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Metabolism differs significantly between tumor and normal cells. Metabolic
reprogramming in cancer cells and metabolic interplay in the tumor microenvironment
(TME) are important for tumor formation and progression. Tumor cells show changes in
both catabolism and anabolism. Altered aerobic glycolysis, known as the Warburg effect,
is a well-recognized characteristic of tumor cell energy metabolism. Compared with
normal cells, tumor cells consume more glucose and glutamine. The enhanced anabolism
in tumor cells includes de novo lipid synthesis as well as protein and nucleic acid
synthesis. Although these forms of energy supply are uneconomical, they are required
for the functioning of cancer cells, including those in thyroid cancer (TC). Increasing
attention has recently focused on alterations of the TME. Understanding the metabolic
changes governing the intricate relationship between TC cells and the TME may provide
novel ideas for the treatment of TC.
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INTRODUCTION

Thyroid cancer (TC) remains the most frequently diagnosed endocrine malignancy; with a sharp
increase in incidence worldwide, this disease is projected to become the fourth leading type of cancer
globally (1). Based on its histological features, TC is grouped into four types: papillary thyroid
carcinoma (PTC), follicular thyroid carcinoma (FTC), medullary thyroid cancer (MTC), and
anaplastic thyroid carcinoma (ATC). Approximately 90% of all TCs are differentiated, including
PTC, which is the most common histological type of differentiated thyroid cancer, followed by FTC
(2). Notably, different TC subtypes exhibit distinct tumor aggressiveness and progression and show
heterogeneous responses to different treatments (3). Although well-differentiated TCs have good
prognoses, approximately 10% of patients do not respond to radioactive iodine therapy and are
more likely to relapse. While the incidence of poorly differentiated TCs such as ATC and MTC is
very low, they are characterized by high invasiveness, early metastasis, and poor prognosis (4, 5).
Conventional therapy consists of surgery, radiotherapy, and endocrine suppression treatment (6, 7).
However, these treatments have various limitations and side effects (8, 9).
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The large differences in metabolism between tumor cells and
normal human somatic cells are mainly reflected in catabolic and
biosynthesis metabolism (10). The metabolic changes in tumor
cells are often considered to be closely related to tumor
formation and progression (11). Thus, the unique metabolism
of tumor cells is both an opportunity and a challenge. Here, we
review the catabolic and anabolic metabolism changes in TC
cells. We also describe the mutual relationship between
metabolic reprogramming and the tumor microenvironment
(TME) in TC, which provides the theoretical basis for new
therapeutic targets and prognostic indicators.
METABOLIC CHANGES IN TUMOR CELLS

Cancer cells always acquire energy and material basis for rapid
tumor growth by enhanced anabolism, including rapid aerobic
glycolysis, glutaminolysis, de novo lipid synthesis and nucleotide
synthesis (12, 13). Thyroid cancer cells generate energy primarily
by increasing glycolysis and glutaminolysis. In addition, the
production of glycolysis can also provide materials for nucleic
acid synthesis through pentose phosphate pathway (PPP).
Nucleic acid synthesis, protein synthesis, and de novo lipid
synthesis are enhanced to support thyroid cancer cell
proliferation. During metastasis, tumor cells rely on catabolism
to survive from metabolic stress, mainly through aerobic
glycolysis, OXPHOS, glutamine metabolism and autophagy to
produce ATP (14). Thyroid tumors acquired aggressive
phenotype and epithelial-mesenchymal transformation(EMT)
via sirtuin 6 (SIRT6)-Autophagy-Warburg Effect Axis (15).
AMPK signal is also essential for activating adaptive changes
Frontiers in Oncology | www.frontiersin.org 2
in cell metabolism such as inhibiting anabolism and promoting
catabolism, which is the basis for cell survival under metabolic
stress. In TC, AMPK activation inhibits TC cell proliferation
and promotes cell migration (16). Moreover, carnitine
palmitoyltransferase 1C which is regulated by AMPK, transfers
long-chain fatty acids into mitochondria to further oxidation
and promotes TC cells survival under metabolic stress
conditions (17).

Changes in Catabolism
Glucose Metabolism
Cells produce ATP for energy in two main ways: glycolysis and
oxidative phosphorylation (OXPHOS). To satisfy the need of
energy for proliferation, thyroid tumor cells increased the level of
glycolysis. Although aerobic glycolysis is inefficient compared to
OXPHOS, it can provide energy for tumor cell proliferation and
invasion and a constant supply of material for biosynthesis (18).
The Warburg effect suggests that tumor cells require more
glucose than normal cells and derive their energy mainly from
glycolysis even when oxygenated adequately (19). However, the
energy sources of different tumors also show heterogeneity, and
even different areas of the same tumor have different energy
sources (20–22). It is noteworthy that glycolysis plays a more
important role in sustaining the balance of the PPP in thyroid
cells, which is more critical for thyroid hormone synthesis than
ATP production even in TC (23) (Figure 1).

