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saffron, which has various effects in biological systems. In this

study, we investigated the antioxidant effects of crocetin on reac�

tive oxygen species such as hydroxyl radical using in vitro X�band

electron spin resonance and spin trapping. Crocetin significantly

inhibited hydroxyl radical generation compared with the control.

Moreover, we performed electron spin resonance computed

tomography ex vivo with the L�band electron spin resonance

imaging system and determined the electron spin resonance

signal decay rate in the isolated brain of stroke�prone spontane�

ously hypertensive rats, a high�oxidative stress model. Crocetin

significantly reduced oxidative stress in the isolated brain by

acting as a scavenger of reactive oxygen species, especially

hydroxyl radical, as demonstrated by in vitro and ex vivo electron

spin resonance analysis. The distribution of crocetin was also

determined in the plasma and the brain of stroke�prone

spontaneously hypertensive rats using high�performance liquid

chromatography. After oral administration, crocetin was detected

at high levels in the plasma and the brain. Our results suggest

that crocetin may participate in the prevention of reactive oxygen

species�induced disease due to a reduction of oxidative stress

induced by reactive oxygen species in the brain.
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IntroductionReactive oxygen species (ROS) such as the superoxide (O2
•−)

and/or hydroxyl radical (HO•) have been implicated in the
pathogenesis of various types of brain dysfunction including
ischemia-reperfusion injury,(1) Alzheimer’s disease,(2) aging,(3) and
other neurodegenerative disease.(4) Among the organs that can
be affected by ROS-induced diseases, the brain is particularly
susceptible to the effects of aging and oxidative stress.(5) The brain
protective properties of several carotenoids are well known.(6–9) It
has recently been reported that antioxidant carotenoids such as β-
carotene and lycopene reduce ischemia-reperfusion injury of the
brain via their antioxidant properties.(10,11)

Crocetin is a natural carotenoid compound found in the stigmas
of saffron (Crocus sativus L.) and the fruits of Gardenia
jasminoides Ellis. This yellow compound has been used as an im-
portant spice and natural food colorant in various parts of the
world.(12,13) In addition, saffron and gardenia fruits have been used
as traditional medicine and crocetin is one of the major active
compounds of these herbal medicines. Crocetin is an amphiphilic
low-molecular weight carotenoid compound, as shown in Fig. 1.
Extensive research on crocetin has indicated that it inhibits
tumor promotion,(14) is hepatoprotective,(15) has neuroprotective

potential,(16) exerts anti-inflammatory effects,(17) and is beneficial
in cardiac diseases.(18) In a recent clinical studies, crocetin showed
positive effects on asthenopia(19) and attenuating effects on physical
fatigue.(20) Antioxidant potential of crocetin may be contributing
to these pharmacological actions. However, there are almost no
reports on a direct ROS scavenging effect of crocetin.

We previously reported on the use of an electron spin resonance
(ESR)-based technique for the detection of free radical reactions
in biological systems.(21–26) Nitroxyl radicals are very useful as spin
probes for measuring ROS distribution, oxygen concentration, and
redox metabolism by in vivo ESR in biological systems.(21–26) It has
been reported that the nitroxyl radical, referred to as a ‘nitroxyl
spin probe’, loses its ESR signal by rapidly reacting with HO•

(k>109 M−1 s−1),(27,28) O2
•− (k = 104–105 M−1 s−1) in the presence of

thiols or NAD(P)H,(28) and other radicals such as alkyl (k = 107–
109 M−1 s−1)(29) and lipid peroxyl radicals.(30) The signal decay rate
of the nitroxyl spin probe provides evidence of ROS generation
and changes in the redox status of biological systems.(31,32)

The stroke-prone spontaneously hypertensive rat (SHRSP) is a
genetic model of spontaneous hypertension, stroke, and endo-
thelial dysfunction.(33,34) It has several characteristics of increased
oxidative stress.(21,35–38) The blood brain barrier-permeable nitroxyl
spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-
oxyl (MC-PROXYL) has been used for ESR assessment of
oxidative stress in the rodent brain.(21,37,38) In the present study, we
used the ESR technique to investigate the ROS scavenging effect
of crocetin and the decay rate constant of MC-PROXYL in the
isolated brain of the SHRSPs. In addition, we investigated the
absorption and distribution of crocetin in the plasma and the
brain following oral administration in SHRSPs. The results
showed that oral administration of crocetin to SHRSPs was
capable of reducing ROS-mediated oxidative stress in the brain
due to a direct ROS-scavenging effect.

