Received 09/23/2020 Review began 02/21/2022 Review ended 03/14/2022 Published 03/23/2022

© Copyright 2022

Elshohna et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top 50 Cited Bone Graft Orthopedic Papers

Mohamed Elshohna¹, Nicholas Tsouklidis^{2, 3, 4}

1. Orthopaedics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA 2. Health Care Administration, University of Cincinnati Health, Cincinnati, USA 3. Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA 4. Medicine, Atlantic University School of Medicine, Gros Islet, LCA

Corresponding author: Mohamed Elshohna, mohamed18584@hotmail.com

Abstract

The purpose of this research is to recognize the highest 50 most-mentioned articles in the literature concentrating on bone grafts. That has been accomplished with the use of the Scopus database and the search slogan "bone grafts," and we inquired for the 50 most-cited articles on bone grafting. The study was completed in September 2020. We investigated the articles issued between 1970 and 2020. The articles were organized and classified based on the total number of citations. We appraised the following information relating to each article: first author, year of publication, journal, and title.

A total of 1,580 studies matched our search standards, of which the 50 most-cited extended between 1,862 and 403 citations. Seven articles were cited more than 1,000 times. The article by Marx et al. was the maximum-cited article, with 1,862 citations, followed by Younger et al.'s with 1,461 and Giannoudis et al.'s with 1,245. The majority of the studies originated from the United States (n = 30) and were published in the 2000s. Biomaterials was the most regular destination journal (n = 8), followed by the Journal of Bone and Joint Surgery American series (n = 7). A maximum of the articles focused on the different types of bone grafts and their alternatives including bone tissue engineering (n=29). Our investigation of the highest 50 articles linking to bone grafting has emphasized the most significant papers in the field. These cover a wide-ranging variety of topics including types, management, and mechanism of action of bone grafts. To recognize the present treatment guidelines and how the use of bone grafting has grown, it is vital to know the most-cited articles relating to this grafting.

Categories: Plastic Surgery, Orthopedics, Trauma

Keywords: impactful articles, bone grafts, bone tissue engineering, bone graft substitutes, top cited, bibliometric analysis

Introduction And Background

The natural science of fracture healing is better recognized than ever before, with developments in orthopedic implants such as locked plates and bioabsorbable screws, and the osseous healing has become more expectable and less eventful. Nevertheless, occasionally one's intrinsic biological response, or simultaneous surgical stabilization, is insufficient. With the hope of facilitating bone union, bone grafts, bone substitutes, and orthobiologics are being depended on more than ever before. The osteogenic, osteoconductive, and osteoinductive properties of these substrates have been illuminated in the basic science literature and authorized in the clinical orthopedic practice. Furthermore, business constructed around these substances is more fruitful and desirable than ever before. This analysis provides a wide-ranging overview of the basic science, clinical value, and economics of bone grafts, orthobiologics, and bone substitutes [1].

Within the academic medical field, the number of times an article is quoted by other writers has been commonly considered to be a dependable pointer of its academic influence and effect within this field [2]. Since Lefaivre et al. determined the 100 utmost-cited articles in the orthopedic field [3], there have been abundant reports categorizing the most-referenced articles across a wide range of orthopedic surgery subspecialties and subject ranges, including shoulder, hand, foot and ankle, arthroscopic surgery, hip arthroplasty, and trauma surgery [4–9].

The design of this research was to scrutinize the 50 most-cited articles in bone grafting in orthopedics and the features that make them significant to physicians and researchers within the orthopedic field. To achieve this goal, data from the Scopus citation indexing service were used to achieve an inclusive, organized citation search of all orthopedic-specific publications journal by journal. Given the nature of the field, we theorized that a noteworthy share of the detected citations would be basic science studies.

Review

Method

The 50 most-cited articles linked to bone grafting were examined in the Scopus engine by using defined search terms. All forms of scientific papers, reviews, and conference papers with reference to our subject

were graded along with the absolute number of citations and scrutinized for the following features: journal title, year of publication, number of citations, citation density, geographic origin, and article type. Mean citation number was considered as the total number of citations the article has established divided by the number of years since publication (total citations/years since publication) [10].

Results

The highest 50 articles concerning bone grafting have been cited a total of 33,895 times. The average number of citations per year is 753.22. The maximum 50 articles, numbers of citations, and mean citation number are listed in Table *1*.

	First author	Title	Citations	Citations /year
1	R.E. Marx [11]	Platelet-rich plasma: growth factor enhancement for bone grafts	1862	83
2	E.M. Younger [12]	Morbidity at bone graft donor sites	1461	47.13
3	P.V. Giannoudis [13]	Bone substitutes: an update	1245	83
4	A.J. Salgado [14]	Bone tissue engineering: state of the art and future trends	1120	70
5	S. Bose [15]	Recent advances in bone tissue engineering scaffolds	1115	139.38
6	E. Arrington [16]	Complications of iliac crest bone graft harvesting	1096	45.67
7	G. lan Taylor [17]	The free vascularized bone graft: a clinical extension of microvascular techniques	1045	23.22
8	A.R. Amini [18]	Bone tissue engineering: recent advances and challenges	995	124.38
9	J.C. Banwart [19]	lliac crest bone graft harvest donor site morbidity: a statistical evaluation	992	39.68
10	E. Carragee [20]	A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned	906	100.67
11	T.W. Bauer [21]	Bone graft materials: an overview of the basic science	833	41.65
12	C. Damien [22]	Bone graft and bone graft substitutes: a review of current technology and applications	812	28
13	H. Burchardt [23]	The biology of bone graft repair	755	20.41
14	M. Kikuchi [24]	Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo	736	38.74
15	G.E. Friedlaender [25]	Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions	733	38.58
16	R. Dimitriou [26]	Bone regeneration: current concepts and future directions	689	76.56
17	J.M. Kanczler [27]	Osteogenesis and angiogenesis: the potential for engineering bone	671	55.92
18	J. Goulet [28]	Autogenous iliac crest bone graft: complications and functional assessment	666	28.96
	C.G.			