Hypoxia-inducible factor (HIF) is a transcription factor that is
widespread in mammals and humans under hypoxic conditions.
HIF plays roles in glycolysis, promote angiogenesis, cell survival or
apoptosis. As the basic regulator of glycolysis, HIF can upregulate
the activity of 90% of glycolytic reactivity enzymes and inhibit the
FIGURE 1 | Glucose metabolism in TC cells. TC cells require more glucose than normal cells and derive their energy mainly from glycolysis. This aerobic glycolytic
phenotype generates more lactates which transported by MCT4. MCT8 downregulation in TC cells results in TH accumulation in TC tissues. GLUT, glucose transporter;
TH, thyroid hormones; ETC, electron transport chain; MCT, monocarboxylate transporter.
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use of pyruvate by mitochondria (24). In TC cells, aerobic glycolysis
can be enhanced through the alteration of the HIF1a-MYC-PGC-
1b axis (25). Zhou et al. showed that hypoxia promoted FTC
progression by upregulating HIF1a and programmed death-ligand
1 (PD-L1) (26). In PTC, SIRT6 promotes the EMT of cancer cells
through HIF-1a (27). Klaus et al. demonstrated the critical role of
HIF-1a in the desmoplastic stroma reaction and metastatic
processes in FTC (28). HIF can stimulate the expression of MYC,
a transcription factor that is highly expressed in tumors and has a
variety of biological functions, including cell metabolism.MYC can
promote glycolysis and glucose transporter (GLUT) expression,
thus transforming tumor energy metabolism into the Warburg
effect (29–31). Myc overexpression can also lead to abnormally
increased synthesis of lactate dehydrogenase A (LDHA), which
catalyzes pyruvate to lactate. Compared to normal thyroid tissues,
LDHA expression is higher in PTC. Hou et al. reported that LDHA
not only promoted PTC tumorigenesis but also migration and
invasion by regulating autophagy and inducing EMT gene
transcription. Moreover, they also found that the metabolic
products catalyzed by LDHA increased the acetylation of the
related H3K27 and induced EMT (32). LDHA is phosphorylated
by HER2 and SRC39, resulting in the increased invasive and
metastatic potential of head and neck cancer (33).

GLUT is a transporter that helps cells to take up glucose and
is the first rate-limiting step in glucose metabolism. Many studies
have demonstrated the upregulation of GLUT subtypes during
carcinogenesis (34–36). Samih et al. reported that the
phosphoinositide 3-kinase (PI3K)/Akt pathway is the key to
GLUT1 transfer from the cytoplasm to the plasma membrane
(37). GLUT1 overexpression is also associated with cancer cell
aggressiveness and dedifferentiation. Mediated by the
transcription factor HIF, GLUT3 is upregulated in response to
hypoxia. The overexpression of GLUT1 and GLUT3 is generally
recognized as one of the characteristics of tumors (38). Jóźwiak
et al. reported that most PTC samples showed higher GLUT1
and GLUT3 expression than the expression in FTC and non-
neoplastic thyroid lesions (39). Chai et al. analyzed the
expression of GLUT family genes and concluded that the
upregulation of the genes encoding GLUT1, GLUT3, GLUT14
was associated with decreased overall survival in patients with
PTC (40).The function and tissue distribution of GLUT14 are
uncharacterized, although there is some disease association,
specifically in inflammatory bowel disease. GLUT14 is a
GLUT3 variant that has also been found in the genome as a
duplicon of GLUT3. Moreover, the upregulation of GLUT14 was
associated with the maintenance of glucose uptake in hypoxia
(41). The localization of GLUT1 is heterogeneous among TCs.
For example, it exhibits a focal circumferential form in plasma
membrane of PTC cells, shows a non-symmetric distribution in
the basilar membrane of tumor cells adjacent to the capillary
blood supply and stroma, and focal distribution in the center of
metastatic tumors or ATC (42). Previous studies indicated that
GLUT1 and GLUT3 expression levels may be associated with
increased invasion and a worse prognosis of TC. Glucose
transported by GLUT involved in glycolysis, the products of
which eventually enter the mitochondria to generate ATP for cell
Frontiers in Oncology | www.frontiersin.org 3
energy through OXPHOS. The mitochondrial pyruvate carrier 1
(MPC1) is a critical channel that connects glycolysis to OXPHOS
by regulating the transport of pyruvate into the mitochondrial
inner membrane. MPC1 deficiency may cause metabolic
reprogramming and is associated with a poor prognosis. MPC1
expression is strongly negatively correlated with tumor purity
and immune cell infiltration in TC (43).

Many enzymes are involved in the aerobic glycolysis of tumor
cells, including pyruvate kinase M2 (PKM2), hexokinase (HK),
phosphofructokinase 1 (PKF1). The PI3K/Akt pathway can
enhance the Warburg effect of tumors by increasing the activity of
these factors (44). HK is the first rate-limiting enzyme in glycolysis
and catalyzes the phosphorylation of glucose into glucose 6-
phosphate. HK2 is also highly expressed in TC (45, 46). Huang
et al. demonstrated the promotion of thyroid carcinoma cell
proliferation and migration through the activation of AKT/mTOR/
HK2-mediated glycolysis (47). Feng et al. reported that PKM2
overexpression in PTC was related to poor clinicopathological
features such as advanced tumor stages and lymph node metastasis
(48). In their proteomic analysis of five PTC specimens, Aurélie
Strickaert et al. investigated the cellular distribution of several
upregulated metabolic proteins in the cancerous and stromal cells
of these tumors. They discovered the upregulation of many
metabolism-related proteins including pyruvate carboxylase (PC)
(49). Verhagen et al. compared PK in human thyroid carcinomas,
follicular adenomas, and normal thyroid tissue and reported a
positive correlation between the specific activities of PK and tumor
proliferation (50). The results of these studies demonstrated that PK
overexpression plays an important role in TC.

