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Abstract: Despite the abundance, ubiquity and impact of environmental viruses, their inherent genomic
plasticity and extreme diversity pose significant challenges for the examination of bacteriophages
on Earth. Viral metagenomic studies have offered insight into broader aspects of phage ecology
and repeatedly uncover genes to which we are currently unable to assign function. A combined
effort of phage isolation and metagenomic survey of Chicago’s nearshore waters of Lake Michigan
revealed the presence of Pbunaviruses, relatives of the Pseudomonas phage PB1. This prompted our
expansive investigation of PB1-like phages. Genomic signatures of PB1-like phages and Pbunaviruses
were identified, permitting the unambiguous distinction between the presence/absence of these
phages in soils, freshwater and wastewater samples, as well as publicly available viral metagenomic
datasets. This bioinformatic analysis led to the de novo assembly of nine novel PB1-like phage genomes
from a metagenomic survey of samples collected from Lake Michigan. While this study finds that
Pbunaviruses are abundant in various environments of Northern Illinois, genomic variation also exists
to a considerable extent within individual communities.
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1. Introduction

Research on bacterial viruses (bacteriophages) has progressed remarkably over the last 100
years [1], and phages are now regarded as ubiquitous engineers of bacterial community structure
and metabolism [2–5]. Despite this, the quantity of phage-related information stored in biological
sequence repositories is meager. To date there are less than 2000 distinct species represented in
GenBank, which is largely a reflection of the many challenges of working with phages in the
laboratory [6]. High-throughput sequencing platforms have been instrumental in advancing current
understanding of microbial community diversity [7]. Viral metagenomic studies of phage communities
have significantly improved our ability to examine and understand viral diversity in the wild [8–10].
Meta-analyses have expanded the viral catalogue postulating new branches of the evolutionary tree
for viruses [11–13]. Furthermore, metagenomics has permitted a glimpse into viral biogeography
(e.g., [11,14–16]; see review [17]).

Methods for molecular [18–20] and computational [21–23] assessment of viral communities are being
continuously developed and refined. The aforementioned methods, as well as other approaches employed
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in studies (e.g., clustering contigs based upon nucleotide usage and/or coverage (see review [24]),
have resulted in the generation of numerous complete or near complete genomes of uncultivated
prokaryotes [25–37] and viruses [11,28,30,34,38–40]. Additionally, complete phage genomes have been
assembled from viral metagenomes through manual curation and BLAST searches [11,15,33,41–48]. Given
the advances in DNA sequencing technology throughput, high-quality genomes derived solely from
metagenomes are anticipated to become commonplace, challenging the way in which we classify new
viruses [49]. Nevertheless, with the recent assemblies of the largest phage genome to date [11] and the
first genomes of freshwater Actinobacteria-infecting phages [48], metagenomics has greatly expanded our
understanding of phage genomic diversity.

The study presented here was initially informed by our previous work, in which four Pseudomonas
aeruginosa-infecting PB1-like phages (genus: Pbunavirus) were isolated from the nearshore waters of
Lake Michigan [50]. Other members of this genus have been isolated from freshwater, sewage and
soil and predominately infect Pseudomonas species [51]. While Pseudomonas phage PB1 is the type
species for Pbunavirus, over 40 members of this genus have been suggested on the basis of homology
assessments [52]. Currently there are 31 Pbunavirus species with RefSeq genomes publicly available.
These dsDNA viruses have a genome ~66 Kbp in length with 88 to 97 predicted coding regions. Given
its lack of a recognizable integrase, it is presumed to be obligately lytic [53]. Recently, PB1-related
phages have been isolated from sewage samples in Germany [54], Poland [55], and Portugal [56],
wastewater in France [57], and river water in Brazil [58].

While Pseudomonas is a truly multi-faceted microorganism and is generally regarded as having
a high presence in the aquatic environment, it is not a dominant member of freshwater habitats [59,60],
from which we previously isolated four PB1-like phages [50]. Nevertheless, Pbunaviruses have been
found in a variety of ecological niches across the globe [51,54–58]. This parallels observations for
several marine phages that have been found across large geographic distances [11,13,61]. This led us
to hypothesize that Pbunaviruses are widespread in nature. Integrating molecular and computational
methods, the presence and abundance of PB1-like phages was assessed in soil, freshwater, and
sewage samples.

