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Abstract: COVID-19 patients often develop coagulopathies including microclotting, thrombotic
strokes or thrombocytopenia. Autoantibodies are present against blood-related proteins including
cardiolipin (CL), serum albumin (SA), platelet factor 4 (PF4), beta 2 glycoprotein 1 (β2GPI), phos-
phodiesterases (PDE), and coagulation factors such as Factor II, IX, X and von Willebrand factor
(vWF). Different combinations of autoantibodies associate with different coagulopathies. Previous re-
search revealed similarities between proteins with blood clotting functions and SARS-CoV-2 proteins,
adenovirus, and bacterial proteins associated with moderate-to-severe COVID-19 infections. This
study investigated whether polyclonal antibodies (mainly goat and rabbit) against these viruses and
bacteria recognize human blood-related proteins. Antibodies against SARS-CoV-2 and adenovirus
recognized vWF, PDE and PF4 and SARS-CoV-2 antibodies also recognized additional antigens.
Most bacterial antibodies tested (group A streptococci [GAS], staphylococci, Escherichia coli [E. coli],
Klebsiella pneumoniae, Clostridia, and Mycobacterium tuberculosis) cross-reacted with CL and PF4. while
GAS antibodies also bound to F2, Factor VIII, Factor IX, and vWF, and E. coli antibodies to PDE.
All cross-reactive interactions involved antibody-antigen binding constants smaller than 100 nM.
Since most COVID-19 coagulopathy patients display autoantibodies against vWF, PDE and PF4
along with CL, combinations of viral and bacterial infections appear to be necessary to initiate their
autoimmune coagulopathies.

Keywords: bystander infection; antigenic complementarity; thrombosis; thrombocytopenia; SARS-
CoV-2; mRNA vaccine; adenovirus; streptococcus; staphylococcus; E. coli; autoimmune; autoimmu-
nity; cross-reactive; platelet factor 4; cardiolipin; von Willebrand Factor; vaccine-induced throm-
botic thrombocytopenia

1. Introduction

SARS-CoV-2 is a new coronavirus that causes symptoms ranging from minor ones
such as fever, sore throat, nasal congestion or head- and muscle aches to moderate ones
including dyspnea, muscle weakness and chronic loss of smell and/or taste, and severe
ones including coagulopathies such as thrombocytopenia, disseminated intravascular
coagulopathy (DIC), microclotting, impaired circulation, venous thromboembolisms (VTE)
resulting in heart attacks and strokes, respiratory complications and other types of organ
failure [1–3]. While mild cases of COVID-19 have no increased risk of coagulopathies [4],
10–15% of hospitalized patients [5], 25% of critically ill COVID-19 patients and up to 48%
of intensive care patients [3,6–10] develop coagulopathies, which predominantly affect
the elderly [11]. The incidence of COVID-19-related coagulopathies has been found to be
about ten times the rate observed among hospitalized influenza patients [5,11,12]; fibrin
structure and fibrinolysis are altered in comparison to both influenza patients and normal
individuals [13]; and VTE were twice as common among COVID-19 patients as among
those with community acquired pneumonias [9]. Thrombotic complications also occur in
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about 1 in 25,000 to 100,000 people vaccinated against SARS-CoV-2 [14,15], with a higher
incidence among those receiving adenovirus vector vaccines than mRNA vaccines.

Various causes of COVID coagulopathies have been proposed including genetics,
defects in the renin-angiotensin system, defective platelet gene expression, endothelitis,
and cytokine storm-induced complement activation [6,16–19]. Vaccine-associated throm-
bosis has been suggested to be caused by the ethylenediaminetetraacetic acid (EDTA)
preservative in the AstraZenaca formulation [20], but this proposal does not explain the
increased risk associated with the mRNA vaccines. Another suggestion is that platelet
factor 4 (PF4) binds to the vaccines creating a complex that induces novel antibodies that
activate coagulation pathways [21], or that the vaccine damages the glycocalyx releasing
fragmented forms of glycosaminoglycans that mimic heparin, which upon binding to PF4,
trigger coagulation [22]. However, the best-documented cause for COVID-19-associated
coagulopathies is autoimmune [23,24].

Autoantibodies against a wide range of blood proteins have been documented in
COVID-19 patients and SARS-CoV-2 vaccinees, the targets of which include phospholipids
and phospholipid-binding proteins [25]; lupus anticoagulant, cardiolipin (CL), and the
cardiolipin-binding proteins phosphatidylserine/prothrombin (Factor 2), platelet glyco-
protein Ib (GP1b) and beta-2 glycoprotein I (β2GPI) [7,25–29]; PF4 [30–33] von Willebrand
factor (VWF), ADAMTS13 (von Willebrand factor-cleaving protease or VWFCP), and Fac-
tors, IX, X and Xa [34–38]. Some of these autoantibodies are also found transiently in many
COVID-19 patients who do not develop coagulopathies and among COVID-19 vaccinees,
which challenges whether SARS-CoV-2 or its vaccines are sufficient to induce autoimmune
coagulopathies [24,27,29,32,33]. Depending on the cut-off values used, between 30 and
75% of people vaccinated against SARS-CoV-2 develop autoantibodies against PF4 but
do not display any coagulopathy symptoms [29,32,33]. Thus, one challenge is to explain
why the vast majority of people infected with or vaccinated against SARS-CoV-2 fail to
develop autoimmune coagulopathies and why the presence of autoantibodies may not
translate directly into active autoimmune disease. A related challenge is to explain why
patients develop different coagulopathies ranging from thrombocytopenia to disseminated
microclotting to VTE.

The antigens targeted in COVID-19-associated autoimmune coagulopathies generally
fall into two broad categories composed of clotting factors and platelet proteins (Table 1).
The main clotting factor antigens are Factors 2, VIII, IX, X, VWF and ADAMTS13, all of
which are involved in a complex cascade of reactions that result in the formation of fibrin
from fibrinogen, producing the protein network that traps platelets and red blood cells
to form a clot. These factors regulate the common coagulation pathway shared by both
the intrinsic pathway, activated by exposure of extracellular matrix collagens, and the
extrinsic pathway, activated by release of tissue factor by damaged cells. Additionally,
some autoantibodies target platelet functions. Platelet activation involves the formation
of molecular complexes involving phospholipids, their binding proteins such as GP1b
or β2GPI, and VWF and collagens and results in the release of PF4, which neutralizes
the natural anticoagulant heparin that is present on most tissues. Platelets can form a
temporary clot independent of fibrinogen. Autoantibodies may impair or stimulate platelet
function depending on the set of antigens they target.

One possible trigger of autoimmune coagulopathies may be molecular mimicry be-
tween SARS-CoV-2 and human blood proteins, which can either result in inappropriate
activation of clotting (if the mimic can substitute for the host protein) or induce autoanti-
bodies that inactivate the host protein. Kanduc [39] and Root-Bernstein [40] (Figure 1) have
reported extensive mimicry between SARS-CoV-2 proteins and human blood coagulation-
related proteins. While Kanduc reported a wider range of possible similarities than did
Root-Bernstein, both studies agree that targets of autoantibodies resulting from antigenic
mimicry are likely to target collagen 1, GP1b, β2GPI, Factor VIII, Factor IX, PF4, prothrom-
bin (Factor 2), and vWF.
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Table 1. Proteins involved in blood coagulation that are targets of autoantibodies in COVID-19
patients and the functions and interactions among these proteins.