Amino Acid Metabolism
Glutamine is a nonessential amino acid in normal cells and can be
converted from glucose. However, tumor cells cannot grow in a
culture medium without glutamine; thus, glutamine is an essential
amino acid in these cells (51). Ample evidence supports the essential
role of glutamine in tumors. Tumor cells consume large amounts of
glutamine as an alternative energy supply pathway to glycolysis (52–
54). However, the requirements for glutamine in cancer vary in
different tissues and situations (55) (Table 1) . Several studies
demonstrated the changes in glutamine metabolism of thyroid
tumors. Inhibition of glutamine metabolism in TC cells results in
insufficient energy supply, which inhibits cell proliferation,
migration, and invasion (56). Kim et al. performed tissue
microarrays of 557 TC cases and immunohistochemical staining
of glutaminolysis-related proteins. They reported that glutaminase 1
(GLS1) and glutamate dehydrogenase (GDH) showed the highest
expression in ATC compared to other subtypes. Tumoral amino
acid transporter-2 expression was higher in MTC but lower in FTC.
In PTC, the expression levels of tumoral GLS1 and GDH were
higher in the conventional type than those in the follicular variant,
and in the BRAFV600E mutation than those in cases without the
BRAFV600E mutation (57). The expression levels of glutaminolysis-
related proteins including GLS1, GDH, and GLUD were higher in
Hürthle cell neoplasm of the thyroid than in those of follicular
neoplasm. The expression of SLC1A5 was highest in Hürthle cell
adenomas, followed by FC and FA (58). When glutamine enters the
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cell, it is hydrolyzed to glutamic acid and ammonia by glutaminase.
Glutamate can be converted into a-KG to enter the tricarboxylic
acid (TCA) cycle, providing intermediate metabolites and energy for
cell metabolism. This is particularly evident in the truncated TCA
cycle, which can be used as feedstock for the passive TCA cycle due
to the lack of citrate (44). This phenomenon, termed anapleurosis,
suggests that the use of glutamine affects glucose absorption.
Therefore, reducing the use of glutamine can also reduce that of
glucose (59). In general, glucose and glutamine metabolism
influence each other. Other changes in protein metabolism are
present besides glutamine. Sun et al. analyzed 557 different types of
TC and found a higher expression level of serine/glycine
metabolism-related proteins in PDC and PTC compared to that
in MTC. In PTC, the rate of expression was higher in cases with
BRAFV600E mutation than in those with a follicular variant (60).

Changes in Biosynthesis Metabolism
Enhancement of De Novo Lipid Synthesis
Compared to normal tissue, tumor cells synthesize lipids more
rapidly and from different sources. Accumulating evidence has
demonstrated the important role of lipid metabolism
reprogramming in tumor cell development and metastasis (61–
67). Liao et al. reported that lysine methyltransferase 5A (KMT5A),
a regulator of lipid metabolism in PTC, was significantly associated
with extrathyroidal extension and lymph node metastasis in PTC
(68). Instead of nutrient uptake, the raw materials of lipid synthesis
in tumor cells mainly come from glucose metabolism.
Approximately 93% of the fatty acids in tumor cells are
synthesized de novo (69, 70). The enzymes involved in the fatty
acid synthesis, such as ATP citrate lyase (ACLY), Acetyl-CoA
carboxylase (ACC), and fatty acid synthase (FASN) are changed
in tumor cells (71–83). Citrate, the intermediate product of glucose
metabolism, forms Ac-CoA under the catalysis of ACLY, and Ac-
CoA forms malonyl CoA (Mal-CoA) under the catalysis of ACC.
Ac-CoA and MAL-CoA synthesize palmitic acid catalyzed by
Frontiers in Oncology | www.frontiersin.org 4
FASN, and palmitic acid forms lipid components required by
cells catalyzed by other specific enzymes.

Several studies on thyroid carcinoma also demonstrated lipid
metabolism reprogramming. In their transcriptome analysis of
lipid metabolism-related genes in PTC, Xu et al. described the
use of these genes for PTC classification (84). Recent cases
reported by Leng et al. suggested abnormality in the
metabolism of fatty acid synthases and lipids. They detected 18
types of FFAs with increased levels in carcinoma tissue compared
to the normal tissue of the thyroid (85). Several studies have
reported abnormal changes in lipogenic enzymes in TC. FASN is
upregulated in various TC subtypes, including PTC, ATC, and
FTC (86–88). Under hypoxic conditions, ACC is upregulated in
most types of cancer such as liver, breast, and prostate cancer
(89) and is downregulated in PTC. The downregulation of ACC2
via BRAFV600E plays a critical role in PTC and establishes
favorable conditions for TC cell proliferation (90). Of the
lipogenic enzymes upregulated in ATC, stearoyl-CoA
desaturase-1 (SCD1) that can mediate the desaturation of
endogenously synthesized saturated fatty acids into
monounsaturated fatty acids (MUFAs) and promote the
proliferation of various cancer cell types showed the most
significant differential expression when compared with that in
normal thyroid tissues (91). A highly positive correlation
between MUFAs and monounsaturated phosphatidylcholines
(MUPCs) and negative correlations between monosaturated
and polyunsaturated lipids have been observed in many types
of cancers including breast, lung, colorectal, esophageal, and
gastric cancer; thus, similar lipogenic mechanisms may exist to
generate the lipids. However, it should be noted that a lower
correlation than that mentioned above in TC was observed (92)
(Table 1). These findings suggest the presence of different lipid
metabolism in TC while it is not clear at this stage. Overall, these
cases support the view that TC cells are dependent on de novo
lipogenesis for cell viability (Figure 2).
TABLE 1 | The metabolic differences and similarities in cancers.