R

Fig. 1. Chemical structure of crocetin.
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Materials and Methods

Reagents. Crocetin was provided by Riken Vitamin Corpora-
tion Limited (Tokyo, Japan). Hydrogen peroxide (H2O2) was
purchased from Wako Pure Chem. Ind. (Osaka, Japan). The ESR
spin trapping studies, using 5-(2,2-dimethyl-1,3-propoxycyclo-
phosphoryl)-5-methyl-1-pyrroline-N-oxide (CYPMPO, Radical
Research, Tokyo, Japan), indicated production of HO•. Pento-
barbital sodium was purchased from Kyoritsu Seiyaku Co.
(Tokyo, Japan). MC-PROXYL was synthesized from 3-carboxy-
2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (carboxy-PROXYL; Tokyo
Kasei, Tokyo, Japan) by a method described previously.(25,37) All
other reagents were analytical grades.

In vitro ESR measurement. HO• was generated by ultra-
violet (UV, emission: 310–400 nm, 5 sec; 40 mW; SUPERCURE-
203S, RU-360, Radical Research, Tokyo, Japan) irradiation of
H2O2 as described previously.(21,39,40) Crocetin was prepared in 10%
alkaline buffer (50 mM Na2B4O7-50 mM Na2CO3, pH 10.0). Other
solutions were prepared in ultra-pure water. ESR spin-trapping
was conducted with an ROS-generating system containing
CYPMPO.(41) ESR observations were performed with a JES-RE
3X, X-band spectrometer (JEOL, Tokyo, Japan) connected to a
WIN-RAD ESR Data Analyzer (Radical Research, Tokyo, Japan)
at the following instrument settings: microwave power, 8.00 mW;
magnetic field, 335.6 ± 7.5 mT; field modulation width, 0.079 mT;
receiver gain, 200; sweep time, 1 min; and time constant, 0.03 sec.
All experiments were repeated a minimum of 3 times. For each
experiment, the effects of the compounds were calculated and
presented as the percentage of the mean control value (designated
as 100%).

Animal and ex vivo ESR�CT imaging measurements. The
procedures used in this study were in accordance with the guide-
lines of the US National Institute of Health Guide for the Care and
Use of Laboratory Animals (NIH Publication NO. 85–23, revised
1985) and the protocols were approved by the Animal Care
Committees (Yokosuka, Japan). Male SHRSPs (6-weeks old)
were purchased from Japan SLC (Shizuoka, Japan). Animals were
housed in a light-controlled room with a 12-h light/dark cycle and
were allowed ad libitum access to food and water. Crocetin was
suspended in 0.5% (w/v) carboxymethylcellulose-sodium (CMC-
Na) solution at a concentration of 10 mg/ml (crocetin/CMC-Na).
We have previously confirmed that crocetin arrived at the
maximum blood concentrations 90 min after oral administration
(data not shown). Crocetin (100 mg/kg) or 0.5% CMC-Na solution
was administered orally 90 min prior to measurement by ex vivo
ESR. ESR-computed tomography (CT) imaging of the isolated
rat brain was performed as follows. The rats were anesthetized
with 50 mg/kg (i.p.) pentobarbital and injected with 140 mmol/l
MC-PROXYL solution (10 mg/kg) i.v. via the tail vein. The brain
was isolated 30 sec after the treatment and subsequently analyzed
using ex vivo L-band ESR imaging, as described previously.(26)

Ex vivo ESR-CT imaging system constructed in our laboratory
and JEOL ESR application laboratory software were used.(25,26,37,38)

This system consists of a commercially available electromagnet
(modified JES-RE 3X, JEOL, Tokyo, Japan), a pair of field scan
coils, power supplies, a personal computer, and a 1-GHz micro-
wave unit containing a 4-window loop-gap resonator (28 ×
ϕ43 mm, the measurement position centered on bregma). The
system is provided with 4 different coil sets; 3 for the gradients
(0.9 mT/cm, max) and 1 for rapid scanning. The gradient field was
controlled by a current stabilizer linked with a personal computer
(Dell Precision PWS 380).