Protein Function Interactions

Coagulation Proteins

Factor 2 (F2) (Phosphatidylser-
ine/prothrombin)

When cleaved to thrombin,
converts fibrinogen to fibrin
(i.e., clot formation)

Activated by FX

Factor VIII (FVIII) Cofactor for FX activation by
Factor Xa Forms complex with FX

Factor IX (FIX)
Activated by tissue factor (TF)
and Factor VIIa to activate
FVIII

Forms complex with FVIII;
complex forms on
phospholipid scaffolds on
platelets

Factor X (FX) Cleaves prothrombin (F2) to
thrombin Forms complex with F2

Factor Xa (FXa)
Activated by tissue factor (TF)
and Factor VIIa; in concert
with FXIII, activates FX

Complex forms on
phospholipid scaffolds on
platelets

Von Willebrand Factor (vWF) Facilitates platelet aggregation
to form temporary clots

Binds to FIX and GP1a on
activated platelets and
collagens exposed on
damaged cells

Platelet Proteins

Glycoprotein 1b (GP1b) Activates platelet aggregation
Binds Factor V and FIX to the
surfaces of platelets to activate
them

Lupus anticoagulant (LA) Antibodies against PL, PLBP,
and PDE, inactivating them Bind to PL and PLBP

Phosphodiesterases (PDE)

Regulate platelet activation by
regulating
phospholipid-binding
proteins

Modify phospholipid-binding
proteins such as β2GPI

Beta-2 Glycoprotein I (β2GPI) Phospholipid binding protein
that acts as an anti-coagulant

Bind to phospholipids such as
CL to inactivate them

Cardiolipin (CL)(a
phospholipid)

Promote coagulation by acting
as scaffolds for blood factor
binding

Necessary for FVIII and FXa
activity; bind to phospholipid
binding proteins such as
β2GPI

Platelet Factor 4 (PF4)
Released by activated platelets
to neutralize heparin
permitting coagulation

Binds to and inactivates
heparin-like molecules

Tissue Proteins

Collagens
Extracellular cell matrix
proteins involved in cell
adhesion and integrity

vWF binds to exposed
collagens to initiate FIX and
GP1a platelet binding
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Figure 1. Predictions (indicated by X’s) of cross-reactivity based on significantly increased frequency
of human blood protein mimics present in SARS-CoV-2, its spike protein, adenovirus 5, five other
viruses (three newly added to this figure), and six bacteria associated with severe COVID-19 [39,40].
The X’s in the virus rows indicate that the number of similarities between a virus protein and a
human blood protein was at least three times the average number found among the control viruses.
The X’s in the bacteria rows indicate that at least one high-similarity, low-probability sequence was
shared with the human blood protein [40]. CL = cardiolipin; Ser Alb = human serum albumin;
β2GP = beta 2 glycoprotein; ADAMTS13 = von Willebrand factor-cleaving protease or VWFCP;
CD55 = Complement decay-accelerating factor; C1q, C3, C4 and C5 are complement proteins 1q, 3,
4 and 5; PDE = phosphodiesterase; Rh = rhesus factor; F2, FVIII FIX and FX are blood coagulation
factors; VWF is von Willebrand’s factor; Coll 1 is collagen type 1.

Notably, however, Kanduc and Root-Bernstein both report significant mimicry be-
tween a variety of bacterial pathogens and both the SARS-CoV-2 and human blood proteins.
Some bacterial proteins mimic SARS-CoV-2 antigens as well, leading Kanduc [39] to pro-
pose that prior immunological exposure to these bacterial blood protein mimics might
rapidly trigger anamnestic secondary cross-reactive responses of extreme affinity and avid-
ity in the presence of similar SARS-CoV-2 antigens, resulting in thromboembolic adverse
events. Root-Bernstein [40], in contrast, has proposed that the SARS-CoV-2 and adenovirus
mimicry of human blood proteins is supplemented by complementary bystander bacterial
co-infections that result in a hyper-inflammatory state provoking autoimmune disease [40].

Root-Bernstein [40] has suggested that adenovirus vectors or infections may also
play a role in stimulating autoimmune coagulopathies following SARS-CoV-2 infection of
vaccination since it exhibits an unusual number of antigenic similarities to human blood
proteins compared with other viruses (Figure 1) and has been associated in previous studies
with coagulopathies (see Discussion below).

However, SARS-CoV-2 alone was unlikely to be a trigger for coagulopathies [39–41].
One outstanding reason for this conclusion is that coagulopathies are extremely rare
among SARS-CoV-2 vaccinees and those with mild or symptom-free SARS-CoV-2 infec-
tions, whereas the incidence of coagulopathies is much higher among moderate and severe
COVID-19 cases who are characterized by having an unusually high incidence of viral,
fungal and bacterial co-infections (reviewed in [40–43]). Additional similarity searches
were performed by both Root-Bernstein [40] and Kanduc [39] on some of the most common



Int. J. Mol. Sci. 2022, 23, 11500 5 of 31

COVID-19-associated bacterial infections (group A streptococci (GAS), Staphylococcus aureus,
Klebsiella pneumoniae, Mycobacterium tuberculosis, Escherichia coli, Haemophilus influenzae and
pathogenic Clostridia (C. clostridioforme, C. perfringens, C. tetani, etc.), etc., which revealed
that some of the most common autoantigen targets in COVID-19-associated coagulopathies,
such as CL, PF4 and β2GP, have significant mimics with these bacteria but do not have
significant mimics with SARS-CoV-2 and especially its spike protein [40] (summarized
in Figure 1). Since some bacterial infections, especially GAS, Staphylococci, Klebsiella and
Clostridia, are themselves associated with increased risks of coagulopathies [44–61], these
results suggested that preceding or concomitant bacterial co-infections may support the
induction of a variety of COVID-19 autoimmune coagulopathies through anamnestic
secondary cross-reactivity or bystander activation of complementary autoimmune mech-
anisms to those activated by SARS-CoV-2. Conversely, if a pre- or co-existing bacterial
infection were necessary to induce autoimmune coagulopathies, then the absence of such
infections among the vast majority of vaccinees might explain the extremely infrequent
occurrence of vaccine-induced thrombotic events [62,63].

The purpose of the research reported here was to explore whether polyclonal antibodies
against SARS-CoV-2 proteins, adenoviruses, control viruses, and bacteria associated with
moderate-to-severe COVID-19, recognize human blood proteins with sufficient specificity
and affinity to be involved in the induction of active autoimmune disease. We also explored
whether any interactions occur between the viral and bacterial antibodies and whether any of
the antibodies recognize similar SARS-CoV-2 proteins, as predicted by Kanduc [39].

2. Results

Results of the ELISA experiments demonstrate significant binding of some SARS-
CoV-2, adenovirus, and bacterial antibodies to human blood proteins and the DA-ELISA
experiments demonstrate significant binding of some viral antibodies to bacterial antibodies
indicating that these antibodies react to antigenically complementary epitopes.