9 Reference Bone-grafting and bone-graft substitutes 654 20 SW (resp. The healing of segmental bone defects, induced by recombinant human bone morphogenetics 641 21 J. Silber (31) Dono-site morbidity after anterior liac crest bone harvest for single-level anterior cervical galacic corry and fusion 639 22 M. Second Evolution of bone transplantation: molecular, cellular, and tissue strategies to engineer human bone screw 630 23 H. Wang Evolution of progenitor cells 630 24 P. Henging Percutaneous autogroups to bone marrow grafting for nonunions: influence of the number and grad cells operation of progenitor cells 637 25 I.J. Herbert Management of the fractured scaphold using a new bone sorew 637 26 I.S. Minitation Nonception cells 637 27 R. Dimitrioi Current concepts of molecular aspects of bone healing 632 28 S. Budits Intermeting and secondonduity of phytoxyapatite bone scredit lumbar 632 28 S. Budits Intermeting and secondonduity of phytoxyapatite phyto					
20 [30] protein (nBAMP-2). A radiographic, histological, and biomechanical study in rats e41 21 J. Silber [31] Dono-sile morbidity after nativor liac crest bone harvest for single-level anterior cervical 638 22 M. Sessemsha Evolution of bone transplantation: molecular, cellular, and tissue strategies to engineer human bone bone 600 23 H. Wang Biocompatbility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite 600 24 P. Hernigou Perclutaneous autologous bone-marrow grafting for nonunions: influence of the number and concentration of progenitor cells 589 25 T.J. Flark Management of the fractured scaphold using a new bone screw 589 26 T.J. Flark Harvesting autogenous liac bone grafts: a review of complications and techniques 587 27 R. Dimitriou Current concepts of molecular aspects of bone healing 582 28 S. Boden Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spipe fusion humans: a prospective, randomized clinical plot trial 2002 Volvo award in clinical studies 582 29 R. Murugan Biomimetic nanocomposites for bone graft applications 582 20 M. Geiger Calagon sponges for bone regeneration with riBMP-2 582 21 M. Geiger Collagon sponges for bone regeneration with riBMP-2 583 <	19		Bone-grafting and bone-graft substitutes	654	36.33
1 3.81ber [31] discactomy and fusion 6-38 22 Maxamaka Evolution of bone transplantation: molecular, cellular, and tissue strategies to engineer human bone 6-08 23 H. Wang Biocompatibility and osteogenesis of bioinmetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering 6-00 24 P. Hendigu Percutaneous autologus bone marrow grafting for nonunions: influence of the number and concentration of progenitor cells 587 25 T.J. Herbert Management of the fractured scaphoid using a new bone screw 589 26 R. Dimitriou Current concepts of molecular aspects of bone healing 578 27 R. Dimitriou Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral humber spine fusion in humans: a prospective, randomized dinical plot triat 2002 Voivo award in clinical studies 542 28 B. Boden Biomimetic nanocomposites for bone graft applications 542 29 J. Woodard The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with mutitizer also porters brows by recombinant human bone morphogenetic protein-2 542 20 J. Woodard The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with mutitizer also porters brows by recombinant human bone morphogenetic protein-2 542	20			641	22.89
22 Name Evolution of bone transplantation: molecular, cellular, and tissue strategies to engineer human bone 606 23 H. Wang Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatile/polyamide composite scaffolds for bone tissue engineering 600 24 P. Hernigou Percutaneous autologous bone-marrow grafting for nonunions: influence of the number and concentration of progenitor cells 549 25 T.J. Ishrbart Management of the fractured scaphold using a new bone screw 589 26 L.T. Kurz Current concepts of molecular aspects of bone healing 578 27 R. Denitriou Current concepts of molecular aspects of bone graft applications 552 28 S. Boden Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar sinicin anocomposites for bone graft applications 552 29 R. Murugan Biomimetic nanocomposites for bone graft applications 552 20 J. Woodad Trenchanical properties and osteoconductivity of hydroxyapatite bone scaffolds with muti- scale porosity recombinant human bone morphogenetic protein-2 52 20 M. Geiger Collagen sponges for bone regeneration with rhBMP-2 522 21 M. Geiger Colagen spon	21	J. Silber [31]		638	37.53
33 33 scaffolds for bone tissue angineering 600 42 P. Herringou Proclaneous autologous bone-marrow grafting for nonunions: influence of the number and concentration of progenitor cells 589 53 T.J. Herbert Management of the fractured scaphold using a new bone screw 589 54 L.T. Kurz Harvesting autogenous illac bone grafts: a review of complications and techniques 587 57 R.Murgan Current concepts of molecular aspects of bone healing 578 58 Boler Seloren Signed tusion in humans: a prospective, randomized clinical pilot trial 2002 Volvo award in clinical studies 552 58 R.Murgan Bomimetic nanocomposites for bone graft applications 542 58 J. Woodard The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity recombinant human bone morphogenetic protein-2 542 58 Golgen sponges for bone regeneration with mBMP-2 552 552 58 S.Laurie Donor-site morbidity after harvesting rib and illac bone 515 58 J. Zins [46] Membranous versus endochordral bone: implications for caniofacial reconstruction 489 58 J. Zins [45] Suthetic bone graft substitutes	22	Yaszemski		606	25.25
24 [34] concentration of progenitor cells 597 25 [1,4] Herbert Management of the fractured scaphold using a new bone screw 589 26 [1,5] Harvesting autogenous illac bone grafts: a review of complications and techniques 587 27 [8, Dumitriou Current concepts of molecular aspects of bone healing 578 28 [8, Boden 15] Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion humans: a prospective, randomized clinical pilot trial 2002 Volvo award in clinical studies 552 20 [8, Murugan 19] Biomimetic nanocomposites for bone graft applications 552 21 [9, Waruke 14] Growth and transplantation of a custom vascularized bone graft in a man 522 22 [4,2] Collagen sponges for bone regeneration with rhBMP-2 522 23 [1,6] Donor-site morbidity after harvesting rib and iliac bone 515 24 [1,4] Iong-term results of allograft replacement in the management of bone tumors 562 24 [1,4] August and streaction of projecularized propertized projecularized projecularized projecularized projecularized projecu	23	-		600	46.15