The ESR-CT images were constructed on the basis of
Lauterburg’s method,(42) known as a 3D zeugmatography. We
applied linear magnetic field gradients along the x-, y-, and z-axes
produced by the magnetic field gradient coils. For the 2D imaging,
36 projections alternating between gradient and non-gradient
were acquired in 55 s. Each projection required 1,024 points of

acquisition data for imaging. The ESR absorption spectra were
obtained by integrating the derivative spectrum with the recorded
gradient. The mid-field hyperfine line in the spectrum was
separated from the triplet signal of the nitroxyl radicals. Each
signal data set was convoluted with Shepp’s filter function into
the Fourier domain before performing the inverse Fourier trans-
formation to the spatial domain. The 2D imaging pictures of
512 × 512 points were obtained from 18 projections per gradient
step at 10° in the spatial domain. Instrument settings for ESR
detection of MC-PROXYL were as follows: microwave power,
20 mW; magnetic field, 31.0–34.0 ± 1.0 mT; field modulation
width, 0.1 mT; receiver gain, 63–125; time constant, 0.01 sec;
field intensity, 0.7 mT/cm.

Crocetin analysis in plasma and brain. Blood and brain
was collected after crocetin administration orally 90 min later.
After the collection of blood from common carotid artery, it was
centrifuged at 1,500 g for 5 min at 4°C and plasma was separated.
Brain was isolated after phosphate buffer saline perfused from the
heart atrium. The samples were stored at −80°C. Plasma (100 μl)
was mixed with 2.0 ml of methanol and centrifuged (3,000 rpm,
10 min). The supernatant was evaporated under nitrogen gas. We
used the whole brain to analysis the crocetin distribution (control
group: 1.44 ± 0.07 g wet weight, crocetin group; 1.67 ± 0.04 g wet
weight) was homogenized in 2.0 ml of alkaline buffer and the
homogenate was mixed with 6.0 ml of methanol/chloroform
(1:1). The mixture was centrifuged (3,000 rpm, 10 min) and the
supernatant was evaporated under nitrogen gas. The residue of
plasma or brain was dissolved in 2.0 ml of alkaline buffer and
loaded onto a solid-phase extraction cartridge (Oasis HLB
Extraction Cartridge, Nihon Waters, Tokyo, Japan) pre-conditioned
with methanol (2.0 ml) and alkaline buffer (2.0 ml). The cartridge
was washed with water (2.0 ml) and hexane (2.0 ml). The analysis
was eluted with methanol (2.0 ml) and the eluate was concentrated
to dryness under nitrogen gas. The residue was reconstituted in
200 μl of methanol and filtered with a 0.45-μm Millipore filter
for reversed-phase high performance liquid chromatography
(HPLC) analysis. Crocetin was quantified by the HPLC method
as described previously.(43) In recovery experiments, the recovery
percentage of crocetin extracted from plasma and brain homo-
genate was determined to be 99% and 92%, respectively.

Statistical analysis. Results are expressed as mean ± SD.
Student’s t test was used for comparisons between pairs of groups
and Dunnet’s test was used for comparisons among 3 or more
groups. Data were analyzed for statistical significance, and the
significance level was set at p<0.05.

Results

Effects of crocetin on HO• generation by H2O2 with UV
irradiation. We investigated the effects of crocetin on HO•,
which had been generated from H2O2 by UV irradiation, and by
ESR spin trapping with CYPMPO. In agreement with our previous
report,(41) we observed that H2O2 generated by UV irradiation in
the presence of CYPMPO led to the formation of a characteristic
CYPMPO-OH spin adduct spectrum with hyperfine splitting
giving rise to 14 resolved peaks (Fig. 2A). The generation of HO•

was not influenced by the 10% alkaline buffer (data not shown).
As shown in Fig. 2B, CYPMPO-OH adduct formation was
reduced in a dose-dependent manner by crocetin dissolved in 10%
alkaline buffer (p<0.05). These data indicate that crocetin might
be an effective HO• scavenger.

Effects of crocetin on SHRSPs�induced oxidative stress in
the brain. MC-PROXYL is a suitable spin probe for the study
of free radical reactions in the brain by in vivo and ex vivo ESR
detection.(26,38) The effect of crocetin on SHRSPs-induced oxida-
tive stress in the brain was investigated using MC-PROXYL and
the resulting spectra were analyzed with the ESR-CT imaging
system. Administration of crocetin to SHRSPs significantly
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decreased the decay rate of the 2D ESR-CT image of MC-PROXYL
in the isolated brain (Fig. 3). The signal decay rate of MC-
PROXYL in this study was confirmed with preliminary data from
a previous study using ESR-CT imaging with L-band ESR
analysis. The signal decay rate constant of MC-PROXYL in brain

of SHRSPs brain was significantly lower than that of the control
(p<0.05) (Fig. 4).