Metabolic
pathways

Tumor types Difference Similarity

Glycolysis
metabolism

Thyroid cancer Produce NAPDH through the PPP pathway for thyroid hormone synthesis,
ATP production (17)

Enhancement of glycolysis and
lactate production

Other cancers Mainly used for ATP production (13)

Energy
source

Primary thyroid cancer Glucose and glutamine metabolism(186) Increased energy demand
Metastatic thyroid cancer Unknown
Primary breast cancer Glucose and glutamine metabolism (15)
Metastatic breast cancer Pyruvate (lung metastases) to sustain the TCA cycle (15)

Serine and acetate (brain metastases) to sustain the TCA cycle (16)
Non-small cell lung cancer Carbon source: glucose (areas with low perfusion); glucose and other sources (highly

perfused areas) (14)

Lipid
metabolism

Thyroid cancer Low correlation between MUFAs and MUPCs or monosaturated and polyunsaturated
lipids (85)
ACC2 downregulation (83)

Enhancement of de novo lipid
synthesis

Breast, lung, colorectal,
esophageal and gastric
cancer

Highly positive correlation between MUFAs and MUPCs negative correlation between
monosaturated and polyunsaturated lipids (85)

liver, breast and prostate ACC upregulation (82)
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Enhancement of Protein Synthesis
As a crucial component of all cells and tissues of the human
body, proteins are the material basis of life. Proteins have many
functions in organisms, including catalysis, locomotion,
transport, mechanical support, immunity, regulation. Protein
synthesis consists of five steps, including amino acid activation,
initiation of polypeptide chain synthesis, peptide chain
extension, peptide chain termination and release, and post-
synthesis processing and modification of the protein. This
process expresses the genetic information on messenger RNA
(mRNA) transcribed from DNA in the form of proteins. As
tumor cells are more metabolically active and divide more
frequently than normal cells, they require more proteins.

As mentioned above, the PI3K-Akt-mTOR pathway is
activated in various kinds of carcinoma. This pathway is also
closely associated with protein synthesis. Tumor cells keep their
protein synthesis positive to meet the growth needs through this
pathway. In addition, tumor cells have different genetic
mutations that activate the synthesis of certain proteins and
perform certain functions.

Ribosomes, ribonucleoprotein particles in cells, are mainly
composed of numerous distinct proteins and rRNA and are
responsible for protein synthesis. In recent decades, many studies
have demonstrated the causal associations between inherited
mutations affecting ribosome biogenesis and increased cancer
risk. Recent studies have shown that dysregulated ribosome
biogenesis plays a broader role in the development and
Frontiers in Oncology | www.frontiersin.org 5
progression of most cancers (93–98). Some studies have also
assessed the relationship between ribosomes and TC. Saiselet
et al. reported that the expression of genes involved in the
negative regulation of cell death/apoptosis was also
downregulated in five TC cell lines (WRO, FTC133, BCPAP,
TPC1, and K1) (99). Jeong et al. discovered the high expression
of LXRb in TC, which was coordinately associated with
ribosome-related genes (100).

Abnormalities in Nucleic Acid Biosynthesis
Nucleic acid is a biological macromolecule with a nucleotide as
its basic unit, which has a complex spatial structure and
important biological functions. Nucleic acids can be classified
as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).
DNA, which is found in the nucleus and mitochondria, carries
genetic information and is passed down through generations
through replication. Cell and organismal traits are determined by
this genetic information. The two basic pathways of nucleotide
synthesis are de novo synthesis and remediation. The de novo
synthesis of nucleotides from simple materials such as ribose
phosphate, amino acids, one-carbon units, and CO2 is the main
synthesis pathway in the human body. The in vivo use of free
bases or nucleosides can generate nucleotides through a simple
reaction process known as the salvage pathway. Tumor cells use
both pathways because they require significant amounts of
nucleic acids for rapid growth. As mentioned above, the
catabolism of glutamine is particularly active in tumor cells;
FIGURE 2 | Lipid metabolism in cancer cells. Tumor cells increase FFA uptake via upregulation of fatty acid transport receptors and chaperones such as Solute
Carrier SLC27A/FATP, CD36, and FABP. In addition, metabolic reprogramming that facilitates glycolysis can activate de novo lipid synthesis. Acetyl-CoA derived
from citrate can be further processed into a variety of lipid species with the help of various enzymes. FASN and SCD are upregulated while ACC2 and HMGCR
are downregulated in TC. BRAFV600E influences the lipid metabolism in PTC via downregulation of ACC2. GLUT, glucose transporter; HMGCR, 3-hydroxy-3-
methylglutaryl-CoA reductase; fatty acid synthase ACLY; ACC2, Acetyl-CoA carboxylase 2; FASN fatty acid synthase; SCD, stearoyl-CoA desaturase-1; MUFAs,
monounsaturated fatty acids; FFA, free fatty acid; FABP, fatty acid binding protein; SLC27A, Solute Carrier Family 27; FATP, Fatty Acid Transporter.
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thus, increased amounts of the breakdown products of glutamine
are observed when compared with those in normal cells.
Ammonia produced by the breakdown of glutamine
participates in the ammonia cycle and can be used for the
biosynthesis of nucleotides and proteins (101–105).