Sp Management of the fractured scaphold using a new bone screw Spin 135 IAnagement of the fractured scaphold using a new bone screw Spin 136 L.T. Kurz [37] Harvesting autogenous liac bone grafts: a review of complications and techniques Spin 137 Current concepts of molecular aspects of bone healing Spin Spin 138 Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial 2002 Volvo award in clinical studies Spin 13 Biomimetic nanocomposites for bone graft applications Spin 14 The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi- scale porosity recombinant human bone morphogenetic protein-2 Spin 14 Nuodard Growth and transplantation of a custom vascularized bone graft in a man Spin 14 Nu Geiger Collagen sponges for bone regeneration with rhBMP-2 Spin 14 Long-term results of allograft replacement in the management of bone tumors Spin 14 Long-term results of allograft replacement in the management of bone proteincial reconstruction 489 15 Nu Reside All. Spin All Spin	24	-		597	39.8
Rarvesting autogenous liac bone grafts: a review of complications and techniquesS8727R. Dimitriou (37)Current concepts of molecular aspects of bone healing57828S. Boden (38)Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial 2002 Volvo award in clinical studies55229R. Murugan (39)Biomimetic nanocomposites for bone graft applications55230J. Woodard (40)The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi- scale porosity recombinant human bone morphogenetic protein-252231P. Warnke (41)Growth and transplantation of a custom vascularized bone graft in a man52532S. Laurie (42)Donor-site morbidity after harvesting rib and iliac bone51533M. Mankin (44)Long-term results of allograft replacement in the management of bone tumors50634H. Mankin (44)A 2003 update of bone physiology and Wolff s law for clinicians45335W. Bonfield (48)Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone 	25		Management of the fractured scaphoid using a new bone screw	589	16.36
27 [37] Current concepts of molecular aspects of bone healing 578 28 S. Boden [38] Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial 2002 Volvo award in [39] 554 29 R. Murugan [30] Biomimetic nanocomposites for bone graft applications 552 30 J. Woodard [40] The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi- scale porosity recombinant human bone morphogenetic protein-2 542 31 P. Wamke [41] Growth and transplantation of a custom vascularized bone graft in a man 525 32 M. Geiger [42] Collagen sponges for bone regeneration with rhBMP-2 522 33 S. Laurie [43] Donor-site morbidity after harvesting rib and iliac bone 506 34 H. Mankin [44] Long-term results of allograft replacement in the management of bone tumors 506 35 W.R. Moore [45] Synthetic bone graft substitutes 492 35 J. Zins [46] Membranous versus endochondral bone: implications for craniofacial reconstruction 489 36 J. Zins [46] Membranous versus an synthetic alternative to autologous bone grafting 443 37 H. Frost [26		Harvesting autogenous iliac bone grafts: a review of complications and techniques	587	18.94
28 S. Boden (38) spine fusion in humans: a prospective, randomized clinical pilot trial 2002 Volvo award in clinical studies 554 29 R. Murugan (39) Biomimetic nanocomposites for bone graft applications 542 30 J. Woodard (40) The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi- scale porosity recombinant human bone morphogenetic protein-2 542 31 P. Warnke (41) Growth and transplantation of a custom vascularized bone graft in a man 525 32 S. Laurie (42) Donor-site morbidity after harvesting rib and illac bone (44) 506 33 F. Mankin (44) Long-term results of allograft replacement in the management of bone tumors 506 34 H. Mankin (44) Suptect bone graft substitutes 492 35 J. Zins [46] Membranous versus endochondral bone: implications for craniofacial reconstruction 483 35 H. Frost [47] A2003 update of bone physiology and Wolff s law for clinicians 443 36 H. Yuan [49] Osteoinductive ceramics as a synthetic alternative to autologous bone grafting 443 37 H. Yuan [49] Osteoinductive ceramics as a synthetic alternative to autologous bone grafting 438 38 P. Francis Bone	27		Current concepts of molecular aspects of bone healing	578	38.53
29[39]Biomimetic hanocomposities for bone grant applications55230J. Woodard [40]The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi- scale porosity recombinant human bone morphogenetic protein-254231P. Warnke [41]Growth and transplantation of a custom vascularized bone graft in a man52532M. Geiger [42]Collagen sponges for bone regeneration with rhBMP-252233S. Laurie [43]Donor-site morbidity after harvesting rib and iliac bone51534H. Mankin [44]Long-term results of allograft replacement in the management of bone tumors50635J. Zins [46]Membranous versus endochondral bone: implications for craniofacial reconstruction48936J. Zins [46]Hembranous versus endochondral bone: implications for craniofacial reconstruction44337H. Fract [47]A 2003 update of bone physiology and Wolff s law for clinicians44338W. Bonfield [46]Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone replacement44339H. Yuan [49]Osteoinductive ceramics as a synthetic alternative to autologous bone grafting44340P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43541S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution [52]435 <td>28</td> <td></td> <td>spine fusion in humans: a prospective, randomized clinical pilot trial 2002 Volvo award in</td> <td>554</td> <td>30.78</td>	28		spine fusion in humans: a prospective, randomized clinical pilot trial 2002 Volvo award in	554	30.78
30[40]scale porosity recombinant human bone morphogenetic protein-294231P. Warnke [41]Growth and transplantation of a custom vascularized bone graft in a man52532M. Geiger [42]collagen sponges for bone regeneration with rhBMP-252233S. Laurie [43]Donor-site morbidity after harvesting rib and iliac bone51534H. Mankin [44]Long-term results of allograft replacement in the management of bone tumors50635W.R. Moore [45]Synthetic bone graft substitutes49236J. Zins [46]Membranous versus endochondral bone: implications for craniofacial reconstruction48937H. Frost [47]A 2003 update of bone physiology and Wolff s law for clinicians44338W.Bonfied [48]Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone developing chick limb43840P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43841S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone435	29		Biomimetic nanocomposites for bone graft applications	552	36.8