2.1. SARS-CoV-2, Adenovirus and Control Virus Antibody Binding to Blood Proteins

The results of virus antibody binding to blood proteins is summarized in Figure 2,
statistical analysis is provided in Supplementary Table S1, and representative data are
provided in Figures 3–5. In most cases, the starting concentration of protein used in the
experiments was 1 or 10 µM and dilutions were made from there but since cardiolipin and
serum albumin are present at much higher concentrations than this in blood serum, 100 µM
and 1 mM starting concentrations were used. No binding of any virus antibody to serum
albumin or cardiolipin was observed but at least one virus antibody recognized at least one
other blood protein. Very weak binding was observed between the SARS-CoV-2 S1 region
and PF4 and Factor VIII but given the concentrations of these proteins in blood serum
(see below), these results are unlikely to be significant. Significant binding was observed
between the spike S1 antibody and vWF, PDE II and collagen 1 (Figures 3 and 4). Notably,
the SARS-CoV-2 nucleoprotein antibody also exhibited significant binding to Factor II and
collagen 1, and very weakly to Facto IX, suggesting that it may confer additional risks
for inducing coagulopathies beyond those inherent in the mimicry of the spike protein
for blood proteins. While none of the SARS-CoV-2 antibodies tested bound to β2GP1,
adenovirus antibody displayed strong affinity for the protein (Figure 5). Adenovirus
antibodies also recognized PF4, vWF, PDE and collagen 1 making the virus potentially a
risk for inducing autoimmune coagulopathies with, or without, SARS-CoV-2.
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as well as experiments employing polyclonal antibodies against adenoviruses, influenza type A
virus (H1N1), coxsackie B virus and human herpes simplex type 1 virus (HSV1). Binding constants
were determined from the inflection point of the binding curves, some of which are illustrated in
Figures 3–5. Significant binding is indicated by bolded numbers against a grey background. As noted
in the Methods, S1 antibodies from different vendors were interchangeable, yielding identical results
and are not distinguished here. For the definition of significance, see Section 2.2. β2GPI = beta 2
glycoprotein I; vWF = von Willebrand Factor; PDE = phosphodiesterase II; Coll 1 = collagen.
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Figure 5. SARS-CoV-2 (spike S1, spike RBD, envelope, matrix), adenovirus and coxsackie Virus (type
B) antibody binding to beta 2 glycoprotein I (β2GPI). These are the results of a single experiment,
which is why there are no error bars. Results were confirmed in by separate replication.

2.2. Determining Significance of Antibody Binding Constants

The significance of binding curves summarized in Figure 2 was determined with
relation to the median concentrations of the blood proteins in normal human sera, which are
summarized in Table 2. Since the Kd represents the concentration at which the antibodies
would bind half of the available protein, significant binding was set at any Kd smaller
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than the median plasma concentration of the protein. In practice, reference to the Kd
values demonstrates that the vast majority of binding constants were either significantly
lower than median plasma concentration of the protein, indicating that a majority of the
protein might be expected to be bound to antibody, or the Kd were significantly greater the
median plasma concentration of the protein, indicating that no significant binding would
occur. Two proteins are exceptions. One is Platelet Factor 4, which has a very low serum
concentration compared with the other proteins but which is present at 400 nM within
platelets (see Table 2). We interpret these data to mean that antibody binding to PF4 in vivo
is likely to be directed at platelets or at PF4 released during platelet activation rather than
at the normally very low amount of PF4 that circulates. Various forms of PDE likewise
circulate both in blood serum and it is stored within platelets making both potential targets
for autoimmune reactions. Notably, the binding constants of antibodies tested here that
recognized human blood proteins with significant affinities are in the same nanomolar
range as are polyclonal antibodies against their own antigens (10−7 to 10−9 M) [64] and
are therefore of potential clinical significance. In every case, the binding constants of the
significant interactions reported here are smaller than the concentrations of the antigens in
sera or cells so that antibody binding to these antigens is highly favored.

Table 2. The Kd range of antibodies found in experiments reported here compared with the serum or
platelet concentration of the same proteins. In order for an antibody to bind up significant amounts
of a protein to interfere with protein function or to create circulating immune complexes, the binding
constant of the antibody must be smaller than or on the same order as the concentration of the protein
in blood serum or within platelets. Conc = concentration; n/r = not relevant.

Protein Significant Kd
Found Here

Conc. in
Serum

Conc. in
Platelets Source

Cardiolipin 400 nM–2 µM 10 µM [65]

β2 Glycoprotein I 2–200 nM 3 µM [66]

Platelet Factor 4 5–100 nM 0.4 nM 400 nM [67]

Serum Albumin NONE 500 µM [68]

Factor II (Prothrombin) 2–200 nM 2 µM [69]

Factor VIII 0.4–0.5 nM 1 nM [70]

Factor IX 0.3–0.9 nM 90 nM [71]

von Willebrand Factor 10–30 nM 2 µM [72]

Phosphodiesterases 8–40 nM 12 µM 7 µM [73,74]

Collagen 1 4–8 nM n/r n/r

2.3. Bacterial Antibody Binding to Blood Proteins

The results of bacterial antibody binding to blood proteins is summarized in Figure 6,
statistical analysis is provided in Supplementary Table S2, and representative data are
provided in Figures 7–9. The same concentrations of antibodies and proteins were used in
these experiments as in the virus antibody experiments in Section 2.1 and significance of the
resulting binding constants was evaluated as in Section 2.2. Although most of the bacteria
demonstrated significant sequence similarities to human serum albumin in a previous
BLAST study [40], none of the antibodies tested cross-reacted with serum albumin even
at 1–4 mM concentrations. Most of the antibodies did, however, recognize cardiolipin
as an antigen, and often at least one other blood protein, as previously predicted [41].
Significant binding to almost all of the blood proteins was observed with group A strepto-
coccal antibodies making it a particularly important candidate for stimulating COVID-19
coagulopathies if present as a co-infection with SARS-CoV-2. Clostridium and M. tuber-
culosis are, by the same reasoning, the least likely to initiate or participate in stimulating
COVID-19-related coagulopathies.
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the missing tests are indicated by dashes. Binding constants were determined from the inflection
point of the binding curves, some of which are illustrated in Figures 7–9. Significant binding is
indicated by bolded numbers against a grey background. For the definition of significance, see
Section 2.2. GAS = group A streptococci antibody; E. coli = Escherichia coli antibody; M. tuberculosis =
Mycobacterium tuberculosis antibody; β2GPI = beta 2 glycoprotein I; vWF = von Willebrand Factor;
PDE = phosphodiesterase II; Coll 1 = collagen 1.
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2.4. DA-ELISA Results: Virus Polyclonal Antibody Binding to Bacterial Polyclonal Antibodies

Many of the proteins involved in this study are known to bind to each other, and
are therefore molecularly complementary to each other, as part of the blood coagulation
pathways, providing the possibility for the expression of complementary antigenic regions.
Because many of these binding pairs segregate to some extent between the bacteria and
the viruses tested in Sections 2.1 and 2.3 above, it is therefore possible that the bacterial
antibodies will be complementary to the virus antibodies so that the protein–protein
binding is reflected in antibody-antibody binding.

Focusing specifically on the proteins tested here, well-established binding interactions
that relate to the proteins tested here are summarized in Figure 10. When collagen 1 is
revealed during tissue injury, VWF, GP1b, glycoprotein VI, as well as clotting factors, can
bind to it initiating platelet aggregation and hemostasis [75,76]. VWF binds to GP1b and
Factor IX In the common coagulation pathway [28,77,78], activated Factor VIII binds to
Factor IX activating it; activated Factor IX binds to Factor X activating it; activated Factor
X then binds to Factor 2 (prothrombin) converting it into thrombin [77–79]. VWF also
has binding sites for Factor VIII and β2GPI [76–78] ensuring localization of these diverse
reactions. β2GPI also binds to PF4, F2, Factor X and CL [80]. In addition, platelet and
endothelium phosphodiesterases bind CL [81,82], as do complement C1q-binding proteins,
suggesting that cardiolipin and C1q share common epitopes, and providing a mechanism
for activation of the complement cascade by anti-CL antibodies [83].
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Figure 10. Summary of known binding interactions between proteins involved in the coagulation
pathway. See text (Section 2.4) for references. CL = cardiolipin; Ser Alb = serum albumin; PF4 =
platelet factor 4; PDE = phosphodiesterase; F2 = factor 2; FVIII = factor VIII; vWF = von Willebrand
Factor; FIX = factor IX; FX = factor X; GP1b = glycoprotein 1b; β2GPI = beta 2 glycoprotein I; C3 =
complement C3.

