
1Scientific Reports | 7: 15188  | DOI:10.1038/s41598-017-15381-x

www.nature.com/scientificreports

Hybrid Interference Induced Flat 
Band Localization in Bipartite 
Optomechanical Lattices
Liang-Liang Wan1,2, Xin-You Lü1, Jin-Hua Gao1,2 & Ying Wu   1,2

The flat band localization, as an important phenomenon in solid state physics, is fundamentally 
interesting in the exploration of exotic ground property of many-body system. Here we demonstrate 
the appearance of a flat band in a general bipartite optomechanical lattice, which could have one or 
two dimensional framework. Physically, it is induced by the hybrid interference between the photon 
and phonon modes in optomechanical lattice, which is quite different from the destructive interference 
resulted from the special geometry structure in the normal lattice (e.g., Lieb lattice). Moreover, this 
novel flat band is controllable and features a special local density of states (LDOS) pattern, which 
makes it is detectable in experiments. This work offers an alternative approach to control the flat band 
localization with optomechanical interaction, which may substantially advance the fields of cavity 
optomechanics and solid state physics.

The electron localization in a crystal is an important phenomenon in solid state physics, which relates to many 
fundamental problems, e.g., the metal-insulator transition. Normally, the localization phenomenon is due to the 
presence of disorder, i.e., the celebrated Anderson localization1. But in some special crystal lattices, electrons 
can be localized without any disorder and form a completely flat band in the whole Brillouin zone, the reason of 
which is the destructive wave interference resulted from the lattice geometry2–4. This is just the flat band locali-
zation. Lieb, Kagome, Diamond, stub, and sawtooth lattices are some examples of the flat band lattices, and some 
general methods are proposed to design more lattice structures with flat bands5. That the flat band electrons are 
of special interest is because that, due to the quenched kinetic energy, tiny interaction can induce some exotic 
correlated ground states, such as ferromagnetism2,6–8, superconductivity9, and Wigner crystals10–12. However, 
though the flat band electrons have been intensively studied in last three decades, it has not been experimentally 
confirmed in natural materials due to the complexity of real materials.

Most recently, a essential progress about the flat band lattice has been achieved in artificial quantum lattice sys-
tems, where flat band lattices have been realized in experiment, and flat band localization is observed as well13–15.  
For example, it is reported that the Lieb lattice has been realized in various quantum systems, such as photonic 
crystals14–17, cold atoms18, artificial electron lattice on metal surface19,20. Interestingly, the flat band localization 
are clearly demonstrated in both the photonic crystals14,15,21 and the artificial electron lattice on metal surface22–24, 
while the flat band superconductivity is realized in the cold atom system18.

The cavity optomechanical system is a hybrid artificial quantum system combining the optical and mechan-
ical modes, which has developed rapidly in the last decade25–35. In particular, the realization of optomechanical 
crystals36–43 offers an alternative platform of investigating both light and sound propagation in optomechanical 
arrays. For example, slow light44, photon propagation45, optical solitons46 and polarizer47 have been proposed 
in the optomechanical arrays. Moreover, the optomechanical arrays also could exhibit the interesting quantum 
many-body physics48,49, e.g., the non-trivial topological phases of light and sound have been demonstrated50. A 
nature question is whether the optomechanical interaction will influence the flat band localization significantly.

Here, we investigate the flat band localization in the bipartite optomechanical lattice. Our main finding is that, 
instead of the destructive interference resulted from the lattice geometry, the hybrid photon-phonon-interference 
in optomechanical lattice can also induce the flat band localization. An immediate consequence is that, in the 
optomechanical lattice, the structure of the flat band lattice, as well as the corresponding band structures, can be 
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different from that in other lattices. This actually reflects the quantum interference characteristic of the optome-
chanical lattice.

Concretely, we propose the model of hybrid bipartite optomechanical lattice with one or two dimensional 
framework, whose unit cell consists of one optical sublattice and one optomechanical sublattice. A novel flat 
band is found, which is resulted from the hybrid interference between phonon and photon modes, and does not 
exist in other artificial quantum lattice systems. More interestingly, this new flat band corresponds to a special 
photon-phonon-localization pattern, i.e., photons are only localized on the optical sublattice, while phonons 
are only localized on the optomechanical sublattice. In the previous lattices which exist flat-band localization, 
excitations (photons or phonons) are only localized on one sublattice in comparison. This property can be used 
to identify this new flat band state in experiment. Furthermore, this new flat band together its special localization 
pattern is controllable by the driving laser applied into the bipartite optomechanical lattices, which is an obvious 
advantage compared with the previous flat band localization induced by the lattice geometry. Note that, for the 
case of two dimensional optomechanical lattice, we choose the optomechanical honeycomb and Lieb lattice as the 
examples. In the optomechanical Lieb lattice, we find three flat bands. We demonstrate that the three flat bands 
have two different origins. The middle one is the new flat band and it is because of the hybrid interference, and the 
others are due to the lattice geometry. The two kinds of flat band also have distinct photon-phonon-localization 
patterns.