1[41]Growth and transplantation of a custom vascularized bone graft in a man5252M. Geiger [42]Collagen sponges for bone regeneration with rhBMP-252233S. Laurie [43]Donor-site morbidity after harvesting rib and iliac bone51534H. Mankin [44]Long-term results of allograft replacement in the management of bone tumors50635W.R. Moore [45]Synthetic bone graft substitutes49236J. Zins [46]Membranous versus endochondral bone: implications for craniofacial reconstruction48937H. Frost [47]A 2003 update of bone physiology and Wolff s law for clinicians45338W. Bonfield [48]Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone replacement44340P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43541S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone435	30			542	41.69
32[42]Collagen sponges for bone regeneration with rhBMP-252233[42]Collagen sponges for bone regeneration with rhBMP-252234[43]Donor-site morbidity after harvesting rib and iliac bone51534H. Mankin [44]Long-term results of allograft replacement in the management of bone tumors50635W.R. Moore [45]Synthetic bone graft substitutes49236J. Zins [46]Membranous versus endochondral bone: implications for craniofacial reconstruction48937H. Frost [47]A 2003 update of bone physiology and Wolff s law for clinicians45338W. Bonfield [48]Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone replacement44339H. Yuan [49]Osteoinductive ceramics as a synthetic alternative to autologous bone grafting44340P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43541S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone43543E. AhlmannComparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity	31		Growth and transplantation of a custom vascularized bone graft in a man	525	32.81
33[43]Donor-site morbidity after harvesting rib and iliac bone51534H. Mankin [44]Long-term results of allograft replacement in the management of bone tumors50635W.R. Moore [45]Synthetic bone graft substitutes49236J. Zins [46]Membranous versus endochondral bone: implications for craniofacial reconstruction48937H. Frost [47]A 2003 update of bone physiology and Wolff s law for clinicians45338W.Bonfield [48]Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone replacement44339H. Yuan [49]Osteoinductive ceramics as a synthetic alternative to autologous bone grafting44340P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43541S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone43544E. AhlmannComparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity435	32	-	Collagen sponges for bone regeneration with rhBMP-2	522	30.71
34[44]Long-term results of allograft replacement in the management of bone tumors50635[44]Synthetic bone graft substitutes49236J. Zins [46]Membranous versus endochondral bone: implications for craniofacial reconstruction48937H. Frost [47]A 2003 update of bone physiology and Wolff s law for clinicians45338W. Bonfield [48]Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone replacement44339H. Yuan [49]Osteoinductive ceramics as a synthetic alternative to autologous bone grafting44340P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43541S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone435	33		Donor-site morbidity after harvesting rib and iliac bone	515	14.31
35[45]Synthetic bone graft substitutes49236J. Zins [46]Membranous versus endochondral bone: implications for craniofacial reconstruction48937H. Frost [47]A 2003 update of bone physiology and Wolff s law for clinicians45338W. Bonfield [48]Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone replacement44839H. Yuan [49]Osteoinductive ceramics as a synthetic alternative to autologous bone grafting44340P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43541S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone435	34		Long-term results of allograft replacement in the management of bone tumors	506	21.08
37H. Frost [47]A 2003 update of bone physiology and Wolff s law for clinicians45338W. Bonfield [48]Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone replacement44839H. Yuan [49]Osteoinductive ceramics as a synthetic alternative to autologous bone grafting44340P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43841S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone435	35		Synthetic bone graft substitutes	492	25.89
38W. Bonfield [48]Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone replacement44839H. Yuan [49]Osteoinductive ceramics as a synthetic alternative to autologous bone grafting44340P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43841S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone43542E. AhlmannComparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity435	36	J. Zins [46]	Membranous versus endochondral bone: implications for craniofacial reconstruction	489	13.22
38[48]replacement44839H. Yuan [49]Osteoinductive ceramics as a synthetic alternative to autologous bone grafting44340P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43841S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone435E. AhlmannComparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity	37	H. Frost [47]	A 2003 update of bone physiology and Wolff s law for clinicians	453	28.31
40P. Francis [50]Bone morphogenetic proteins and a signaling pathway that controls patterning in the developing chick limb43841S. Khan [51]The biology of bone grafting43542D. Tadic [52]A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone435E. AhlmannComparison of anterior and posterior illac crest bone grafts in terms of harvest-site morbidity435	38			448	11.49
40 [50] developing chick limb 438 41 S. Khan [51] The biology of bone grafting 435 42 D. Tadic A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone 435 E. Ahlmann Comparison of anterior and posterior illac crest bone grafts in terms of harvest-site morbidity 435	39	H. Yuan [49]	Osteoinductive ceramics as a synthetic alternative to autologous bone grafting	443	44.3
42 D. Tadic [52] A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone 435 E. Ahlmann Comparison of anterior and posterior illac crest bone grafts in terms of harvest-site morbidity	40			438	16.85
 42 [52] materials in comparison to natural bone 435 E. Ahlmann Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity 	41	S. Khan [51]	The biology of bone grafting	435	29
E. Ahlmann Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity	42			435	27.19
[53] and functional outcomes	43			434	24.11