Crocetin analysis in plasma and brain. Crocetin was given
to SHRSPs (n = 6) by oral administration at the same dose
(100 mg/kg) used in the ESR experiments (Fig. 3 and 4). Plasma

Fig. 2. Effect of crocetin on HO• generation by H2O2 with UV irradiation. (A) ESR spin trapping measurement of HO• generated by H2O2 with UV
irradiation for 5 sec with CYPMPO (5.0 mM) as the spin trap in the presence of crocetin (0, 125, 250, 500, 1,000 µM). (B) The effects of crocetin on HO•

generation by H2O2 with UV irradiation. The signal intensity of the seventh peak of the spectrum was normalized as the relative height against the
signal intensity of the control. Results are expressed as the percentage of the mean control value and are represented as mean ± SD. * significant
difference (p<0.05) versus the corresponding control value.

Fig. 3. ESR�CT imaging in isolated SHRSPs brain following crocetin administration. Effects of administration of crocetin on 2D ESR images (z–x
plane) of MC�PROXYL distribution in isolated brain of SHRSPs. ESR was measured at 3, 5, 7, 9, 11, 13, 15, 17, 19 and 21 min after i.v. treatment with
MC�PROXYL (isolated 30 sec after the treatment). The color scale shows 32 colors (white and 100 being the maximum ESR signal). The ESR images
are reproduced in 32 colors with signals lower than 10% of the maximal signal intensity detected in all slices regarded as noise. Experimental condi�
tions are described in Materials and Methods.
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and brain were both collected 90 min after the administration of
crocetin. The crocetin concentrations in plasma and brain mea-
sured by HPLC are shown in Table 1. These concentrations (about
0.14 mM in plasma and 2.43 nmol/g in brain) were significantly
higher in the group that received crocetin as compared with the
control group that did not receive crocetin.

Discussion

Various ROS may be generated by essential metabolic pro-
cesses or by environmental stress such as UV exposure. Although
the ROS plays important roles to cell signaling, it also has a
potential to cause significant cellular damage. The participation of
ROS in the pathogenesis of many diseases including brain
dysfunction has been suggested.(1–4) Thus, in order to prevent
ROS-induced disease, supplementation of antioxidants such as
vitamin C, vitamin E, and carotenoids has been proposed.(44,45)

Crocetin, a kind of carotenoid originally found in the dried
stigma of saffron, has been used in the treatment of diversiform
diseases for centuries.(46) It is well known that various carotenoids
scavenge ROS such as HO• and O2

•−.(6–8) The carotenoids β-
carotene and lutein have also been reported to inhibit ROS
generation.(47) In recent years, it has been suggested that crocetin
might be an effective antioxidant to counter oxidative stress in a
hemi-parkinsonian rat model.(16) However, the antioxidant activity

of crocetin appeared to involve the activation of the endogenous
antioxidant enzymatic activities such as superoxide dismutase
(SOD) and glutathione peroxidase (GPx),(16,48) rather than a direct
ROS scavenging effect. There are few reports of the scavenging
activity for ROS of the crocetine. Tseng et al.(49) reported the
scavenging activity against O2

•− using xanthine/xanthine oxidase
system. ESR is an invaluable technique that provides a direct
means of measuring the antioxidant effects. In this in vitro X-band
ESR study, crocetin reduced the generation of HO• from irradia-
tion of H2O2 in a dose-dependent manner (Fig. 2). This study
represents the first report of the scavenging effect of crocetin on
HO•.

If we turn our attention to how our results may relate to the brain
in vivo, it is critical to consider the relative concentration of the
crocetin used in the present study. The concentration in rat brain of
absorption of crocetin was about 2.43 nmol/g (Table 1), compared
to the concentration of crocetin of 250 μM used in our in vitro
experiments (Fig. 2). Indeed, it would be possibility that the
scavenging effects of crocetin, much used in  studies, may reach
the brain. The redox potential of those unchanged crocetin and
crocetin metabolites that reach the brain enables them to scavenge
damaging radicals, but the endogenous brain antioxidants,
especially ascorbate.(21) Regarding as the concentration of ROS
generation on in vitro experiments, they would be much higher
than in vivo situation. Brain tissue harvested from SHRSP is
known to exhibit increased levels of oxidative stress.(21,35–38) Our
present study has shown that the high concentration of crocetin
treatment resulted in the recovery of normal levels of oxidative
stress in the brain of SHRSP (Fig. 3 and 4). Other study revealed
that crocetin would be helpful in preventing oxidative stress-
induced neurologic disorder.(16,50) These results suggest the
possibility that crocetin may show useful antioxidant activity for
in vivo rodent model for human application. However, further
studies will be required to examine the human application of
crocetin upon oxidative stress-induced brain disease.