Results
Bipartite optomechanical lattices.  We consider a bipartite optomechanical lattice, whose unit cell con-
sists of an optical sublattice (i.e., site A) and an optomechanical sublattice (i.e., site B). As shown in Fig. 1, this 
bipartite optomechanical lattice can have one or two dimensional framework. Applying a strong laser with fre-
quency ωl on the bipartite optomechanical lattice, the system Hamiltonian in a frame rotating with ωL reads51–54

∑= ∆ + Ω +
α β

α α β β
† †H a a b b H( ) ,

(1)i
i i i i

,
int

Figure 1.  Sketch of hybrid bipartite optomechanical lattices. The sketch of hybrid bipartite optomechanical 
lattices with (a) one dimension framework, and two dimension (b) honeycomb, (c) Lieb frameworks. They 
both are bipartite lattices, which can be separated into two sublattices, denoted A and B, C. The sublattice A 
only has the optical mode (pure optical site), while sublattice B or C has coupled optical and mechanical modes 
(optomechanical site). The lower illustration in (a) denotes the implementation of one dimensional hybrid 
lattice with the optomechanical crystals.
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where a ( †a ) and b ( †b ) are the annihilation (creation) operators of the optical and mechanical modes, respectively. 
The joint index (i, α) and (i, β) contain the subindexes α and β. The Hamiltonian can represent a one or two 
dimensional lattice by properly defining i, α and β. For the one dimension (1D) lattice shown in Fig. 1(a), α = A, 
B, and β = B, denoting A-sites and B-sites, respectively. And i indexes the unit cell. In words, for the case each site 
has a localized optical mode, which is evanescently coupled to the optical modes at adjacent sites. Its unit cell can 
be separated into two sublattice, the optical sublattice, site A and the optomechanical sublattice, site B. In the 
optomechanical sublattice, a localized mechanical mode couples to the optical mode in the same site. Extending 
to the case of two dimension (2D), two kinds of bipartite lattices are considered here, i.e., the hybrid honeycomb 
lattice and Lieb lattice, shown in Fig. 1(b,c). Now i denotes the unit cell, α = A, B, β = B correspond to the optom-
echanical honeycomb lattice. And α = A, B, C and β = B, C correspond to the optomechanical Lieb lattice, denot-
ing A-sites, B-sites and C-sites. Similar as the 1D case, the unit cell includes an optical sublattice and an 
optomechanical sublattice. Then the nearest neighbor optical hopping with strength j is considered and it is 
denoted by α α′i j, , , . The frequency detuning ∆ ≈ ω − ωc L with the cavity frequency ωc, and g is the linearized 
optomechanical interaction strength, which is much smaller than the mechanical frequency Ω.

In principal, the proposed hybrid bipartite optomechanical lattice is general and could be implemented in 
cavity (or circuit) QED system in the optical (or microwave) frequency range55. As shown in Fig. 1(a), the 1D 
optomechanical lattice could be realized in the optomechanical crystals36–43. The defects are generated by a appro-
priate local modification of the pattern of holes, which localizes the optical and mechanical modes on the crystals. 
The accessible system parameters for our model could be λ = 1,550 nm, πΩ = ./2 3 75 GHz, κ π ≈/2 900 MHz, 
γ π ≈/2 250 KHz, and κ≈g . Here λ, g are the optical wavelength and linearized optomechanical coupling 
strength under the condition of strongly optical driving, respectively, and κ, γ  are the optical and mechanical 
decay rate.

Flat band localization in one-dimension optomechanical lattice.  Hybrid interference between the 
optical and mechanical modes exists in the proposed bipartite optomechanical lattice, which ultimately induces a 
new flat band together with the photon and phonon localization.

In the case of 1D array, shown in Fig. 1(a), transforming to the momentum space, the Hamiltonian becomes

∑= ∆ + ∆ + Ω + + + . .† † † † †H a a a a b b Jfa a ga b H c(k) ( ),
(3)A A B B B B A B A B

k
k k k k k k, k k k k

by a Fourier transformation = ∑ − ⋅o e o
N n nk
1 ik Rn  (on is an arbitrary operator, N is the number of unit cells of the 

lattice). Here = +f e1 ik, and we have assumed the lattice constant is identical. Under the condition of ∆ = Ω, 
the band structure is obtained by diagonalizing the Hamiltonian (3) and it is given by

= ΩE (k) ,0

= Ω ± + .±E J f g(k) (k) (4)2 2 2

The eigenvalue =E (k) 00  corresponds to the appearance of flat band, which is clearly exhibited in Fig. 2(a). 
Normally, the lattice geometry in a pure photon or phonon 1D lattice will not induce the destructive interference, 
and hence no flat band appears in the normal 1D lattice. Moreover, Fig. 2 also shows a gap between the middle 
band and the up (or down) band, which is holden even when the middle flat band disappears under the condition 
∆ ≠ Ω. This gap is induced by the optomechanical interaction and its width is decided by the interaction 
strength.

