Louis et al., 2007). As the neuro‐oncology field has moved 
toward incorporating molecular markers like IDH‐mutation 

F I G U R E  2  Associations between alpha functional connectivity and cognitive performance. Alpha functional connectivity (after 
normalization) is plotted on the x‐axis. The y‐axis reflects cognitive performance: RAVLT recall score (number of recalled words after delay), 
Concept Shifting Test (log transformed time to complete the interference condition), Categorical Word Fluency (number of animals listed in 
one minute), Letter Digit Substitution Test Score (number of letters completed after 90 s), Stroop Color Word Test (log transformed time to 
complete the interference condition). Black circles represent patients with IDH‐wt glioma, while gray squares represent patients with IDH‐
mut glioma

IDH-wt
IDH-mut

IDH-wt
IDH-mut

IDH-wt
IDH-mut
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status (Louis, Ohgaki, Wiestler, & Cavenee, 2016), it is worth 
investigating the implications of this change for our understand‐
ing of cognition and its hypothetical neural correlates of con‐
nectivity and network topology. Although previous work has 
reported on connectivity differences between WHO grades 
(van Dellen et al., 2012), we did not find differences in func‐
tional connectivity between WHO grade II/III and grade IV pa‐
tients within IDH‐wt patients. However, it is now well known 
that many WHO grade II and grade III IDH‐wt diffuse gliomas 
not only have molecular characteristics of, but also show clinical 
behavior of glioblastoma (WHO grade IV) (Cancer Genome Atlas 
Research Network et al., 2015). Our results suggest that molec‐
ular status, not WHO grade, drives cognitively relevant connec‐
tivity differences between diffuse glioma patients, although we 
were not able to statistically assess whether the same grade‐in‐
dependence holds within the IDH‐mut patients. Larger cohorts 
are necessary to fully understand the apex of histopathological 
grade and molecular status in terms of functional connectivity.

Wefel and colleagues were the first to describe worse cognitive 
performance in patients with IDH‐wt glioma compared to patients 
with IDH‐mut glioma (Wefel et al., 2016). The same group investi‐
gated cortical thickness covariation as a neural correlate of this dif‐
ference, showing that thickness covariation patterns indeed differ 
between subgroups and associate with cognition (Kesler et al., 2017). 
This provides a first insight into possible mechanisms underlying 
IDH‐mutation‐related cognitive differences and also suggests that 
tumor growth rate might contribute to cognitive problems (Klein, 
2016; Wefel et al., 2016). However, the observed group differences 
in covarying cortical thickness were not corrected for age or pres‐
ence of epilepsy. Since the cortex thins over time, regardless of the 
presence of glioma, as cognition also deteriorates, the reported 
results may have partly been due to normal aging (Thambisetty et 
al., 2010). Our results show alpha functional connectivity group dif‐
ferences irrespective of age and presence of epilepsy. Associations 

between alpha functional connectivity and cognitive functioning 
remained significant after controlling for these confounders. Our 
findings suggest that lower functional connectivity has a particular 
contribution to cognitive deterioration in IDH‐wt patients.

The fact that functional connectivity differed between IDH sub‐
groups may reflect the impact of variable tumor growth rate on global 
connectivity (Klein, 2016; Wefel et al., 2016), while molecular mech‐
anisms related to functional connectivity may also be at play. The 
overexpression of D‐2‐hydroxyglutarate in IDH‐mut glioma is of par‐
ticular interest, as a preclinical study reported that this protein acti‐
vates NMDA receptors specifically, thereby mimicking glutamatergic 
neuronal activation (Chen et al., 2017). The related increase in neuronal 
spiking could be the mechanism responsible for the higher incidence 
of epilepsy in patients with IDH‐mut glioma compared to patients 
with IDH‐wt glioma (Chen et al., 2017). Speculatively, the mimicry of 
glutamatergic neuronal signalling by D‐2‐hydroxyglutarate might also 
underlie alpha functional connectivity differences found in the current 
study, as glutamate plays an important role in the synchronization of 
neuronal oscillations (Angulo, Kozlov, Charpak, & Audinat, 2004; Fellin 
et al., 2004).

A limitation of this study is that we only tested gliomas for the 
R132 variant of IDH1, detecting approximately 90% of the IDH‐mu‐
tated gliomas (Ichimura et al., 2015). Hence, a few patients classified 
as having IDH‐wt glioma might actually have IDH‐mut glioma, mean‐
ing that we may have underestimated the group difference in global 
functional connectivity.

5  | CONCLUSION

Alpha functional connectivity is lower in patients with IDH‐wt gli‐
oma as compared to patients with IDH‐mut glioma, regardless of age 
and presence of epilepsy. Moreover, alpha functional connectivity 
is positively associated with cognitive performance, irrespective of 

TA B L E  3  Linear regression models for alpha functional connectivity and cognition

Cognitive test

Alpha 
functional 
connectiv‐
ity p‐value Age p‐value

Education 
p‐value

Presence of 
epilepsy p‐value B‐value (CI)

Rey auditory verbal learning test 
sum of trials (N = 49)

0.062 0.002** 0.001** 0.902 0.012 (−0.001 to 0.025)

Rey auditory verbal learning test 
recall (N = 49)

0.020*,a 0.007** 0.050 0.888 0.005 (0.001 to 0.009)

Concept shifting test (n = 47) 0.031*,a <0.001** 0.002** 0.784 −1.92e‐4 (−3.66e‐4 to −0.18e‐4)

Memory comparison test (n = 46) 0.067 0.739 0.062 0.994 −1.89e‐4 (−3.92e‐4 to 0.14e‐4)

Categorical word fluency (n = 48) 0.034*,a 0.984 0.002** 0.986 0.100 (0.001 to 0.019)

Letter digit substitution test (n = 45) 0.003**,a 0.103 0.008* 0.983 0.020 (0.007 to 0.033)

Stroop color word test (n = 47) 0.015*,a 0.001* 0.010* 0.587 −2.26e‐4 (−4.07e‐4 to −0.46e‐4)

Note. Regression models were corrected for age, education and presence of epilepsy. B‐values and 95% confidence intervals are displayed for alpha 
functional connectivity.
CI, 95% confidence interval.
*p < 0.05, **p < 0.01, asignificant after false discovery rate correction. 
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IDH status. These findings contribute to our understanding of cogni‐
tive functioning in patients with diffuse glioma in general, and cogni‐
tive deficits in patients with IDH‐wt glioma specifically.
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