Tumor cells increase nucleotide synthesis to satisfy their need for
growth and proliferation (106). Therefore, the activity of nucleotide
synthetase, especially deoxyribonuclease, is higher in tumor cells
than that in normal cells (107). The expression of deoxyribonuclease
in normal cells fluctuates with changes in the cell cycle. Cancer cells
have lost normal regulation and the expression levels are
constitutively high, leading to increased DNA synthesis (24). The
expression levels of genes involved in DNA replication were
upregulated in TC cell lines such as BCPAP and 8505C (99). The
occurrence of thyroid tumors is related to abnormal nucleic acid
synthesis caused by a variety of gene mutations. The activation of
BRAF mutations is a major oncogenic driver of many cancers,
especially TC (108, 109). BRAF is the predominant mutation (30–
40%) in PTC and is considered an initiating event in papillary
thyroid carcinogenesis. Another human gene involved in thyroid
carcinogenesis is TERT, which contributes to the distant metastasis
(110–112).
TC CELL METABOLISM AND THE TME

Tumor Cell Metabolism Shapes the
Inflammatory TME
The two major characteristics of the TME are hypoxia and
acidification, which are closely related. Tumor cells increase
glycolysis to adapt to the hypoxic microenvironment. The lactate
produced by glycolysis, in turn, acidifies the TME. In addition, the
incomplete vasculature of tumor tissue prevents the timely
elimination of metabolites, which is also related to the
acidification of the TME. Active metabolism in TME cells can
also lead to increased toxic concentrations of certain metabolites,
such as increased levels of adenosine, kynurenine, ornithine, reactive
oxygen species, and potassium. These metabolites have profound
effects on suppressing the tumor immune response. During tumor
development, the TME changes continuously with tumor growth
and develop its cellular contents by releasing various recruiting
factors, leading to the accumulation of specific types of immune
cells in the TME, also affects the functions of these immune cells and
the complex relationship between these cells and tumor cells. Thus,
tumors are no longer simply a problem of cancer cells. Co-evolution
occurs between tumor cells and the surrounding stromal cells,
forming an inseparable community. Under the influence of tumor
cells, tumor stromal fibroblasts, macrophages, and neutrophils
become tumor-associated fibroblasts (CAFs), tumor-associated
macrophages (TAMs), and tumor-associated neutropenia.

Metabolic Crosstalk in the TC
Microenvironment
Nutrient Competition
The high metabolic activity of cancer cells and the disordered
vasculature in the TME can contribute to a microenvironment
Frontiers in Oncology | www.frontiersin.org 6
featuring nutrient depletion and hypoxia, which established a
metabolic competition between cancer cells and infiltrating
immune cells. This series of changes and metabolic
reprogramming plays a significant role in promoting tumor
growth and immune escape. Chen et al. compared human
normal thyroid and PTC samples and identified metabolites in
carbohydrate metabolism, including glucose, that consistently
decreased in PTC (113). The lack of glucose impaired the
function of immune cells such as TAMs and T cells by
regulating mTOR and GAPDH. Glycolysis promotes effector T
cell (Teff cell) function by sustaining the production of IFNg.
Decreased mTOR activity diminishes IFNg at the transcriptional
level in CD8+ T cells and, thus, impairs T cell function (114, 115).
Besides glucose, amino acids also play a role in driving and
fueling T cell function and differentiation. The neighboring
immune cells in solid tumors are outcompeted due to arginine
uptake and catabolism which primarily shifts toward cancer cells
(116). Leone et al. reported that tumor cells exposed to glutamine
antagonist showed decreased viability, proliferation, and cell
cycle progression while Teff cells produce a long-lived, highly
activated phenotype by markedly upregulating oxidative
metabolism (117).

Secreted Metabolites
The accumulation of metabolites such as lactate, kynurenine, and
othermetabolic by-products of cancermetabolism can be detrimental
to immune cells, leading to tumor immunosuppression. Indoleamine
2, 3-dioxygenase (IDO), a rate-limiting enzyme in tryptophan
oxidation, promotes tryptophan uptake from the TME and
generates kynurenine, which inhibits tryptophan import. Therefore,
the amino acids of T cells are depleted and result in
immunosuppression and induced T cell apoptosis. IDO-expressing
tumor cells are not rejected by specific T cells through the secretion of
kynurenines, which can suppress cytotoxic effector functions via the
downregulation of TCR CD3 z-chain and induced FOXP3+

regulatory T cell (Treg) differentiation. IDO upregulation impaired
the function of NK cell function and boost the high infiltration of
FOXP3+ Tregs in thyroid carcinoma (118, 119). In addition, Foxp3+

Tregs in lymphocytes facilitate thyroid tumor growth and invasion
(120). A large amount of lactate can also cause acidosis in the
microenvironment and weaken immune cell function (121). Arts
et al. showed that TC-derived lactate-mediated TC-induced TAM
reprogramming and inflammation through Akt/mTOR-dependent
glycolysis, an increase in inflammation characteristics, and changes in
cell metabolism (122). The accumulation of lactate is also detrimental
to the function and antitumor response of T and NK cells by
inhibiting proliferation and cytokine production (123). These
studies suggested that patients with cancer should be cautious when
using lactate preparations, as lactate may promote tumor growth.

Tumor cells also secrete vascular endothelial growth factor
(VEGF) into the TME, resulting in the upregulation of 6-
phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3
(PFKFB3) in endothelial cells, which activates PFK-1 to
promote the glycolytic phenotype as well as proliferation (124).
Colegio et al. demonstrated that lactate produced by tumor cells
promotes M2 macrophage polarization by a HIF1a-dependent
mechanism. In turn, VEGF and Arginase-1 secreted by
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M2-polarized macrophages signal back to tumor cells and
promote tumor growth (125).