Additionally, adenoviruses, including ChAdOx1, the vector for the ChAd Ox1 nCoV-19
vaccine bind directly to PF4, demonstrating the presence of complementary antigens on the
virus [84]. Streptococci (e.g., pyogenes and pneumoniae) and Staphylococci (e.g., aureus) are also
able to initiate clot formation through contact initiation involving binding of their surface
proteins to vWF and Factor XIII [79,85]. This process appears to be initiated by collagen-like
regions expressed by streptococcal collagen-like (Scl) proteins in pathogenic Streptococci [86]
and by von Willebrand Factor binding protein-like regions on Staphylococci [87]. It follows
that if SARS-CoV-2 (or any of the other viruses studied here) have proteins that mimic
vWF or PF4, as the previous Results suggest, they, too might be able to bind to Streptococci
and or Staphylococci. Antibodies against such complementary epitopes might also result in
complementary antibody idiotypes that behave like idiotype-anti-idiotype pairs.

As a result of these many and diverse types of protein–protein and blood protein-
microbe interactions, virus-induced and bacteria-induced antibodies may each mimic the
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binding characteristics of one or more blood proteins and their complementary interactions
with each other. The consequence of such complementary interactions would be for
some SARS-CoV-2 or adenovirus antibodies to recognize some bacterial antibodies as
antigenic targets. This possibility was explored using DA-ELISA to test for antibody-
antibody binding. The results of these experiments are summarized in Figure 11, statistical
analysis is provided in Supplementary Table S3, and representative data are provided
in Figures 12 and 13. Significant binding was observed between antibodies elicited by
at least one portion of the SARS-CoV-2 spike protein and antibodies against Streptococci,
Staphylococcus aureus and Klebsiella pneumoniae. Since all of these antibodies also recognized
one or more blood proteins as antigens, these SARS-CoV-2-bacterial antibody interactions
are likely to be of significance for understanding blood coagulopathies in COVID-19.
Additionally, coxsackievirus type B antibodies recognize Streptococcal and Staphylococcal
antibodies as antigenic targets, as well as E. coli and Clostridium antibodies, and HSV1
antibodies recognized Staphylococcal antibodies. These latter interactions are unlikely to
shed light on COVID-19 coagulopathies since these viral antibodies failed to recognize any
blood protein tested here. Their possible role in other autoimmune diseases will, however,
be explored in the Discussion below.
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Figure 11. Results of double-antibody ELISA (DA-ELISA) experiments testing whether polyclonal
antibodies against viruses recognized polyclonal antibodies against bacteria as “antigens”. Significant
binding affinities (Kd 100 nM or smaller) are bolded against a grey background. NP = not possible
to run the experiment because it was found that anti-rabbit horse-radish-peroxidase-labelled (HRP)
antibodies recognized guinea pig antibodies and anti-guinea-pig-HRP antibodies recognized rabbit
antibodies. S1, S2, RBD, Envelope, Matrix and Nucleocapsid are proteins of SARS-CoV-2; Gt = goat
antibody; CVB blend is a mixture of coxsackievirus type B antibodies; HSV1 = human herpes simplex
type 1 antibodies.
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Figure 12. Results of DA-ELISA experiments testing for SARS-CoV-2 antibodies binding to Group
A Streptococcus antibodies. Because both the virus and bacterial antibodies are polyclonal, multiple
sets of complementary interactions are possible. Thus, while there is very clear evidence of binding
between the Streptococcal antibodies and all three antibodies against SARS-CoV-2 spike region
proteins at high concentrations of antibody, there also appears to be higher affinity binding at
much lower concentrations of antibody (to the left). Only the high-concentration binding has
been incorporated into Figure 11. S1, S2, RBD, Envelope, Matrix and Nucleocapsid are proteins
of SARS-CoV-2.
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Figure 13. Results of DA-ELISA experiments testing for various virus antibodies binding to various
bacterial antibodies. Because both the virus and bacterial antibodies are polyclonal, multiple sets of
complementary interactions are possible and the resulting curves are often not the simple S-shaped
ones that are normally associated with binding curves. SARS = SARS-CoV-2.
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2.5. Results Summary

In sum, SARS-CoV-2 and adenovirus antibodies each recognized multiple human
blood proteins as antigens, particularly vWF, PDE II and collagen 1. The adenovirus
antibodies were also notable for having significantly more affinity for PF4 (a major target
of autoimmune coagulopathies in COVID-19) than SARS-CoV-2 antibodies. Antibodies
against bacteria that are commonly found as co-infections in moderate-to-severe COVID-19,
particularly Streptococci, Staphylococci, Klebsiella, and E. coli, also recognized multiple blood
proteins, most notably CL, β2GPI, and PF4. These bacterial antibody targets are molecularly
complementary to the SARS-CoV-2 antibody targets. This complementarity was reflected
in the DA-ELISA experimental results demonstrating that Streptococci, Staphylococci, and
Klebsiella antibodies recognized SARS-CoV-2 antibodies as antigens.

3. Discussion

The results of this study are summarized in Figure 14, which displays with X’s the
statistically significant rates of increased similarities between SARS-CoV-2, its spike pro-
tein, adenoviruses, other virus controls and bacteria associated with moderate-to-severe
COVID-19 and compares them with significant binding to human blood proteins by anti-
bodies against these viruses and bacteria, represented with blue boxes.
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Figure 14. Summary of the Results. X’s represent similarities predicted by similarity searching
summarized above in Figure 1 while the blue color represents experimentally significant binding
reported in the Results section. Significance of antibody binding to proteins was determined as
described in Table 2 as a function of the antibody affinity. No predictions have previously been
made concerning the likelihood of an antibody induced by one microbe recognizing as antigenic
an antibody raised against a different microbe, so there are no X’s in that portion of this Figure.
Significant binding of one antibody to another was set at a Kd of 100 nM or less assuming that the
concentration of any one antibody idiotype is unlikely to exceed 1 nM and therefore antibodies with
less than a mutual binding constant of 100 nM are extremely unlikely to encounter each other in
sufficient quantities to produce circulating immune complexes. CL = cardiolipin; Ser Alb = human
serum albumin; β2GP = beta 2 glycoprotein; C1q, C3, C4 and C5 are complement proteins 1q, 3, 4
and 5; PDE = phosphodiesterase; F2, FVIII, FIX and FX are blood coagulation factors; VWF is von
Willebrand’s factor; Coll 1 is collagen type 1. Bacterial abbreviations refer to the bacteria listed in the
left-most column.

As noted in the Introduction, the studies by Kanduc [39] and Root-Bernstein [40]
agreed that among the proteins that are known targets of autoantibodies in SARS-CoV-2-
associated coagulopathies, GP1b, β2GPI, Factor VIII, Factor IX, PF4, prothrombin (Factor 2),
and vWF exhibit high degrees of similarity with SARS-CoV-2. However, of these only Factor
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IX, PF4 and vWF were experimentally found to be recognized by SARS-CoV-2 antibodies.
PDE (which was on Root-Bernstein’s list) and collagen 1 (which was on Kanduc’s list) were
also recognized by SARS-CoV-2 antibodies. Notably, the SARS-CoV-2 spike protein, which
has been the focus of most vaccine development, displayed significant cross-reactivity
limited to only three of the ten blood proteins tested: PDE II, vWF and collagen 1 (Figure 2).
This limited cross-reactivity may explain why the vast majority of people vaccinated against
SARS-CoV-2 using spike-protein-based agents fail to develop coagulopathies. Additional
factors, to be discussed below, may be required to complement this limited cross-reactivity
to boost it to active autoimmune disease.