The involvement of O2
•− in ischemia-reperfusion injury, stroke,

and atherosclerosis is well known.(51) It is possible to generate HO•

from O2
•− via the Fenton reaction and/or Harber-Weiss reaction

in biological systems.(52) These free radicals play an important
role in brain damage after stroke. In addition to oxidizing macro-
molecules, leading to cell injury, oxidants are also involved in
cell death/survival signaling pathways and cause mitochondrial
dysfunction.(1) Various antioxidants have been investigated for the
treatment of stroke.(9,35) Crocetin, like other carotenoids, has the
potential to be an effective treatment for diseases related to ROS,
such as stroke, ischemia-reperfusion injury, and atherosclerosis.

The SHRSP is a well-known model for atherosclerosis(53) and is
useful for the study of oxidative stress caused by the generation of
O2

•− and HO• in the brain. Our research group previously reported
the utility of quantitative ESR analysis with MC-PROXYL for the
assessment of redox status under conditions of oxidative stress in
SHRSPs brain.(21,37,38) Spontaneous ROS generation has been
demonstrated in association with ischemia-reperfusion injury
accompanying atherosclerosis in SHRSPs brain.(36,53) In this
study, we used ex vivo ESR-CT imaging to demonstrate the ability
of crocetin (at a dose of 100 mg/kg) to reduce ROS generation
and decrease the decay rate constant of MC-PROXYL in SHRSPs
brain (Fig. 3 and 4). We assessed the metabolic fate and the
bioavailability of crocetin in the plasma and the brain of SHRSPs
and found that the compound was detected in both within 90 min
after oral administration (Table 1). This result suggested that
orally administrated crocetin may cross the blood-brain barrier
and distribute to the brain. Taken together, these results indicate
that crocetin attenuates oxidative stress in the isolated brain of
SHRSPs.

In conclusion, the present study demonstrated that crocetin
exhibits antioxidant properties by scavenging ROS, and that it
may reduce oxidative stress induced by ROS generation in the

Fig. 4. Effects of crocetin on oxidative stress in SHRSPs brain. SHRSPs
were anesthetized with pentobarbital sodium (50 mg/kg, i.p.). The L�
band ESR was used to determine the signal decay of MC�PROXYL in the
isolated brain. Decay rate constants of MC�PROXYL after the admin�
istration; control (0.5% CMC�Na solution alone, open column), crocetin
(suspended in 0.5% CMC�Na solution administration, closed column).
The results are expressed as mean ± SD (n = 6). * significant difference
(p<0.05) versus the corresponding value in the control group.

Table 1. Distribution of crocetin in plasma and brain

Plasma and brain crocetin concentrations (mean ± SD) after the admin�
istration of 100 mg/kg crocetin suspended in 0.5% CMC�Na solution
(crocetin group) or 0.5% CMC�Na solution alone (control group).
Crocetin was not detected (nd) in plasma and brain of the control
group. Results are expressed as mmol/l (in plasma) or nmol/g (in brain)
(n = 6, respectively). * significant difference (p<0.0001) versus the corre�
sponding control value.

Group Concentration of crocetin

Plasma
Control nd

Crocetin 0.14 ± 0.05*

Brain
Control nd

Crocetin 2.43 ± 0.40*
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isolated brain of SHRSPs. By extension, crocetin might be able to
prevent ROS-related brain diseases such as stroke.

Abbreviations

CMC-Na carboxymethylcellulose-sodium
CT computed tomography
CYPMPO 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-

methyl-1-pyrroline-N-oxide
ESR electron spin resonance
GPx glutathione peroxidase

H2O2 hydrogen peroxide
HO• hydroxyl radical
HPLC high performance liquid chromatography
MC-PROXYL 3-methoxycarbonyl-2,2,5,5-tetramethylpyrro-

lidine-1-oxyl
O2

•− superoxide
ROS reactive oxygen species
SHRSP stroke-prone spontaneously hypertensive rat
SOD superoxide dismutase
UV ultraviolet
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