44	[54]	3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration	433	72.17
45	W. De Long [55]	Bone grafts and bone graft substitutes in orthopedic trauma surgery: a critical analysis	423	32.54
46	O. Bergland [56]	Elimination of the residual alveolar cleft by secondary bone grafting and subsequent orthodontic treatment	421	12.38
47	P. Hernigou [57]	Treatment of osteonecrosis with autologous bone marrow grafting	416	23.11
48	G. Daculsi [58]	Biphasic calcium phosphate concept applied to the artificial bone, implant coating and injectable bone substitute	413	18.77
49	A. Oryan [59]	Bone regenerative medicine: classic options, novel strategies, and future directions	412	68.67
50	A. Greenwald [60]	Bone-graft substitutes: facts, fictions, and applications	408	21.4

TABLE 1: Top 50 cited research papers relating to bone grafting.

The most commonly cited paper was by R.E. Marx et al. in 1998 representing a greater bone density in bone grafts with platelet-rich plasma with a total of 1,862 citations (mean citations 83/year) [11]. The most primitive publication was in 1975 by G. Ian Taylor et al. indicating a novel technique of free vascularized bone graft technique used and combined with a suitable soft tissue flap repairing method, where this system was established to salvage two injured legs which would otherwise have been amputated [17]. The newest publications were in 2014 by J. Inzana about a new category of bone graft technique which used low-temperature 3D printing of calcium phosphate scaffolds with greater functioning over old-style methods [54], and by A. Oryan who studied the literature of bone grafting and presented bone tissue engineering as an approach in the orthopedic surgery [59].

The maximum frequent decade in this list was the 2000s with 24 papers (Table 2).

Decade	Number	
1970s	1	
1980s	8	
1990s	10	
2000s	24	
2010s	7	

TABLE 2: Top 50 papers published by decade.

Twenty-six journals were included in publishing the maximum of 50 articles (Table 3). Impact factors of these journals fluctuated between 0.372 and 59.102. Journal of Biomaterials occupied the upper position of this list with eight publications (16%) and chased closely by the Journal of Bone and Joint Surgery - American Volume (n = 7) (14%) and Clinical Orthopaedics and Related Research (n = 6) (12%). The English language was the common language in all papers.

Medical journal	Number	Impact factor 2018
Biomaterials	8	10.273
Journal of Bone and Joint Surgery - Series A	7	4.716
Clinical Orthopaedics and Related Research	6	4.154
Spine	4	3.024
Plastic and Reconstructive Surgery	3	3.682
Injury	2	1.620
Angle Orthodontist	1	2.028
ANZ Journal of Surgery	1	1.071
Advanced Drug Delivery Reviews	1	16.663
BMC Medicine	1	8.639
Cleft Palate Journal	1	1.395
Composites Science and Technology	1	6.808
Critical Reviews in Biomedical Engineering	1	0.660
Development	1	5.763
European Cells and Materials	1	3.682
Journal of Applied Biomaterials: An Official Journal	1	0.372
Journal of Bone and Joint Surgery - Series B	1	4.301
Journal of Orthopaedic Surgery and Research	1	1.907
Journal of Orthopaedic Trauma	1	1.758
Lancet	1	59.102
Macromolecular Bioscience	1	2.895
Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics	1	1.791
Proceedings of The National Academy of Sciences of The United States of America	1	9.553
Spine Journal	1	2.903
The Journal of the American Academy of Orthopaedic	1	2.441
Trends in Biotechnology	1	12.068
Total	50	

TABLE 3: Top 50 papers published per medical journal.

The highest 50 articles were created from 12 diverse countries (Table 4), where the USA was in the topmost with 30 articles (60%), then the UK with five articles (10%). Twenty-nine research papers are available as articles, while 15 reviews are involved in the uppermost cited papers and the conference papers are demonstrated six times (Table 5).

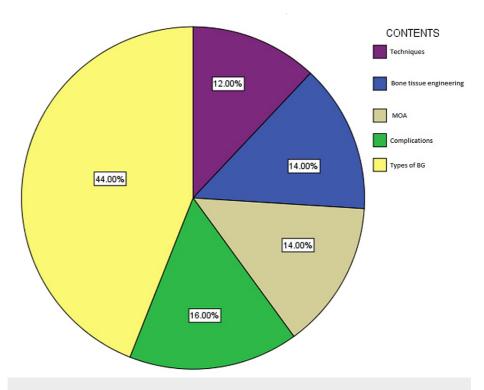

Country	Frequency	Percent
USA	30	60.0
UK	5	10.0
Australia	3	6.0
France	3	6.0
Germany	2	4.0
Iran	1	2.0
Japan	1	2.0
Netherlands	1	2.0
Norway	1	2.0
Portugal	1	2.0
Singapore	1	2.0
China	1	2.0
Total	50	100.0

TABLE 4: Countries of top 50 research papers.

Origin	Frequency
Article	29
Conference paper	6
Review	15
Total	50

TABLE 5: The origin of top 50 papers.

A number of significant subjects are demonstrated in this list of top 50 papers. Twenty-nine articles (58%) scrutinize several categories of bone grafting. Besides these, seven papers are focused on bone tissue engineering, which points to inducing a novel practical bone regeneration method through a synergetic combination of biomaterials, cells, and numerous growth factors. Eight papers (16%) observe bone grafting complications that are frequently connected to the iliac bone graft donor site. The mechanism of action of the bone graft method in the acceleration of bone healing is clearly demonstrated in seven papers (14%); additionally, the same numbers of papers (seven) are focused on proving various techniques in applying bone grafts (Figure 1).