Root-Bernstein [40] also reported significant similarities between blood proteins and
proteins of bacteria associated with SARS-CoV-2 co-infections. The Results confirmed that
some of these bacterial-blood protein similarities result in the production of antibodies
cross-reactive with some of these blood proteins. Staphylococci, Streptococci, Klebsiella and E.
coli were the most important of these in terms of number of proteins recognized by their
antibodies (Figure 6). Notably, the blood proteins recognized by bacterial antibodies tend
to be a different group than those recognized by SARS-CoV-2 or adenovirus antibodies
in accordance with the predicted sequence similarities summarized in the Introduction
(Figure 1). The bacterial antibodies tended to recognize CL, β2GPI and PF4 rather than
vWF, PDE and collagen 1, which are the main targets of SARS-CoV-2. The difference in
blood protein targets between bacteria and SARS-CoV-2 is likely an important clue as to
the pathogenesis of COVID-19 coagulopathies that will be taken up in detail below. For
the moment, it is interesting to note that Kanduc [39] appears to be correct in predicting
that some bacteria share common epitopes with SARS-CoV-2 resulting in similar antibody
affinities: Streptococci, for example, and SARS-CoV-2 antibodies each recognized PF4, F2,
and vWF (Figure 14).

The utility of similarity searches for predicting experimental results can be evaluated
from the Results reported here. Root-Bernstein [40] accurately predicted 19 microbial
interactions with human proteins and 72 instances where no binding was observed, while
missing 11 microbial interactions with the proteins that were experimentally verified and
making 18 predictions that were falsified. So, overall, of 120 possibilities, 91 predictions
were verified (76%) and 29 (24%) were not. Most of the inaccurate predictions were among
the bacteria, serum albumin making up a major group for which no cross-reactivities
were observed but many predicted. The poorer results for the bacterial similarities is
likely the fault of the search method employed, which was a simplistic BLAST procedure
exploring using each blood protein to search for similarities in the entirety of the bacterial
database. The results for the viruses, in contrast, involved a more sophisticated procedure
that searched each blood protein against one viral protein at a time using LALIGN for
pairwise comparisons. The virus searches yielded much more accurate results, with 54 of
the 60 predictions validated (90%) and only six of the 54 predictions being inaccurate (10%).
No predictions were made regarding virus antibodies binding to bacterial antibodies as no
theoretical basis currently exists to make such predictions.

Our results can also be compared with those from previous studies that have used
both rodent and human antibody preparations. Vojdani and Kharrazian [88] have pre-
viously explored binding of both SARS-CoV-2 mouse and rabbit monoclonal antibodies
to a variety of human proteins, a handful of which overlapped the proteins studied here.
They identified significant binding of spike protein and nucleoprotein antibodies to col-
lagen (type undefined), generally confirming the results reported here (Figure 2). Their
subsequent study of human SARS-CoV-2 monoclonal antibody targets [89] verified the
mouse and rabbit results by demonstrating weak collagen binding for spike, nucleoprotein
and membrane protein antibodies but not envelope protein antibodies. They did not find
significant binding to platelet glycoproteins in either study, which is not consistent with
our observations but it must be emphasized that, as opposed to the quantitative ELISA
method utilized here, both Vojdani and Kharrazian studies used monoclonal antibodies
rather than polyclonal ones and binding was studies at one concentration of antibodies to
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beads or wells coated with one concentration of protein so that the effect of in vivo protein
concentration on antibody binding could not be determined.

Our rodent antibody studies are consistent with and confirm Greinacher et al.’s [20]
previous report that cross-reactivity between SARS-CoV-2 spike protein polyclonal antibod-
ies isolated from human patients and platelet factor 4 is probably not of sufficient affinity
to contribute to disease (Figure 2). We were not, however, able to confirm Passariello
et al.’s report [90] that SARS-CoV-2 spike RBD protein antibodies cross-react with PF4,
although we did observe weak cross-reactivity between antibodies against SARS-CoV-2
matrix protein and PF4. The affinities are such that spike and matrix antibodies would
not be able to recognize the concentration of PF4 normally free in solution (Table 2) but
might be effective at the concentrations of PF4 released upon platelet activation. Overall,
the evidence suggesting that SARS-CoV-2 spike protein vaccination may contribute to PF4
autoantibody production is poor and contradictory. Because PF4 is a major target of autoan-
tibodies in COVID-19 vaccine-associated coagulopathies, lack of clear cross-reactivity of
SARS-CoV-2 antibodies to PF4 again helps to explain the safety of the spike-protein-based
vaccines. People who do develop anti-PF4 antibodies following SARS-CoV-2 vaccination
may need to be exposed to other microbes, such as adenoviruses or bacteria, that can induce
more robust PF4 cross-reactivity (see Figures 2, 6 and 14).

As was just noted, these observations concerning the non-cross-reactivity of the spike
protein with PF4 strongly suggest that some other source of PF4 antibody activation is
required, which we have identified as either a bacterial infection (Streptococci, Staphylo-
cocci and E. coli being the most likely) (Figure 6), or, in the case of adenovirus-vectored
SARS-CoV-2 spike protein vaccines adenovirus [91] (Figure 2). Notably, as mentioned
in the Introduction, transient anti-PF4 antibodies have been demonstrated in 30 to 75%
of adenovirus-vectored COVID-19 vaccinees, though autoimmune coagulopathies have
remained extremely rare (24, 27, 29). Another source of PF4 autoantibody production may
be natural adenovirus infections, which complicate 5 to 7% of hospitalized SARS-CoV-2 pa-
tients [92–94] and are present in a very high percentage of hepatitis A-infected patients [95].
These adenovirus co-infections may activate PF4 autoantibodies by means of the observed
cross-reactivity between viral antibodies and PF4 reported here. Notably, SARS-CoV-2
complicated with adenovirus co-infection has a significantly increased probability of hos-
pitalization and death compared to an uncomplicated SARS-CoV-2 infection but not as a
result of increased need for ventilation, indicating that cardiovascular complications are a
more likely cause of enhance morbidity and mortality [93]. Influenza A, herpes simplex
type 1 and coxsackievirus antibodies had no cross-reactivities with human blood proteins,
highlighting the unusual risks of autoimmune coagulopathies posed by SARS-CoV-2 and
adenoviruses both individually and in combination.

Another notable result reported here is that none of the antibodies against any SARS-
CoV-2 protein cross-reacted with CL which, like PF4, is a target of autoantibodies in
most COVID-19 coagulopathies. Anti-CL IgG and IgM are rarely (4.5–5.7 and 6.4–6.6%.,
respectively) observed in COVID-19 hospitalized patients who are not diagnosed with
thrombosis [26,34] but anti-CL IgG and IgM antibodies are present in 52% and 40%, re-
spectively, of COVID-19 patients admitted to intensive care and are highly associated with
thrombotic events [96]. CL (3-bis(sn-3’-phosphatidyl)-sn-glycerol) is a phospholipid that is
found as a normal component of blood plasma as well as the mitochondrial membrane. It
is not found in any known virus but is common to the cell membranes of all the bacterial
species studied here [40]. Thus, a number of studies have recently reported that vaccination
with the SARS-CoV-2 vaccines (adjuvanted and adenovirus vectored) fails to induce anti-CL
antibodies [96–99]. These studies using human sera and polyclonal antibody preparations
are consistent with our observation of the lack of cross-reactivity between SARS-CoV-2
or adenovirus rodent antibodies and CL. This raises the important question of what does
induce anti-CL antibodies in COVID-19-associated coagulopathies and the answer, as was
also the case with anti-PF4 antibodies, is most likely bacteria. As noted above, all bacteria
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that occur as co-infections with SARS-CoV-2 express CL in their membranes and most of
the anti-bacterial antibodies tested in this study cross-reacted with CL (Figure 14).

Notably, COVID-19 patients characterized by anti-CL antibodies are also character-
ized by having anti-β2-glycoprotein I (aβ2-GPI) IgG and IgM (39% and up to 34% of
patients, respectively) and up to 12% are also positive for lupus anticoagulant (LA) anti-
bodies [96], another recognized risk factor for coagulopathies. The confluence of these sets
of antibodies strongly argues for co-infections of SARS-CoV-2 with bacteria. Even more
importantly, some clinical evidence suggests that such co-infections may be necessary to
induce autoimmune coagulopathies since even in ICU COVID-19 cases, the presence of
only a single anti-phospholipid (aPL) antibody was not correlated with development of co-
agulopathies [26,34,100,101] Patients at risk for coagulopathies almost invariably displayed
the presence of two or more of the autoantibodies already mentioned: PF4, CL, aβ2-GPI
and/or LA.