Metabolic Coupling
In TME, the energy metabolism of CAFs shifts to aerobic glycolysis
under the influence of cancer cells. The lactate, ketone body, or
pyruvate released by these CAFs can be used as an energy source by
epithelial cancer cells to enter the TCA cycle and produce ATP
through OXPHOS. This phenomenon is called the reverseWarburg
effect. Lactate produced by CAFs is exported via the
monocarboxylate transporter (MCT)-4 into the TME and taken
up by tumor cells via the MCT-1 transporter. Such metabolic
coupling has been reported in several tumor types including head
and neck cancer (126). In addition, the metabolic coupling between
PTC cells and adjacent fibroblasts can result in aggressive behavior
owing to the large-scale production lactate, which is transported
outside the cell by MCT4 (127). CAFs also increased the anabolic
metabolism of glutamine which can be consumed by cancer cells to
sustain nucleotide generation and OXPHOS. In contrast, glutamate
secreted by cancer cells promoted the production of glutathione
(GSH), thereby maintaining redox balance and ECM remodeling in
CAFs (128). The results of Mestre-Farrera et al. indicated that
glutamine deprivation promoted CAFs migration and invasion,
which, in turn, promotes tumor epithelial cells to move to nutrient-
rich areas (129). CAFs release paracrine signals to induce metabolic
reprogramming and epigenetic changes, causing changes similar to
KRAS-driven oncogenic transformations (130). Tumors cells release
factors such as PDGF and TGF-b, resulting in metabolic
reprogramming of CAFs toward aerobic glycolysis (131, 132).
Fozzatti et al. described the significant increase of GLUT-1 in
human fibroblasts in vitro when cultured in ATC cells-derived
conditioned media. Strikingly, conditioned media obtained from
these activated fibroblasts promoted cell proliferation and invasion
of follicular TC cell line (133). Rabold et al. performed
transcriptome, metabolome, and lipidome analyses on TC-
induced macrophages in a human coculture model. The lipidome
analysis showed increased total lipid and intracellular lipid content
of tumor-induced macrophages, especially phosphoglycerides and
sphingolipids. Remarkably, this metabolic shift in lipid synthesis
contributes to their protumoral functional characteristics: a block of
key enzymes of lipid biosynthesis in tumor-induced macrophages
reversed elevated inflammatory cytokines and the ability to produce
ROS, two well-known pro-tumoral factors in the TME (134).

These studies show the complicated and dynamic interaction
that exists between thyroid tumors and immune cells in TME,
which results in the promotion of thyroid tumorigenesis (Figure 3).
PROGNOSTIC BIOMARKERS AND
TREATMENT

Prognostic Indicators
In conclusion, the expression of metabolism-related molecules
revealed the differences in invasiveness and prognosis between
different TC subtypes (Figure 4). Numerous studies have
demonstrated the relationship between the prognosis of thyroid
Frontiers in Oncology | www.frontiersin.org 7
carcinoma and glycolysis-related proteins such as GLUT, LDHA,
MCT1 (32, 135, 136). Some studies have indicated that GLUT
contributed to the increased glucose uptake observed during
carcinogenesis (135, 137). The differentiated extent of thyroid
cancer is negatively correlated with the expression of GLUTs.
Poorly differentiated types such as ATC have high expression
levels of GLUT (mainly GLUT-1); in contrast, well-differentiated
tumors such as FTC and PTC usually have low GLUT-1 expression
levels (45, 137–140). Glutamine, serine, glycine, and other amino
acid metabolism-related proteins can also be used as prognostic
indicators for thyroid tumors. Stromal GDH positivity was an
independent factor associated with poor prognosis. In follicular
variant PTC, stromal serine hydromethyl transferase 1 expression
was associated with shorter disease-free survival. The serine/glycine
metabolism-related molecules phosphoglycerate dehydrogenase,
glycine decarboxylase, and phosphoserine phosphatase positivity
were associated with shorter overall survival (57, 58, 60, 141). IDO,
which was associated with the aggressive features of papillary
thyroid microcarcinoma, may disrupt antitumor immunity and
contribute to tumor progression by increased infiltration of FOXP3+

Treg cells (142).

Metabolism Targeted Therapy
At present, cancer therapeutic regimens face the problem of drug
resistance which may associate with metabolic reprogramming in
tumor. Therefore, combination therapies that target various tumor
cell properties showed great potential value. Metabolic inhibitors in
combination with targeted therapy or chemotherapy hold promise
for increasing anticancer drug sensitivity.

Glucose Metabolism as a Therapeutic Target
The energy supply of tumor cells differs from that of normal cells.
This unique energy supply pathway is mainly due to increased
glycolytic enzyme expression and activity levels. Theoretically,
inhibiting specific glycolytic metabolic enzymes with high
expression levels can cut off the energy supply of tumor cells,
while normal tissues are not affected. When the glycolytic pathway
is inhibited, normal tissue cells can utilize fatty acid and amino acid
production through alternative pathways. Some glycolytic enzymes,
such as HK-II LDHA, and PKM2, are highly expressed inmalignant
tumors. These highly expressed glycolytic enzymes can be used as
targets for tumor treatment (143). Due to tumor cell heterogeneity
and TME variability, the expression and activity of glycolytic
enzymes may change. Consequently, the therapeutic effect of a
single glycolytic enzyme target may not be as good as that for the
combination of multiple glycolytic enzyme targets. Combinations
involving the inhibition of glycolysis and OXPHOS, or glycolysis
and glutaminolysis have been proven in multiple preclinical cancer
models to effectively suppress tumor growth (144–148). Glyoxalase I
(GLO I) is a rate-limiting enzyme that is involved in the
detoxification of cytotoxic methylglyoxal formed in glycolysis. The
combination of GLO I inhibitor with shikonin, a PKM2 specific
inhibitor, could suppress the cellular proliferation and induction of
apoptosis (149).