FIGURE 1: The contents of the top 50 papers.

The contents are techniques, bone tissue engineering, mechanism of action (MOA), complications, and types of bone graft (BG).

Discussion

Our study recognizes the topmost 50 research papers published on bone graft based on the number of citations recognized in several scientific studies. This research validates a wide range of valued information regarding the authors, topics, and time periods that have had a deep impact on the orthopedic specialty. It records the changes in information over 45 years. In this paper, the citation number was nominated as the marker of effect. This has been carried out for several further surgical specialties including numerous orthopedic topics. Citation analysis, although controversial, allows for the measurement of peer recognition and suggests insights into the readership of the article [61]. Regrettably, the citation number does not directly associate with study quality. Nevertheless, a high citation number specifies that various researchers have found an article beneficial and its material worthy for inclusion and more discussion in their work.

The 50 uppermost cited articles on bone graft were cited 33,895 times. The highest seven papers, which were cited more than 1,000 times, according to absolute numbers were cited at nearly 9,000 times. These numbers are higher than the uppermost cited papers in the numerous orthopedic fields such as hip and knee arthroplasty and oncology [62,63]. This is even more obvious, when compared to the uppermost cited papers in hand or shoulder surgery [4,5].

The most-cited paper illustrated the mechanism of action of platelet-rich plasma in improving the usefulness of bone grafts by creating a higher concentration of human platelets and platelet-derived growth factors (1998) issued in the Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics [11]. This study has been cited 1,862 times with a mean citation number of 38.00/year. In this paper, Marx reached an assumption that the addition of platelet-rich plasma to various bone grafts augmented the radiographic maturation rate 1.62 to 2.16 times when compared to bone grafting without platelet-rich plasma [11].

The second maximum-cited paper was by Younger Edward M (1989) about complications at bone graft donor sites published in the Journal of Orthopaedic Trauma. This research was cited 1,461 times (47.13 citations/year). Younger studied the medical records of 239 patients with 243 autogenous bone grafts taken on to document the morbidity at the donor sites. He stated that the general major complications were deep infection, prolonged wound drain, hematomas collection, reoperation, pain lasting for more than six months, severe sensory loss, and unsightly scars, while the minor complications comprised superficial infection, minor wound problems, temporary sensory loss, and mild or resolving pain. He observed that there was a much higher complication rate if the incision used for the surgery was also the same incision used to harvest the bone graft [12].

A whole of 12 countries contributed to the uppermost 50 articles with the majority derived from the USA. Forty-four papers were created from countries where English is the first language. All countries characterized on the list are first-world countries with a large health-care expenditure [64]. Parallel results have been realized in other fields where the USA led most positions [3,65,66].

Remarkably, the uppermost five articles were published in a 23-year gap from 1989 to 2012. Consequently, they have had significant time to merge these top citation numbers and this appears to be a crucial factor in their top positions. When we investigate the mean citation number of the topmost two articles, their citation densities are obviously high at 83 and 47.13 correspondingly. Though, the uppermost citation density is noticed in the fifth paper (Recent advances in bone tissue engineering scaffolds) at 139.38 citations/year [15]. This recommends that these papers are highly significant in the field. Nevertheless, a limitation in mean citation number does not signify the progression of a paper's influence over time. For example, a paper that was published three decades ago about the free vascularized bone graft: A clinical extension of microvascular techniques by Professor Geoffrey Ian Taylor who was particularly recognized for his pioneering research in microsurgery and bone grafting and received extensive acknowledgment and frequent citations at that time may still hold a high mean citation number despite not being referenced for many years [17]. O'Neill (2014) recommended that the mean citation number may in fact be effective in evaluating the proximity of impact a paper has, when comparing articles from diverse time periods [67].

There are an additional number of boundaries related to this type of research documented by various authors. The Scopus search engine used in this work extends from 1996 to the present day. Hence, any articles published before this date will not be involved in our study, which likely results in numerous classic research articles being excluded. Citation analysis also brings with it some intrinsic faults. It does not take account of biased citing, self-citation, formal or informal influences not cited, technical limitations of citation indices, and not being able to add publications if not indexed in Scopus [68]. Alternative metrics, or Altmetrics, assess the influence of scholarly materials via online metrics, with an emphasis on data arising from social media outlets, for instance: mentions, views, shares, download, saves, tweeting, tags, and comments. Altmetrics will certainly provide a complimentary measurement through the internet to traditional citation metrics, which will certainly become an alternative dimension whereby the reach of a journal article can be evaluated [69].

Conclusions

The scrutiny of the uppermost 50 articles connecting to bone grafting has emphasized the most significant papers in the field. These cover a wide range of issues including categories, management, and mechanism of action of bone grafting. Citation number was used to detect the influence of these papers. Although this may not directly associate with study quality, it does provide an insight into the effect that a research paper has had on the scientific community. This list may prove priceless to surgeons involved in the treatment of patients who need to use bone grafting in orthopedic surgeries, especially in replacing bone defects and motivating fracture healing and those actively advancing the progress of the field.

Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: **Payment/services info:** All authors have declared that no financial support was received from any organization for the submitted work. **Financial relationships:** All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. **Other relationships:** All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

- 1. Roberts TT, Rosenbaum AJ: Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012, 8:114-24. 10.4161/org.23306
- 2. Adams AB, Simonson D: Publication, citations, and impact factors of leading investigators in critical care medicine. Respir Care. 2004, 49:276-81.
- Lefaivre KA, Shadgan B, O'Brien PJ: 100 most cited articles in orthopaedic surgery. Clin Orthop Relat Res. 2011, 469:1487-97. 10.1007/s11999-010-1604-1
- Namdari S, Baldwin K, Kovatch K, Huffman GR, Glaser D: Fifty most cited articles in orthopedic shoulder surgery. J Shoulder Elbow Surg. 2012, 21:1796-802. 10.1016/j.jse.2011.11.040
- 5. To P, Atkinson CT, Lee DH, Pappas ND: The most cited articles in hand surgery over the past 20-plus years: a modern-day reading list. J Hand Surg Am. 2013, 38:983-7. 10.1016/j.jhsa.2013.02.004
- DeHeer PA, Adams W, Grebenyuk FR, Meshulam E, Miskin K, Koch TT, Groh C: Top 100 cited foot and ankle-related articles. J Am Podiatr Med Assoc. 2016, 106:387-97. 10.7547/15-091
- Cassar Gheiti AJ, Downey RE, Byrne DP, Molony DC, Mulhall KJ: The 25 most cited articles in arthroscopic orthopaedic surgery. Arthroscopy. 2012, 28:548-64. 10.1016/j.arthro.2011.08.312
- Zhang W, Tang N, Li X, George DM, He G, Huang T: The top 100 most cited articles on total hip arthroplasty: a bibliometric analysis. J Orthop Surg Res. 2019, 14:412. 10.1186/s13018-019-1476-3
- 9. Mavrogenis AF, Megaloikonomos PD, Mauffrey C, et al.: The best cited articles of the European Journal of

Orthopaedic Surgery and Traumatology (EJOST): a bibliometric analysis. Eur J Orthop Surg Traumatol. 2018, 28:533-44. 10.1007/s00590-018-2147-5

- Zhang CT: A proposal for calculating weighted citations based on author rank . EMBO Rep. 2009, 10:416-7. 10.1038/embor.2009.74
- Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR: Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998, 85:638-46. 10.1016/s1079-2104(98)90029-4
- 12. Younger EM, Chapman MW: Morbidity at bone graft donor sites. J Orthop Trauma. 1989, 3:192-5. 10.1097/00005131-198909000-00002
- Giannoudis PV, Dinopoulos H, Tsiridis E: Bone substitutes: an update. Injury. 2005, 36 Suppl 3:S20-7. 10.1016/j.injury.2005.07.029
- 14. Salgado AJ, Coutinho OP, Reis RL: Bone tissue engineering: state of the art and future trends . Macromol Biosci. 2004, 4:743-65. 10.1002/mabi.200400026
- 15. Bose S, Roy M, Bandyopadhyay A: Recent advances in bone tissue engineering scaffolds . Trends Biotechnol. 2012, 30:546-54. 10.1016/j.tibtech.2012.07.005
- Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA: Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996, 300-9. 10.1097/00003086-199608000-00037
- 17. Taylor GI, Miller GD, Ham FJ: The free vascularized bone graft. A clinical extension of microvascular techniques. Plast Reconstr Surg. 1975, 55:533-44. 10.1097/00006534-197505000-00002
- Amini AR, Laurencin CT, Nukavarapu SP: Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012, 40:363-408. 10.1615/critrevbiomedeng.v40.i5.10
- Banwart JC, Asher MA, Hassanein RS: Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine (Phila Pa 1976). 1995, 20:1055-60. 10.1097/00007632-199505000-00012
- Carragee EJ, Hurwitz EL, Weiner BK: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 2011, 11:471-91. 10.1016/j.spinee.2011.04.023
- 21. Bauer TW, Muschler GF: Bone graft materials. An overview of the basic science . Clin Orthop Relat Res. 2000, 10-27.
- Damien CJ, Parsons JR: Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater. 1991, 2:187-208. 10.1002/jab.770020307
- 23. Burchardt H: The biology of bone graft repair. Clin Orthop Relat Res. 1983, 28-42.
- Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J: Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials. 2001, 22:1705-11. 10.1016/s0142-9612(00)00305-7
- Friedlaender GE, Perry CR, Cole JD, et al.: Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001, 83-A Suppl 1:S151-8.
- Dimitriou R, Jones E, McGonagle D, Giannoudis PV: Bone regeneration: current concepts and future directions. BMC Med. 2011, 9:66. 10.1186/1741-7015-9-66
- 27. Kanczler JM, Oreffo RO: Osteogenesis and angiogenesis: the potential for engineering bone . Eur Cell Mater. 2008, 15:100-14. 10.22203/ecm.v015a08
- Goulet JA, Senunas LE, DeSilva GL, Greenfield ML: Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res. 1997, 76-81. 10.1097/00003086-199706000-00011
- 29. Finkemeier CG: Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002, 84:454-64. 10.2106/00004623-200203000-00020
- Yasko AW, Lane JM, Fellinger EJ, Rosen V, Wozney JM, Wang EA: The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). A radiographic, histological, and biomechanical study in rats. J Bone Joint Surg Am. 1992, 74:659-70.
- Silber JS, Anderson DG, Daffner SD, et al.: Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2003, 28:134-9. 10.1097/00007632-200301150-00008
- Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG: Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials. 1996, 17:175-85. 10.1016/0142-9612(96)85762-0
- Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L: Biocompatibility and osteogenesis of biomimetic nanohydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007, 28:3338-48. 10.1016/j.biomaterials.2007.04.014
- Hernigou P, Poignard A, Beaujean F, Rouard H: Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005, 87:1430-7. 10.2106/JBJS.D.02215
- Herbert TJ, Fisher WE: Management of the fractured scaphoid using a new bone screw . J Bone Joint Surg Br. 1984, 66:114-23. 10.1302/0301-620X.66B1.6693468
- 36. Kurz LT, Garfin SR, Booth RE Jr: Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine (Phila Pa 1976). 1989, 14:1324-31. 10.1097/00007632-198912000-00009
- Dimitriou R, Tsiridis E, Giannoudis PV: Current concepts of molecular aspects of bone healing. Injury. 2005, 36:1392-404. 10.1016/j.injury.2005.07.019
- Boden SD, Kang J, Sandhu H, Heller JG: Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in clinical studies. Spine (Phila Pa 1976). 2002, 27:2662-73. 10.1097/00007632-200212010-00005
- Chan CK, Kumar TS, Liao S, Murugan R, Ngiam M, Ramakrishnan S: Biomimetic nanocomposites for bone graft applications. Nanomedicine (Lond). 2006, 1:177-88. 10.2217/17435889.1.2.177
- Woodard JR, Hilldore AJ, Lan SK, et al.: The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007, 28:45-54. 10.1016/j.biomaterials.2006.08.021
- 41. Warnke PH, Springer IN, Wiltfang J, et al.: Growth and transplantation of a custom vascularised bone graft