2. Materials and Methods

2.1. Samples

Samples were collected from three bodies of freshwater: (1) Lake Defiance (42◦19′19.4” N
88◦13′37.5” W) in Moraine Hills State Park (McHenry, IL, USA) is an isolated lake/bog; (2) Grass
Lake/Fox River (42◦26′46.4” N 88◦10′50.2” W) in the Chain O’Lakes State Park (Spring Grove, IL,
USA) is located within a large interconnected chain of lakes and waterways; and (3) Lake Michigan’s
Hartigan Beach Park (42◦00′06.3” N 87◦39′22.3” W). Two biological replicates, each 4 L, were collected
from Lake Defiance and Grass Lake in August 2015. Five temporal replicates, each 4 L, were collected
from the Hartigan Beach site (June–August 2015). Additionally, four samples of activated sludge, in
triplicate (50 mL) were collected from the aeration basins of O’Brien Water Reclamation Plant (Skokie,
IL, USA) in October 2014. Four replicate soil samples (50 g) were collected from the Loyola Lakeshore
campus in August 2015. Each sample of activated sludge and soil were diluted with 500 mL phosphate
buffered saline (PBS), agitated in a shaking incubator overnight. Sample locations are shown in
Figure S1.

2.2. Viral DNA Extraction

Virus-like particles were purified from the collected samples through successive filtration: initially,
through a sterile 0.45 µm bottle-top cellulose acetate membrane filter (Corning Inc., Corning, NY, USA)
to remove plant matter, sand, debris, and eukaryotic cells, then through a 0.22 µm polyethersulfone
membrane filter (MO BIO Laboratories, Carlsbad, CA, USA) to remove bacterial cells. The filtrate was
then filtered and concentrated using a 0.10 µm polypropylene filter (EMD Millipore Corp, Billerica,
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MA, USA) with the Labscale™ tangential flow filtration (TFF) system (EMD Millipore Corp, Billerica,
MA, USA) according to the manufacturer’s instructions. DNA was extracted from the TFF fraction
using the MO BIO Laboratories UltraClean® DNA Isolation Kit (Carlsbad, CA, USA). The protocol
recommended by the manufacturer was followed with the exception of an additional heat treatment at
70 ◦C for 20 min prior to initial vortexing.

2.3. PCR Amplification and Amplicon Analysis

PCR primers were designed to target conserved regions among the Pbunaviruses within the DNA
of the collected samples. Primers and their expected amplicons (within the PB1 genome, GenBank:
NC_011810) were queried against the nr/nt database. Five primer pairs were selected given their
specificity for Pbunaviruses (Table 1). PCR primers were obtained from Eurofins MWG (Louisville,
KY, USA). Thermal cycling conditions were designed based upon the individual primer pair’s Tm

and expected amplicon size. PCR amplicons were purified (E.Z.N.A.® Cycle Pure Kit, Omega Bio-tek,
Norcross, GA, USA) and sequenced in both directions via Sanger sequencing (Genewiz, South Plainfield,
NJ, USA). Consensus sequences were queried via BLASTn. Sequences were aligned in Geneious,
and consensus sequences were assessed for phylogenetic relatedness, visualized via a neighbor-joining
tree created with the Geneious Tree Builder tool (v 8.0.5, Biomatters Limited, Auckland, NZ) using the
Jukes-Cantor distance model with bootstrap resampling (100 replicates).

2.4. Determination of the Presence of PB1 and Pbunaviruses in Publicly Available Metagenomic Datasets

Raw sequence reads (fasta or fastq format) for publicly available viral metagenomes from freshwater,
hot springs, wastewater, and soil samples were collected from the SRA database. Table S1 lists the
datasets. Additional marine viromes were downloaded from the iMicrobe project (data.imicrobe.us),
and datasets collected from open sea sampling expeditions, including raw read data from the Pacific
Ocean Virome study [62], the Global Ocean Sampling Expedition [63], the Broad Marine Phage Sequencing
Project (https://www.broadinstitute.org/annotation/viral/phage/home.html), and the Ocean Viruses
project [64]. For each individual sample, sequence reads were assembled using Velvet [65] with a hash
size of 31. A local BLAST database was created for each dataset and again the PB1 amino acid sequences
were compared via blastx.