The correlation between coagulopathies and the presence of multiple anti-phospholipid
antibodies in a single patient, but lack of correlation to individual autoantibodies, suggests
that coagulopathies result from the complementary interaction of several autoantibodies
rather than from the presence of a single autoantibody type. This conjecture is given
further credence by the fact that CL or oxidized CL in lipoproteins complexes with plasma
proteins such as β2-GPI I, prothrombin, protein C, or protein S and with platelet or en-
dothelial surface proteins such as PF4, PDE and collagens [102]. Once again, it is notable
that the presence of both anti-CL and anti-β2-glycoprotein I together correlated with risk
of thrombosis [103]. Thus, a pre-COVID-19 study of heparin-induced thrombocytopenia
(HIT) found that among 30 patients with lupus anticoagulant, 25 also displayed anti-CL
antibodies, 21 anti- aβ2-GPI, and 18 anti-prothrombin (F2) antibodies [104]. Indeed, the
epitopes for some antiphospholipid antibodies are adducts of oxidized phospholipid and
β2-glycoprotein I and these other proteins [105], an observation that formally demonstrates
the antigenic complementarity of CL for these proteins.

In light of the results reported here, the evidence that people who develop COVID-19
related coagulopathies are at highest risk for bacterial and viral co-infections, and that such
people are characterized by developing multiple autoantibodies against complementary blood
proteins, the following model is proposed for the pathogenesis of these coagulopathies.

To begin with, we have demonstrated here that some bacterial and viral epitopes
mimic human blood protein epitopes so that antibodies against the microbes cross-react
with these blood proteins. Because many of the blood proteins are molecularly (and
therefore antigenically) complementary to each other (Figure 15), some of the antibodies
that cross-react with these blood proteins will form circulating immune complexes (CIC)
comprised of antibodies complementary to each other, and probably incorporating the
microbial and blood proteins as well (Figure 16). Some of these CIC will be composed of
antibodies against SARS-CoV-2 and/or adenovirus in combination with antibodies against
bacteria that may be present in the same patient. We have demonstrated experimentally
(Figures 11–13) that such complexes do form between SARS-CoV-2 or adenovirus antibodies
and antibodies against Streptococci, Staphylococci and Klebsiella pneumoniae and we interpret
these complexes as experimental equivalents of the circulating immune complexes (CIC)
that occur in moderate-to-severe cases of COVID-19. Circulating immune complexes can
directly activate platelets (Figure 17) by initiating complement binding [106–108], have been
observed as a cause of platelet activation in COVID-19-related contexts [109–111], often
contain PF4-reactive IgG [112–114] (and thus bacteria-induced antibodies), and participate
in the formation of NETosis [115,116]. CIC formation therefore provides one mechanism by
which combined SARS-CoV-2-bacterial co-infections can induce coagulopathies.
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Figure 15. Antibodies against bacterial epitopes (BACT αE1, αE2, αE3)—in blues and greens- and
antibodies against viral epitopes (SARS αE1, SARS αE2, SARS αE3)—in oranges and reds—cross-
react with human blood proteins due to mimicry between their proteins: β2GPI = β2glycoprotein1;
PF4 = platelet factor 4; CL = cardiolipin; vWF = von Willebrand Factor; PDE = phosphodiesterase.
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Figure 16. Because many of the blood proteins targeted in COVID-19 coagulopathies are molecularly
complementary to each other, they will present complementary epitopes. Microbial antibodies
against SARS-CoV-2 epitopes (SARS aE1, SARS aE2, SARS aE3) may then form circulating immune
complexes by binding to bacterial antibodies (BACT aE2, BACT aE3, etc.) that can cross-react with
the complementary epitope. GP1b = platelet glycoprotein 1b; FVIII = blood coagulation factor VIII.
See Figure 16 for other abbreviations.
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Figure 17. Circulating immune complexes formed from complementary bacterial (BACT) and SARS-
CoV-2 virus (SARS) antibody idiotypes, particularly those involving PF4-reactive antibodies, will
activate platelets leading to coagulation initiation. GP1b = platelet glycoprotein 1b; GPVI = platelet
glycoprotein VI. See Figure 16 for other abbreviations.

A concomitant or alternative set of reactions affecting coagulation may also be initiated
by combinations of SARS-CoV-2, adenovirus and bacterial antibodies. Some of the anti-
bodies elicited by the viruses and bacteria cross-react with antigens on blood system cells
such as platelets, red blood cells (RBC), the vascular system, and/or the soluble proteins in
blood serum involved in the coagulation pathway (Figure 18). The cross-reactivities of viral
and bacterial antibodies with blood coagulation proteins demonstrated in the Results here
and summarized in Figure 14 may result in some of these antibodies targeting platelets,
RBC and the vasculature causing cellular or tissue damage. When such damage reveals
collagens (a target of some of the potential autoantibodies described in our Results), this
initiates platelet activation: the collagen binds vWF in concert with GP1b and platelet
glycoprotein VI (Figure 19). Other cellular targets of cross-reacting bacterial and viral
antibodies that result in cellular or tissue damage may include CL and PDE. Activation of
platelets by binding to collage results in release of PF4, b2GPI and stimulates the common
coagulation pathway involving some of the coagulation factors (e.g., F2, FVIII, FIX and FX)
described in the Introduction and Results. Only some of these are shown in Figure 20 for
the sake of simplicity. Depending on the particular set of autoantibody reactions that are
initiated by any particular SARS-CoV-2-bacteria combination (with the possible additional
participation of adenovirus), stimulation and or interference with blood coagulation at
multiple points in the pathway is possible.
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Figure 18. Some of the key blood proteins that were the focus of the present study and their relation-
ships to platelets, red blood cells (RBC) and blood serum components. β2GPI = β2glycoprotein1;
PF4 = platelet factor 4; CL = cardiolipin; vWF = von Willebrand Factor; PDE = phosphodiesterase;
F2 = blood coagulation factor II (prothromgin); FVIII = blood coagulation factor VIII; FIX = blood
coagulation factor IX; GP1b = platelet glycopro-tein 1b; GPVI = platelet glycoprotein VI.
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Figure 19. Initiation of platelet activation involves exposure of collagen, which may be achieved by a
direct attack on collagen itself, or on other cellular proteins such as phosphodiesterases (PDE), cardi-
olipin (CL), or a CL-PDE complex (not shown). Collagen exposure results in von Willebrand Factor
(vWF) binding to platelet glycoprotein 1b in concert wit platelet glycoprotein VI, which activates
platelets to begin the blood coagulation process. See Figure 16 for the rest of the abbreviations.
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Figure 20. Simplified illustration of the many possible cross-reactive antibody targets that may result
from epitope similarities shared by bacterial, viral and blood proteins. See Figure 20 for further
information about the initiation of some of these reactions and Figure 16 for abbreviations.

A concomitant or alternative set or reactions affecting coagulation may also be initi-
ated by combinations of SARS-CoV-2, adenovirus and bacterial antibodies. Some of the
antibodies elicited by the viruses and bacteria cross-react with antigens on blood system
cells such as platelets, red blood cells (RBC), the vascular system, and/or the soluble
pro-teins in blood serum involved in the coagulation pathway (Figures 18–20).

A key point to be drawn from the model just presented is that because different co-
infections exhibit different sets of blood protein cross-reactivities, different co-infections are
likely to trigger different types of coagulopathies, therefore explaining the range of different
coagulation complications that can beset COVID-19 patients. The high rate of bacterial and
viral co-infections among severe COVID-19 patients explains their concomitantly high rate
of coagulopathies, while the very low rate of such co-infections among mild COVID-19
patients and among SARS-CoV-2 vaccinees explains their correspondingly very low rates
of coagulopathies.