Various HK2 inhibitors have been identified, including 2-
deoxyglucose(2-DG), 3-bromopyruvate (3-BP), and lonidamine
(LND). In thyroid tumors, glycolytic inhibitors also show unique
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therapeutic effects. Glycolytic inhibition with 3-BP suppress
tumor growth and extends survival in a murine model of ATC
when combined with the ketogenic diet (150). It has been
previously shown that glycolytic inhibitors 2DG significantly
enhanced the antitumor effects of other medical treatments and
radiotherapy (151–154). Phase I/II clinical trials have been
performed for 2-DG as a single-agent therapy in solid tumors
and hormone-refractory prostate cancer. However, further
research was halted owing to the significant toxicities and
limited efficacy (NCT00633087) (155). LND also reached
phase II and III clinical trials for the treatment of several
tumor types but showed only modest clinical activity and a
Frontiers in Oncology | www.frontiersin.org 8
lack of specificity. Moreover, due to concerns regarding liver
enzyme abnormalities, further research was halted (156, 157).
Targeted therapy is a common treatment for thyroid tumors.
When blocking platelet-derived growth factor receptor by
imatinib, the pro-oncogene BRAFV600E promotes thyroid
tumor cell glycolysis via the upregulation of HK2 expression,
resulting in drug resistance. However, glucose uptake and
metabolism in thyroid tumor cells were downregulated when
BRAFV600E was blocked by vemurafenib. In terms of tumor
growth, combination therapy of imatinib and vemurafenib was
much more effective than single therapy and led to a near
abolition of the tumors (158). The combination of imatinib
FIGURE 3 | Cancer cell metabolism and crosstalk in the TME. Cancer cells undergo metabolic changes including activation of aerobic glycolytic, enhanced FA
synthesis and increased uptake of glutamine supply for bioenergetics through tricarboxylic acid (TCA) cycle and support biosynthesis of proteins. Nutrient depletion,
accumulation of ‘waste’ metabolites and aberrant signaling molecules in TME influence the function and proliferation of both cancer cells and immune or stromal
cells. Gln, glutamine; Glu, Glutamate; Cys, cysteine; GSH, glutathione; Cly, glycine; TG, triglyceride; FA, fatty acids; PPP, pentose phosphate pathway; NADH,
nicotinamide adenine dinucleotide; NADPH, nicotinamide adenine dinucleotide phosphate; HETE, thromboxane hydroxiepoxyeicosate-traenoic acid; PEG2,
prostaglandin E2; COX-2, cyclooxygenases-2; G-6-P, glucose-6-phosphate; IDO, Indoleamine 2, 3-dioxygenase; MCT, monocarboxylate transporter; GLUT,
glucose transporter; VEGF, vascular endothelial growth factor; LDHA, lactate dehydrogenase A; GS, glutamine synthetase; NFTA, nuclear factor of activated
T cells; AHR, aryl hydrocarbon receptor; A2AR, Adenosine 2A receptor; Csk, C-terminal Src kinase; Lck, lymphocyte-specific protein tyrosine kinase; Teff,
effector T cells; Treg, regulatory T cells.
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and HK2 inhibitors may solve the problem of drug resistance and
also provide better efficacy in TC.

LDH is a critical metabolic enzyme that is considered a hallmark
of aggressive malignancies. Radiotherapy is a common therapy in
thyroid cancer, indicating the combination therapy of LDHA
inhibitor and radiotherapy may be efficient in thyroid cancer.
Chen et al. find LDHA suppression monotherapy decreased
cellular proliferation and stunted tumor growth temporarily in
ATC but cannot achieve tumor cure, due to the maintenance of
residual viable cells. Only the combination therapy of chronic
LDHA suppression and radiation can achieve a functional cure
(159). Various LDHA inhibitors have been developed, such as
dichloroacetate (DCA), gossypol, oxamate and FX-11 (160–162).
The lactate transporter MCT links intracellular lactate with the
TME and plays an indispensable role in tumor lactate metabolism.
AZD3965 is an inhibitor of the MCT-1/MTC-2 lactate transporter
and reached phase I clinical trials for both solid tumors and large B-
cell lymphoma (NCT01791595). However, MCT inhibition also
impairs T cell proliferation (Table 2).

Amino Acid Metabolism as a Therapeutic Target
Amino acids are an essential component of tumor cells and are
closely related to tumor development. Thus, amino acid
metabolism may provide a new therapeutic perspective.
Frontiers in Oncology | www.frontiersin.org 9
Lasparaginase is approved by the Food and Drug Administration
for the frontline treatment of acute lymphoblastic leukemia (163).
Other treatments for amino acid deprivation have also shown
encouraging results in clinical trials in several solid malignancies
(164–167). The mitochondrial enzyme GLS plays a crucial role in
glutaminolysis. Among the GLS inhibitors, CB-839 is more potent,
selective and shows greater bioavailability. In phase I clinical trials,
CB-839 showed preliminary signs of clinical activity with an
acceptable safety profile in multiple tumor types including triple-
negative breast cancer, non-small cell lung adenocarcinoma, renal
cell carcinoma, mesothelioma, and tumors with mutations in
enzymes in the TCA cycle (NCT02071862) (168).