The highest scoring hit (with respect to both sequence identity and query coverage, bitscore) for
each PB1 gene and individual viral metagenome assemblage was next compared to the threshold of
similarity for Pbunaviruses generated in our prior work [66]. Briefly, each PB1 gene was compared
to all other Pbunavirus genomes and all non-Pbunavirus phage genomes via BLAST. Intragenus and
intergenus sequence similarity scores (again assessed via the BLAST bitscore) were calculated to
ascertain the “informativity” of a PB1 gene. PB1 genes exhibiting sequence similarity on par with or
greater than that of its most distant Pbunavirus relative (BcepF1) were deemed “uninformative” as
signatures for PB1 and Pbunavirus genomes. Each viral metagenome’s sequence similarity to PB1
informative genes are represented in the atlas as the average of the query coverage and sequence
identity values.

https://www.broadinstitute.org/annotation/viral/phage/home.html
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Table 1. PCR primers used in this study. Expectation of amplification determined by querying the primer sequences via BLASTn to nr/nt database. HP =
hypothetical protein.

Primer
Pair Forward Primer (5′–3′) Reverse Primer (3′–5′) Annotated Coding Sequence

(CDS) in Amplicon Strains/Species Expected to Amplify

1 CTACGGCCGTGCAGAC CTCCATGTGTGGCATCC PB1 gp10 (HP), PB1 gp11 (HP) SPM-1, PB1, F8

2 ACCTTCTTCGGCATCCTC TGTGGTCACCGTATTCCA PB1 gp23 (HP), PB1 gp24 (HP) DL60, DL52, vB_PaeM_C1-14_Ab28, SPM-1, PB1, F8

3 CGCCATAATAGGCTCCAA CGAGACATTCGCTGATGA PB1 gp55 (helicase) SPM-1, PB1, F8

4 ACCGACTCACGACGATGG CGGCAAGGTGTTCGCTTA PB1 gp68 (HP), PB1 gp69 (HP) PB1

5 CGTCGAGGATGCTGATGG GGCAGGTCCGAAGGCTAC PB1 gp84 (HP), PB1 gp85 (HP),
PB1 gp86 (HP)

vB_PaeM_LS1, vB_PaeM_E215, KPP22M1, vB_PaeM_E217, NP3,
phiKTN6, KPP22M3, KPP22M2, KP22, vB_Pae_PS44, LMA2,

vB_PaeM_CEB_DP1, vB_PaeM_PAO1_Ab29,
vB_PaeM_PAO1_Ab27, KPP12, NH-4, PB1
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2.5. Assembly and Annotation of Uncultivated PB1-Like Genomes

Each of the Chicago area Lake Michigan viral metagenomic datasets [67] was assembled
individually using the Geneious assembler (Geneious (v 8.0.5), Biomatters Ltd., Auckland, NZ), the
SPAdes assembler [68] using the “meta” flag for metagenomic samples, and the Velvet assembler [65].
Geneious assemblies repeatedly produced greater N50 scores and were selected for further analysis.
Contigs of length ≥ 20 Kbp were queried against the complete nr/nt database via the BLAST
web interface. Contigs returning high sequence similarity (e-value < 0.00001) to PB1 (GenBank:
NC_011810) or other Pbunaviruses were investigated further. From this pool, each contig was then
used as a “reference genome” to which the raw reads for individual viral metagenomic samples
were mapped using Bowtie2 [69]. This additional second stage mapping process served to quantify
genome coverage and in some cases extend contigs. At no time was the RefSeq PB1 genome or any
other published Pbunavirus genome used to “fish” for reads: assembly to complete full genomes were
generated a priori. Furthermore, in several cases the complete genome was produced during the initial
assembly. All genomes were then manually inspected, and coverage was computed using BBMap
(sourceforge.net/projects/bbmap/). Genomes from five viral metagenomic datasets were removed
from further consideration as they contained regions (≥100 bp) of low coverage (<5 paired end reads).
Annotations were generated, using Geneious, according to the most recent PB1 annotation (GenBank:
NC_011810), and manually inspected again. Genome sequences were deposited in GenBank, Accession
numbers KT372690 through KT272698.

2.6. Comparative Genomics

The nine uncultivated Lake Michigan PB1-like genome sequences were adjusted to the same
frame as the PB1 RefSeq sequence. Genome alignments were performed using the progressive Mauve
algorithm [70] and visualized in Geneious. These nine genomes were compared to other available
Pseudomonas-infecting Pbunavirus genomes: phages LMA2 (GenBank: NC_011166), SN (GenBank:
NC_011756), 14-1 (GenBank: NC_0111703), F8 (GenBank: NC_007810), PB1 (GenBank: NC_011810),
LBL3 (GenBank: NC_011165), φVader (GenBank: KT254130), φMoody (GenBank: KT254131), φHabibi
(GenBank: KT254132), and φFenriz (GenBank: KT254133). A neighbor-joining phylogenetic tree was
created for the publicly available genomes, including the four Lake Michigan isolates [50], and the nine
uncultivated PB1-like genomes based upon this alignment. This tree was created with the Geneious
Tree Builder tool using the Jukes-Cantor distance model with bootstrap resampling (100 replicates).