Various implications follow from the model just proposed. One is that vaccination
against pneumococci such as GAS should lower the risk of severe COVID-19. Evidence from
several studies using a variety of methods suggests that this is the case [117–125]. A further
implication that has not been tested directly is that pneumococcal vaccination should
specifically lower the risk of COVID-19-associated coagulopathies. Additionally, it has
been observed that rates of pneumococcal infections have dropped significantly since the
adoption of personal protective measures such as masking and distancing [126,127]. While
the drop in rates of hospitalizations and deaths as a proportion of SARS-CoV-2 infections
is usually attributed to selection for less pathogenic SARS-CoV-2 strains and increasing
rates of SARS-CoV-2 vaccination, the model just presented suggests that lowering the risk
of bacterial co-infections by means of pneumococcal and perhaps Haemophilus influenzae
vaccination may also be protective and have the effect of significantly reducing severe
COVID-19 complications such as coagulopathies and myocardial complications as well.

One important factor that is not directly addressed by the model, but is present indi-
rectly, is that autoimmune diseases generally require support from the innate immune sys-
tem in the form of hyperinflammation mediated by increased release of cytokines [42,128].
COVID-19 patients who develop evidence of cytokine overproduction syndromes (a “cy-
tokine storm”) are among those who are most at risk for coagulopathies, and Root-Bernstein
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has demonstrated that such cytokine overproduction syndromes are usually, if not always,
associated with the presence of polymicrobial infections [42,128]. It is known, for example,
that SARS-CoV-2 antigens activate TLRs 3, 7 and 9 whereas bacterial glycoproteins acti-
vate TLRs 1 and 2 and CL (a lipopolysaccharide found only in the bacteria in this study)
activates TLR4; TLRs 2 and 4, in turn, synergize with TLRs 3 and 9 to produce a hyperin-
flammatory state (reviewed in [42,128]). Thus, a substantial body of evidence beyond the
current study also points towards COVID-19 coagulopathies being due to bacterial, and
possibly adenoviral, infections complicating SARS-CoV-2 and activating synergistic sets of
Toll-like receptors resulting in a hyperinflammation. This effect has been demonstrated for
a combination of SARS-CoV-2 with Streptococci in mouse models of coinfection [129,130].
Notably, this hyperinflammatory state could be prevented by vaccination against either
SARS-CoV-2 or pneumococci.

Further tests of the results reported here are clearly possible and may validate or
invalidate the significance of our data. In the first place, only some of the blood proteins
that may be involved in coagulopathies have been explored here so that a number of
other blood proteins targets such as complement proteins, platelet glycoprotein 1b, Rhesus
blood factors, etc., need to be tested for cross-reactivity with SARS-CoV-2, adenovirus and
bacterial antibodies. Additionally, antibodies against a number of bacterial coinfections that
are often found in severe cases of COVID-19, such as Acinetobacter baumannii, Haemophilus
influenzae, Pseudomonas aeruginosa, Mycoplasma pneumoniae, etc. [131–134] remain to be
explored for cross-reactivities with blood proteins implicated as autoimmune targets in
COVID-19 coagulopathies.

CIC produced artificially, in vitro, by combining SARS-CoV-2 antibodies with comple-
mentary bacterial antibodies could be tested to determine whether they activated platelets.
More importantly, the CIC naturally occurring during COVID-19-associated coagulopathies
be investigated to determine whether they contain both SARS-CoV-2-induced antibodies
as well as bacterial- or adenovirus-induced antibodies, as predicted here.

Other implications of our data can be tested in animal models. For example, SARS-CoV-
2-susceptible species (such as golden hamsters or some strains of mice) might be co-infected
with the virus and with bacteria such as group A Streptococci, Staphylococci, Klebsiella, Acine-
tobacter or Haemophilus, or with viruses such as adenovirus type 5 (e.g., [129,130]). The effect
of such bacterial coinfections on vaccination with SARS-CoV-2 vaccines could be tested in a
similar manner. Our prediction is that animals infected with only SARS-CoV-2 or its vaccine
or only with the bacterium alone will not develop coagulopathies (although some are likely,
as in human patients, to develop non-pathogenic autoantibodies), while coinfected animals
will demonstrate increased rates of thrombocytopenia and/or thromboses. Alternatively,
since it is assumed here that COVID-19 coagulopathies are autoimmune diseases, it should
be possible to inoculate naïve rabbits with combinations of polyclonal (rabbit) antibodies
against the SARS-CoV-2 proteins (e.g., spike, nucleoprotein or whole virus) in combination
with (rabbit) polyclonal antibodies against group A Streptococci, Staphylococci, etc. Such
combinations are predicted to produce clinically evident coagulopathies. Correspondingly,
we predict that rabbits inoculated with only the SARS-CoV-2 antibodies or only with the
bacterial antibodies will not develop coagulopathies.

4. Materials and Methods
4.1. Enzyme-Linked Immunosorbent Assay

(ELISA) was used to investigate cross-reactivities between microbial antibodies and
blood coagulation-related proteins. The tissue protein was diluted in pH 7.0 phosphate
buffer to a concentration of 1 µM. This standard solution was then diluted by three-fold
steps with the buffer to about 10–11 M. Two wells received only phosphate buffer as con-
trols. All samples were run in duplicate. A total of 100 µL of each protein dilution was
added to wells of a Costar round-bottomed 96-well ELISA plate and incubated for one hour.
The excess protein was triply washed out using a 1% Tween 20 solution in phosphate buffer
and a plate washer. Next, 200 µL of blocking agent (2% polyvinylalcohol in phosphate
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buffer) was added to every well, incubated for an hour, and then triply washed. (Bovine
serum albumin, which is more commonly used as a blocking agent, was not used in this
study because of the possibility that SARS-CoV-2 antibodies might cross-react with serum
albumin—see Figure 1). An antibody against a microbe (at 1 mg/mL concentration) was
then diluted to 1/500 in phosphate buffer and 100 µL added to every well. The antibody
was incubated for an hour and then triply washed. A species-appropriate horse-radish
peroxidase-linked secondary antibody was then at a dilution of 1/1000, incubated for
an hour, and triply washed. Finally, 100 µL of ABTS reagent (Chemicon, Temecula, CA,
USA) was added, incubated for 15 min, and the plate read at 405 nm in a Spectramax
UV-VIS scanning spectrophotometer (Molecular Devices, LLC., Palo Alto, CA, USA). Data
were gathered using Spectramax software and then analyzed using Excel. Analysis es-
sentially consisted of subtracting non-specific binding to the buffer-only wells from the
protein-containing wells and plotting the amount of antibody binding (as measured by
absorbance at 405 nm) as a function of protein concentration. Binding constants (Kd)
were calculated by finding the inflection point of the resulting curve using a curve-fitting
program (https://mycurvefit.com/ (accessed on 7 July 2022)) that also provided R2 and SE
values. All experiments were run in duplicate and some were replicated more than once
either to confirm results that are crucial to the interpretation of the results or in the case of
ambiguous data.

4.2. Double Antibody ELISA

(DA-ELISA) was used to investigate possible antigenic complementarity between the
antibodies used in the study. DA-ELISA differs from ELISA in that the protein laid down in
n the 96-well plate in the initial step of an ELISA is substituted with an antibody. A second
antibody (from a different species) is tested for its ability to bind to the first. The ability of
the second antibody to bind to the first is then monitored using peroxidase-linked antibody
against the species from which the second antibody is derived [135–138]. As in the ELISA
protocol, the first antibody is made up at a concentration of about 12 µM (assuming IgG
antibodies have a molecular weight of 150,000 daltons) and then serially diluted by factors
of three. The rest of the protocol is the same as for the ELISA.