Since tumor cells require glutamine, one possible strategy is to
treat tumors by preventing or interfering with glutamine
metabolism by tumor cells. The blockade of glutamine in tumor-
bearing mice inhibited cancer cell oxidation and glycolytic
metabolism, resulting in hypoxia, acidosis, and reduced nutrient
consumption (117). However, some studies showed that increasing
the intake of glutamine in tumor-bearing rats did not elevate the
growth rate of tumors; moreover, clinical work has also shown that
glutamine supplementation in patients with tumors improved
chemotherapy efficacy and reduced the adverse reactions (169–
173). IDO, the ratelimiting enzyme in tryptophan catabolism, is
highly expressed in TC cells and suppresses the function of NK cells.
FIGURE 4 | Metabolism-related molecules is related to the aggressiveness of thyroid cancer and survival risk. GLUT, glucose transporter; LDHA, lactate dehydrogenase
A; PK, Pyruvate kinase; HK, hexokinase; SFA, saturated fatty acids; ASCT, amino acid transporter; FASN, fatty acid synthase; GLS1, glutaminase 1; GDH, glutamate
dehydrogenase; ACC2, Acetyl-CoA carboxylase 2; IDO,Indoleamine 2, 3-dioxygenase; SCD1, stearoyl-CoA desaturase-1; MUFAs, monounsaturated fatty acids.
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IDO inhibitors such as epacadostat have reached phase III trials and
show promising efficacy in combination therapies by linking
metabolism and immunomodulation. Therefore, IDO inhibitors
are likely to be useful for the treatment of thyroid tumors (174).

Lipid Metabolism as a Therapeutic Target
ACC is a rate-limiting enzyme for de novo lipid synthesis and
inhibition of fatty acid oxidation. Rescue of ACC2 may be a new
molecular strategy to overcome the resistance of refractory PTC to
BRAFV600E inhibitors (90). SCD is an aliphatic acyl desaturase that
catalyzes the transformation of saturated fatty acids into MUFAs by
inserting cis-double bonds at the D9 position of the carbon chain
(175). MUFAs play a role in cell growth, survival, differentiation,
metabolic regulation, and signal transduction. SCD has been
observed in a wide range of cancer cells (176–179) and this
increase is closely associated with cancer aggressiveness and poor
prognosis (180–183). Previous research established SCD reduces cell
proliferation and invasion by blocking cell migration and
membrane fluidity (184–187). In ATC, therapeutic and genetic-
Frontiers in Oncology | www.frontiersin.org 10
targeted inhibition of SCD enzyme activity promoted a significant
reduction in cell proliferation and induced cell death, while normal
thyroid cells were unaffected (91). SCD inhibitors such as SSI-4,
betulinic acid, and MF-438 that proved effective in antitumor effect
(188–190) may show a promising efficiency in the treatment of
thyroid cancer.
CONCLUSION AND PERSPECTIVE

The crucial of metabolic reprogramming in tumor development and
metastasis is increasingly recognized (Table 3). The complicated
relationship between tumor cell metabolism and the TME is also
important. Tumor cell metabolism can cause acidification of the TME
and can also recruit immune cells to change immune cell metabolism
in the TME. However, the immune microenvironment can also act
on tumor cells to promote the immune escape of tumor cells.

Although there has been some progress in the study of
metabolic reprogramming of TC in recent years, there remain
TABLE 2 | Metabolism-targeting cancer therapies.

Target pathway and
protein

Agent Study
phase

Effects Interventions References Status

Glucose
metabolism

HK2 2-DG Phase II Limited efficacy on tumor growth and significant
toxicities

Single agent NCT00633087 Terminated

LND Phase III Limited efficacy and produced more myalgias and
fatigue

Combined with epirubicin (150)

3-BP Preclinical Suppresses tumor growth and improves survival in
vivo

combined with the ketogenic
diet

(143)

MTC1 AZD3965 Phase I Single agent NCT01791595 Completed
LDHA DCA Phase I Single agent NCT01163487 Completed

Gossypol Phase I/II Safe and well tolerated but shown limited activity. Single agent (1153)
Oxamate Preclinical Inhibits the viability of cancer cells in a dose- and

time-dependent manner
(155)

FX-11 Preclinical Block aerobic glycolysis and growth cancer in vitro Single agent (154)

Amino acid
metabolism

GL1 CB-839 Phase II Combined with Paclitaxel NCT03057600 Completed
IDO Epacadostat Phase III Effect remains uncertain. Combined with

Pembrolizumab
NCT02752074 Completed

Indoximod Phase II Combined with
Chemoradiotherapy

NCT04049669 Recruiting

Lipid
metabolism

ACC ND-654 Preclinical Inhibits the tumor development in vivo, improve
survival rate

Single agent; combined with
the sorafenib

(68)

SCD SSI-4 Preclinical Regulate tumor-initiating cells and sorafenib
resistance

Combined with sorafenib (182)

Betulinic
acid

Preclinical Induces rapid cell death Single agent (184)

MF-438 Preclinical Achieve better control Combined with cisplatin (183)
December 2021 |
 Volume 11 | Art
TABLE 3 | Metabolic reprogramming between proliferation and metastasis in thyroid cancer.

Metabolism pathways Function Reference Evidence

Glucose metabolism LDHA Migration, invasion, tumor growth (26) In vivo and in vitro
HK2 Proliferation, migration (41) In vitro

Amino acid metabolism IDO Tumor growth and invasion (135) Clinical relevance

Lipid metabolism SREBP1, SCD, FASN and ACC Extrathyroidal extension, lymph node metastasis, migration and invasion (61) Clinical relevance,
in vitro

SCD1 Proliferation and viability (84) In vitro
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many gaps to fill. Some outstanding questions still need to be
addressed for the development of specific metabolic targeted
therapy. More studies are needed to determine how thyroid
tumor cell metabolism interacts with immune cells in the
microenvironment, which metabolic targets can be blocked
specifically for TC treatment, the possible side effects of
metabolism inhibitors, and the solutions to these challenges.
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