3. Results

3.1. Hunting for Pbunaviruses in Soil, Freshwater and Activated Sludge

In our previous work, we evaluated the coding sequences of PB1 and Pbunaviruses to identify
genes (called “informative genes”) that can be used as signatures of PB1 strains as well as other
Pbunaviruses [66]. We designed primer pairs targeting five genomic regions (see Methods; Table 1).
These genomic regions target genes encoding hypothetical proteins as well as the annotated helicase
(primer pair 3 in Table 1). Primer sequences as well as expected amplicon sequences (using the PB1
genome, GenBank: NC_011810) were queried using BLASTn; resulting hits were only to Pbunavirus
species. Replicate samples of soil, activated sludge, and freshwater were collected from locations
throughout northern Illinois (see Methods). Samples were filtered and concentrated, and the community
DNA extracted and amplified with each of the primer sets (see Methods). DNA isolated from three Lake
Michigan collections, made the year prior (2014) and within our existing collection, were amplified as
well. Sanger sequencing of the resulting amplicons confirmed specific amplification of genes belonging
to the Pbunaviruses; sequences were found to have a coverage >99% and sequence identity >99% to
a Pbunavirus sequence in GenBank. Sequenced amplicons produced by primer pair 5 (amplifying genes
encoding hypothetical proteins PB1_gp84, 85, 86) were using to construct a neighbor joining phylogenetic
tree (Figure 1).
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Pseudomonas-infecting Pbunaviruses have been collected from marine/oceanic samples. 

Figure 1. Phylogenetic comparison of PCR amplicons of the genes encoding hypothetical proteins
PB1_gp84, 85, 86 generated from environmental DNA. Neighbor-joining tree was generated based on
the Jukes-Cantor distance method.

3.2. Searching for PB1 in Soil, Freshwater, and Activated Sludge Viral Metagenomes

In total, 104 DNA viral metagenomes (from various environments) were inspected for the presence
of PB1-like phages, including 40 from Lake Michigan nearshore waters (nine from collections made in
2013 [71] and 31 from 2014 [67]), 12 from hot springs, 38 from other freshwater sources, 12 from sewage,
and two from soil (Table S1). Raw data was gathered for all data samples and assembled individually
(see Methods). First, a purely BLAST-based approach was evaluated; all 104 viral metagenome samples
produced high-quality hits to currently annotated PB1 genes (Figure S2). The 104 metagenomes
were next re-evaluated considering only ORFs informative of PB1 genes listed in Figure 2. These
genes are present within PB1 strains and do not exhibit sequence similarity to gene sequences within
non-Pbunaviruses. As can be seen in Figure 2, many of metagenomes do not produce a signal
(shown in gray) signifying that the viral metagenome did not include a sequence similar to the
annotated gene sequences of PB1-like phages. Nevertheless, informative genes are detected within two
hot spring samples, 47 freshwater samples, 11 sewage samples, and one soil sample. With the exception
of the Lake Michigan samples, many of the samples identified only one informative gene. It is worth
noting that comparable analyses were conducted for viral metagenome sets from marine environments,
although no signal of the presence of PB1 was detected. To date, no Pseudomonas-infecting Pbunaviruses
have been collected from marine/oceanic samples.
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Figure 2. PB1 genome atlas, demonstrating quality hits to the PB1 genome across environmental viral
metagenomes. Genes for which no hit was detected are indicated by grey. The bar graph at the top of
the figure represents amount of data collected for that sample.

3.3. Unique PB1-Like Phage Genomes Can Be Assembled and Closed from Viral Metagenome Data Generated
from Lake Michigan

Given the abundance of informative genes within the 31 Lake Michigan datasets collected during
2014 (Figure 2), each was analyzed to determine the presence of complete or near-complete PB1-like
phage genomes. De novo assemblies were performed for these 31 paired-end sequence datasets [67],
exploring numerous different assemblers and parameters (see Methods). High-quality contigs were
then queried via BLAST for the presence of PB1 genes. Hits were identified within contigs for 14
of these data sets. Further examination revealed that nine contained single contigs representative
of complete, high coverage (15 to 220×) genomes of PB1-like phages. The five other datasets were
excluded because of low coverage. The nine genomes ranged in size from 65,762 to 66,283 bp in length,
each comprising 85–89 annotated genes (Table 2). Overall, the nine genomes had high nucleotide
sequence identity to each other—greater than 99% (Table S2). In addition, each genome was assembled
from a different water sample, either collected on different dates, at different locations or found within
a different biological replicate (Table 2). Assembly did not require a subsequent laboratory-based
effort to extend or close the genomes; rather each genome was fully assembled based on metagenomic
data alone.
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Table 2. Descriptive information for the nine uncultivated PB1-like genomes from Lake Michigan samples.