In general, it is only possible to run DA-ELISA with antibodies from species sufficiently
genetically different that the peroxidase-linked antibody against the second species does not
recognize the antibodies from the first species. One exception is when one of the antibodies
is already conjugated to an enzyme such as horse radish peroxidase (HRP). In the latter case,
it is possible to test for HRP-conjugated antibody binding to another antibody (without
HRP) of the same species that has previously been adsorbed to the ELISA plate. Sometimes,
there is, however, cross-reactivity between supposedly species specific HRP-conjugated
antibodies. We found that in this study that anti-rabbit-horse-radish-peroxidase (HRP)
antibodies recognized antibodies raised in guinea pigs and vice versa so that combinations
of rabbit versus guinea pig DA-ELISA was not possible.

4.3. Antibodies

Six rabbit anti-SARS-CoV-2 antibodies from two suppliers were employed, with
reactivities against the Spike 1, Spike 2, RBD, Matrix (or membrane), Nucleocapsid and
Envelope proteins. Polyclonal antibodies (derived either from goat or rabbit, with two
exceptions when antibodies from these species were not available) against adenoviruses,
influenza A, human herpes simplex type 1, Clostridia, Escherichia coli, Klebsiella pneumoniae,
Staphylococcus aureus, and group A streptococci were also employed, as well as a blend of
monoclonal antibodies against coxsackievirus B types 1–6. These antibodies are listed
in Table 3. The Invitrogen and Millipore antibodies against SARS-CoV-2 Spike protein 1
yielded identical results and were used interchangeably in the reported experiments.

https://mycurvefit.com/
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Table 3. Antibodies utilized in this study.

Antibody Target Species Supplier Product #

Adenovirus Goat Millipore (Burlington, MA, USA) AB1056

Clostridia Rabbit Invitrogen (Waltham, MA, USA) PA1-7210

Clostridia Rabbit Invitrogen PA1-7210

Clostridium sp. HRP Rabbit US Biological (Swampscott, MA, USA) C5853-25C

Coxsackie Virus B-Blend Mouse Millipore MAB9410

Escherichia coli Goat Abcam (Cambridge, England) AB13627

Goat Anti-Mouse IgG HRP Goat Sigma-Aldrich (Burlington, MA, USA) A9917

Goat Anti-Rabbit IgG HRP Goat Invitrogen 65-6120

Herpes Simplex Virus Type 1 Goat Invitrogen PA1-7493

Influenza A HRP Goat Biodesign International (Palo Alto, CA, USA) B65243G

Klebsiella pneumoniae HRP Rabbit Invitrogen PA1-73176

Mycobacterium tuberculosis Rabbit ABD Serotec (Kidlington, UK) OBT0947

Mycobacterium tuberculosis Guinea Pig MyBioSource (San Diego, CA, USA) MBS315001

Rabbit Anti-Goat IgG HRP Rabbit Millipore AP106P

Rabbit Anti-Guinea Pig HRP Rabbit abcam AB6771

SARS-CoV-2 Envelope protein Rabbit Invitrogen PA1-41158

SARS-CoV-2 Matrix protein Rabbit Invitrogen PA1-41160

SARS-CoV-2 Nucleocapsid Rabbit Invitrogen PA5-116894

SARS-CoV-2 Spike Protein RBD Rabbit Millipore ABF1064

SARS-CoV-2 Spike Protein S1 Rabbit Millipore ABF1065

SARS-CoV-2 Spike Protein S1 Rabbit Invitrogen PA5-116916

SARS-CoV-2 Spike Protein S2 Rabbit Millipore ABF1063

Staphylococcus aureus Rabbit Invitrogen PA1-7246

Staphylococcus aureus HRP Rabbit Invitrogen PA1-73173

Streptococcus Group A Goat Invitrogen PA1-7249

Streptococcus Group A HRP Rabbit Acris Antibodies (Herford, Germany) BP2026HRP

Streptococcus pneumoniae Rabbit Biodesign International B65831R

Streptococcus pneumoniae Rabbit Invitrogen PA1-7259

4.4. Proteins

Table 4 shows the proteins utilized in the experiments, as well as their suppliers.
While we attempted to source human proteins, considerations of cost sometimes made
this impossible so that either murine or bovine proteins were substituted. In these cases, a
homology search was performed using BLAST 2.0 on the Expasy website (https://www.
expasy.org (accessed on 3 May 2021)) to ensure that the human protein did not differ by
more than one percent (and usually only a couple of amino acids) from its non-human
source. A direct test of group A streptococcus antibody binding to both murine and human
coagulation factor IX found no significant differences in the binding curves and the curves
yielded the same binding constant.

https://www.expasy.org
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Table 4. Proteins used in this study.

Protein Species Supplier Product # Purity

Beta 2 glycoprotein I Human Prolytix B2G1-0001 >95% by SDS-PAGE
Cardiolipin sodium salt Bovine Sigma-Aldrich C0563 ≥97% (TLC)

Coagulation Factor VIII (rDNA) Human Sigma-Aldrich H0920000 >99%, European Pharmacopoeia
Reference Standard

Coagulation Factor IX (rDNA) Human Sigma-Aldrich Y0001659 >99%, European Pharmacopoeia
Reference Standard

Collagen 1 Human Sigma-Aldrich C7774 >95% SDS Electrophoresis
Platelet Factor 4 Murine Sigma-Aldrich SRP3231 ≥98% (SDS-PAGE), ≥98% (HPLC)
Prothrombin Human Sigma-Aldrich 539515 >95% (SDS-PAGE)
Phosphodiesterase II Bovine Sigma-Aldrich P9041 ≥5.0 units/mg protein
Serum Albumin Human Sigma-Aldrich A1653 ≥96% (agarose gel electrophoresis)
von Willebrand Factor Human Sigma-Aldrich 681300 ≥95% (SDS-PAGE)

4.5. Statistics

Since binding constants were determined by identifying the inflection point of the
binding curves, the data used to generate the curves was subjected to two statistical tests,
standard error (SE) and the coefficient of determination (R2) in order to assess the degree of
confidence that can be assigned to the binding constants. SE and R2 were calculated, and
the inflection point determined, using a basic nonlinear exponential curve fitting equation
at MyCurveFit (https://mycurvefit.com/ (accessed on 7 July 2022)).

4.6. Methodological Limitations

The main methodological limitation of this study is that the antibodies used are
mostly rabbit or goat, since human polyclonal antibodies or sera against the range of
viruses and bacteria tested do not appear to be available and using the human monoclonal
antibodies against SARS-CoV-2 that are available would not address the possibility of
cross-reactivity arising from human polyclonal responses. Furthermore, use of human sera
was discouraged by the inability to determine whether the patients donating the sera had
previously been vaccinated against or infected with any of the viruses or bacteria other than
SARS-CoV-2 that were investigated in this study. We were also unable to identify sources
of human polyclonal antibodies against SARS-CoV-2 specifically from patients suffering
from coagulopathies. Thus, simplicity and clarity of results mandated use of non-human
antibodies; however, extrapolation to human immune responses cannot be assured. An
additional limitation of the study was that it does not address possible cross-reactivity of
SARS-CoV-2 antibodies with any of the Rhesus factor, ADAMTS, CD55, or Complement,
or other blood protein antigens that have been found to display significant similarities
to SARS-CoV-2 antigens (Figure 1 and [39,40]); sources for adequate quantities of these
proteins were not found at affordable prices. Thus, some key potential autoimmune targets
on vascular cells, red blood cells and platelets remain to be explored for SARS-CoV-2 cross
reactivity. Furthermore, no attempt to extend the antibody binding studies performed here
to cellular or organismal models was attempted.
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