in a man. Lancet. 2004, 364:766-70. 10.1016/S0140-6736(04)16935-3

- 42. Geiger M, Li RH, Friess W: Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003, 55:1613-29. 10.1016/j.addr.2003.08.010
- Laurie SW, Kaban LB, Mulliken JB, Murray JE: Donor-site morbidity after harvesting rib and iliac bone . Plast Reconstr Surg. 1984, 73:933-8. 10.1097/00006534-198406000-00014
- Mankin HJ, Gebhardt MC, Jennings LC, Springfield DS, Tomford WW: Long-term results of allograft replacement in the management of bone tumors. Clin Orthop Relat Res. 1996, 86-97. 10.1097/00003086-199603000-00011
- 45. Moore WR, Graves SE, Bain GI: Synthetic bone graft substitutes. ANZ J Surg. 2001, 71:354-61.
- Zins JE, Whitaker LA: Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg. 1983, 72:778-85. 10.1097/00006534-198312000-00005
- 47. Frost HM: A 2003 update of bone physiology and Wolff's Law for clinicians . Angle Orthod. 2004, 74:3-15. 10.1043/0003-3219(2004)074<0003:AUOBPA>2.0.CO;2
- Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J: Hydroxyapatite reinforced polyethylene--a mechanically compatible implant material for bone replacement. Biomaterials. 1981, 2:185-6. 10.1016/0142-9612(81)90050-8
- Yuan H, Fernandes H, Habibovic P, et al.: Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci U S A. 2010, 107:13614-9. 10.1073/pnas.1003600107
- Francis PH, Richardson MK, Brickell PM, Tickle C: Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb. Development. 1994, 120:209-18. 10.1242/dev.120.1.209
- 51. Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM: The biology of bone grafting. J Am Acad Orthop Surg. 2005, 13:77-86.
- Tadic D, Epple M: A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004, 25:987-94. 10.1016/s0142-9612(03)00621-5
- Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P: Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002, 84:716-20. 10.2106/00004623-200205000-00003
- 54. Inzana JA, Olvera D, Fuller SM, et al.: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014, 35:4026-34. 10.1016/j.biomaterials.2014.01.064
- De Long WG Jr, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T: Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007, 89:649-58. 10.2106/JBJS.F.00465
- 56. Bergland O, Semb G, Abyholm FE: Elimination of the residual alveolar cleft by secondary bone grafting and subsequent orthodontic treatment. Cleft Palate J. 1986, 23:175-205.
- 57. Hernigou P, Beaujean F: Treatment of osteonecrosis with autologous bone marrow grafting . Clin Orthop Relat Res. 2002, 14-23. 10.1097/00003086-200212000-00003
- Daculsi G: Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials. 1998, 19:1473-8. 10.1016/s0142-9612(98)00061-1
- Oryan A, Alidadi S, Moshiri A, Maffulli N: Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014, 9:18. 10.1186/1749-799X-9-18
- Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN: Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001, 83-A Suppl 2 Pt 2:98-103. 10.2106/00004623-200100022-00007
- 61. Andrews AW, Horton MG: Citation of studies. Phys Ther. 1989, 69:1117-8. 10.1093/ptj/69.12.1117a
- Holzer LA, Holzer G: The 50 highest cited papers in hip and knee arthroplasty. J Arthroplasty. 2014, 29:453-7. 10.1016/j.arth.2013.07.022
- Çevik HB, Gümüştaş SA: Fifty top-cited classic papers in orthopaedic oncology: a bibliometric analysis . Arch Orthop Trauma Surg. 2019, 139:1187-92. 10.1007/s00402-019-03165-z
- 64. Penn DL, Chi JH: United States health care spending. Neurosurgery. 2018, 83:E97. 10.1093/neuros/nyy291
- Baldwin KD, Kovatch K, Namdari S, Sankar W, Flynn JM, Dormans JP: The 50 most cited articles in pediatric orthopedic surgery. J Pediatr Orthop B. 2012, 21:463-8. 10.1097/BPB.0b013e328354b0cf
- 66. Nayar SK, Dein EJ, Spiker AM, Bernard JA, Zikria BA: The top 100 cited articles in clinical orthopedic sports medicine. Am J Orthop (Belle Mead NJ). 2015, 44:E252-61.
- 67. Brogan DM, Mossialos E: A critical analysis of the review on antimicrobial resistance report and the infectious disease financing facility. Global Health. 2016, 12:8. 10.1186/s12992-016-0147-y
- Kulkarni AV, Aziz B, Shams I, Busse JW: Comparisons of citations in Web of Science, Scopus, and Google Scholar for articles published in general medical journals. JAMA. 2009, 302:1092-6. 10.1001/jama.2009.1307
- Hughes H, Hughes A, Murphy C: The use of Twitter by the Trauma and Orthopaedic Surgery Journals: Twitter Activity, impact factor, and alternative metrics. Cureus. 2017, 9:e1931. 10.7759/cureus.1931