Phage Isolation (Beach/Date) Coverage
(Average) Length (bp) # Annotated

Genes
Accession
Number

SRA Accession
(Raw Reads)

Gallinipper 95th Street/10 June 2014 30 65,917 89 KT372690 SRX956318

Jollyroger 57th Street/8 July 2014 200 65,795 90 KT372691 SRX995828

Kraken 95th Street/5 August 2014
(Biological Replicate 1) 15 65,762 88 KT372692 SRX995836

Kula 95th Street/5 August 2014
(Biological Replicate 2) 20 65,762 89 KT372693 SRX995836

Nemo 95th Street/5 August 2014
(Biological Replicate 3) 20 66,283 88 KT372694 SRX995836

Nessie Wilmette/13 May 2014 220 65,762 89 KT372695 SRX995816

Poseidon Wilmette/5 August 2014 130 65,762 88 KT372696 SRX995833

Smee Montrose/8 July 2014 115 66,278 89 KT372697 SRX995827

Triton 57th/5 August 2014 125 65,762 85 KT372698 SRX995835

Comparing the uncultured PB1-like genomes to the PB1 RefSeq genome record revealed collinear
blocks common to all, as well as open reading frames (ORFs) (all homologous to annotated hypothetical
proteins) which were absent throughout the entire cohort (Figure 3a). The ORFs absent from or
disturbed (often by a frameshift mutation or large indel) from one or more of the uncultivated Lake
Michigan PB1-like viruses can be found in Table S3. A phylogenetic comparison of the candidate
phages against other Pseudomonas-infecting members of the Pbunaviruses and the genomes of four
PB1-like phages previously isolated from Lake Michigan [50] was performed (Figure 3b). The nine
uncultivated Lake Michigan PB1-like viral genomes demonstrated closest similarities to PB1 and the
previously isolated Lake Michigan phages and exhibited marked differences from the genomes of the
other Pbunaviruses.
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Figure 3. (a) Genome map of PB1-like genomes. CDS regions which are missing/disrupted in the new
uncultivated viral genomes are indicated (A = All 9 genomes; G = Gallinipper; J = Jollyroger; K = Kraken;
L = Kula; M = Nemo; N = Nessie; P = Poseidon; S = Smee; T = Triton). (b) Phylogenetic comparison of
uncultivated Lake Michigan PB1-like viruses (red) to Pseudomonas-infecting Pbunaviruses. PB1 strains
indicated in blue font are phages previously cultured and isolated from Lake Michigan [50].
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4. Discussion

Given the ubiquity of Pseudomonas, it is not surprising that Pbunaviruses have been previously
isolated from a vast array of environments [50,51,54–58]. By targeting a collection of species and genus
specific genes, Pbunaviruses were detected within soil, freshwater, and activated sludge samples
collected here. Comparison of these amplicon sequences revealed sequence diversity; contrary to our
initial expectations, samples collected from the same geographical location or source (soil, freshwater,
activated sludge) did not clade together. While the amplicon sequences indicate that Pbunaviruses
(or very close relatives) are present in northern Illinois, the phylogenetic tree suggests genetic variation
amongst the samples that is not dictated by the type of environment sampled. Comprehensive analysis
determined that the PB1-like phages, are, in fact, very well represented throughout datasets collected
from Lake Michigan (Figure 2). The samples sequenced from collections made in the summer of
2014 [67] included more “informative genes” than the sequences from the samples collected in the
summer of 2013. Nevertheless, these are the same sites from which the PB1-like phages φVader,
φMoody, φHabibi, and φFenriz were isolated during the summer of 2013 [50].

The evidence for the presence of Pbunaviruses in other freshwaters, soils, wastewater, and hot
springs metagenomes, is however, tenuous (Figure 2). This may be a result of differences in the sample
sites themselves (e.g., oligotrophy, season, depth, etc.), sample preparation, sequencing depth and/or
technology, or PB1 abundance within the particular sample. Interestingly, PB1 gp05 (128 amino acids in
length) and gp74 (150 amino acids in length), both annotated as hypothetical proteins, are detected—often
at very high levels—within these samples. Both of these genes were found to be Pbunavirus-specific,
not present in any other sequenced phage genome. Furthermore, each was queried (tBLASTn) against
the complete nr/nt database; all hits returned were to Pbunaviruses. BLASTp analysis confirmed that
gp05 is exclusively found with Pbunavirus sequences and PB1′s gp74 amino acid sequence exhibited
only modest sequence homology (57% query coverage and 42% sequence identity) to a hypothetical
protein within the T4-like Pseudomonas putida-infecting phage pf16 [72]. These proteins are of particular
interest with regards to characterizing their function. The detection of these two hypothetical proteins in
other viral metagenomic samples can be the result of: (1) the presence of distant Pbunavirus relatives;
(2) evidence of prior gene sharing between Pbunaviruses and other viral species; or (3) these similar
sequences originating independently.

During examination of a viral metagenomic survey of Lake Michigan, we were able to assemble
nine separate PB1-like genomes, de novo from the data generated. Variation was observed between
the uncultivated assembled viruses including size. Three of the genomes, Kraken, Kula and Nemo,
came from biological replicates collected from the same site (Calumet Beach) on 5 August 2014. From
the pairwise assembly of the genomes of Kula and Nemo, 529 nucleotide differences were observed
(Table S2). This suggests that even within a niche (as replicates were collected within a 5 m area [67]),
significant viral microdiversity exists. Interestingly, a complete PB1-like genome was unable to be
assembled from the fourth biological replicate collected. Variation was also observed among the nine
genomes with respect to the number of ORFs identified. It is important to note that reading frames
and predicted functions were determined based upon the PB1 genome annotation. Regions which
are missing/disrupted in the new uncultivated viral genomes were predominantly PB1 annotated
hypothetical proteins (Figure 3A; Table S3). Nevertheless, disruptions were observed in all 9 genomes
for the minor head protein (PB1 gp18) and helicase (PB1 gp77). Nevertheless, the genomes of all nine
uncultivated viruses were more similar to PB1-like viruses than other members of the genus.

Significant sequence coverage suggests that these phages were present in the Lake Michigan
samples in high abundance. The nine genomes essentially fell out of the data, providing a more genuine
representation of viral abundance than the number of hits alone. Luo et al. [73] estimated genomes
may be assembled most accurately from metagenomes with a coverage of 20×—the coverage of many
of the genomes examined in this study far exceeded this measure (Table 2). As with the discovery of
crAssphage, ubiquitous in human fecal metagenomes [39], ultimately the efficacy of assembling entire
genomes from complex environmental datasets is reliant on the initial high abundance of the organism,
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or an alternative factor which effectively places it as the low hanging fruit in that data. However, as
generating complete genomes of other characterized phage genomes from our data was not possible,
the former is likely the case here.

We were unable to produce a complete genome assembly of a PB1-like virus from the nine viral
metagenomic dataset from Lake Michigan collected the year before and hits to informative genes in
the PB1 genome were low throughout (Figure 2). This suggests that the incidence of PB1-like viruses
was considerably higher, for whatever reason, during the 2014 sampling effort, and that the presence
of this group of viruses is likely to be, unsurprisingly, dynamic. Nevertheless, we are confident that
PB1 viruses were present during 2013 as four were isolated and characterized from these very same
samples [50]. The results of culture-independent and culture-dependent methods further supports the
presence of a dynamic community.

Although culture-based studies of phages can provide multiple key aspects of a phage’s ecology,
the many challenges with working with phages in the laboratory [6] limit our understanding of their
genetic diversity. Viral metagenomic studies, however, have the potential to uncover far more than just
a phage’s genome [21]. Through comparative viral metagenomics we were able to identify samples for
which PB1-like viruses were present as well as abundant, thereby providing insight into the phage’s
ecology. Hypothesis-driven data mining coupled with experimental work, such as the approach
presented here for the investigation of PB1-like viruses, has significant potential to greatly expand our
understanding of phage ecology.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Map of
collection sites for this study. Figure S2: PB1 BLAST genome atlas. Bitscore values of BLAST queries for
each PB1 gene in each metagenome is indicated. Table S1: Information about the viral metagenomic data sets
evaluated for the presence of Pseudomonas phage PB1. Table S2: Sequence similarity between the nine uncultivated
genomes assembled in this study. Table S3: List of coding sequences missing or disrupted genes in the nine
uncultivated genomes.
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