It should be noticed that, formally, one may naively think this model is a stub lattice56–58 due to the similar 
Hamiltonian. However, the hybrid 1D optomechanical lattice has three fundamental distinctions comparing with 
the stub lattice. First, the flat bands in the two systems have different physical origins. In the stub lattice, the flat 
band results from the lattice geometry induced destructive interference. But in the 1D bipartite optomechanical 
lattice discussed above, the flat band is induced by the hybrid interference between two different species of mode, 
i.e., the optical and the mechanical modes. Second, in other artificial quantum lattice systems, e.g., the photonic 
crystal, once the stub lattice is constructed, the energy dispersion is fixed. However, as we mentioned above, the 
energy dispersion of the optomechanical lattice can be tuned by adjusting the laser detuning Δ. So, as illustrated 
in Fig. 2, the flat band here can be changed into a dispersive band, and vice versa. Finally, featuring the optome-
chanical system, the bipartite optomechanical lattice is a one-dimensional lattice. It is contrary to the stub lattice, 
which is a quasi-one-dimensional lattice.

Different from the previous flat band in the lattice with special geometry structure (e.g., 2D Lieb lattice), this 
flat band is induced by the photon-phonon hybrid interference between transitions ↔a aA B and ↔b aB B, which 
does not exist in the pure photon (or phonon) 1D lattice. This ultimately leads to the result that it has distinguish-
able photon-phonon-localization property charactered by the special LDOS pattern (see Figs 3 and 4).

Specifically, the photonic LDOS of sites A, B, and the phononic LDOS of site B (see Methods) are
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Figure 2.  Energy structure of one dimensional optomechanical array lattice. Energy structure of one dimensional 
optomechanical array lattice when (a) ∆ = Ω and (b) ∆ = Ω − J. The system parameters are = .g J0 01 .

Figure 3.  The LDOS of 1D array lattice. The LDOS of 1D array for different decay rate k. The local photon or 
phonon DOS of sites A and B under the condition (a,c,e) ∆ = Ω and (b,d,f) ∆ = Ω − J. Here the point ω = Ω 
corresponds to the flat band in Fig. 2(a). The parameters are same as that in Fig. 2 except for γ = − J10 3 .
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Figure 4.  The LDOS pattern in real space of 1D array. (a,b) correspond to the case of ω = Ω, ω = Ω − J, 
respectively, under ∆ = Ω. And (c) describes the LDOS pattern at ω = Ω, ∆ = Ω. The cycles denote the 
photonic LDOS pattern and the rectangles denote phononic LDOS pattern. (a) shows the special photon-
phonon flat band localization, while the localization does not exist in (b) at ω = Ω − J under ∆ = Ω. (c) shows 
excitations are dispersive, meaning the disappearance of the special localization. Other parameters are same as 
that in Fig. 3 except for κ = . J0 1 .

Figure 5.  Energy structure of 2D optomechanical honeycomb lattice. Energy structure of 2D optomechanical 
honeycomb lattice under the condition (a,c) ∆ = Ω, (b,d) ∆ = Ω − J. The system parameters are same as that 
in Fig. 2.
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where ω= − ∆ + κt i1 2
, ω= − Ω + γt i2 2

, and k (γ) is the dissipation of the optical (mechanical) mode. Here 
the subscripts O and M denote the photon and phonon, respectively. It is shown from Figs 3 and 4 that, when the 
system energy is at the flat band [corresponding to ω = Ω in Fig. 3(a,c,e)] under the condition ∆ = Ω, photons 
are only localized in the optical sublattice (i.e., A-sites), while phonons are only localized in the optomechanical 
sublattice (i.e., B-sites). This special LDOS pattern is detectable experimentally by probing the photon and pho-
non excitations in the lattices, and it offers a simple method to prove the emergence of this new flat band in our 
model. When the resonant condition ∆ = Ω is violated, the hybrid photon-phonon-interference is destroyed, 
leading that the flat band localization disappear [see Figs 2(b), 3(b,d,f) and 4(c)]. This demonstrates that the flat 
band localization in our model is controllable via adjusting the frequency of driving laser. Otherwise, it can be 
seen that the localization would not emerge when the system energy is not at ω = Ω, even if the condition ∆ = Ω 
is satisfied, as shown in Fig. 4(b).

Figure 6.  The LDOS of 2D honeycomb lattice. The LDOS of 2D optomechanical honeycomb lattice for 
different decay rate κ. The local photon or phonon DOS of sites A and B under the condition (a,c,e) ∆ = Ω and 
(b,d,f) ∆ = Ω − J. Here the point ω = Ω corresponds to the flat b and in Fig. 5(a,c). The parameters are same 
as that in Fig. 5 except for γ = − J10 3 .
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Flat band localization in two-dimension optomechanical lattice.  In principle, the presented flat 
band localization is general and it also could be realized in a two-dimension bipartite optomechanical lattice. 
Here we choose the 2D honeycomb and Lieb lattices as the examples. Now the lattice periodicity leads to 

= = + +⋅ ⋅f e e(k ) 1 ) 1 ik a ik a1 2 [with the basis vector =a (1,0)1 , = ( )a ,2
1
2

3
2

] for the honeycomb lattice, and 

= + ⋅f e(k) 1j
ik a j, =j 1,2 [with =a (1,0)1 , =a (0,1)2 ] for the Lieb lattice.

In Figs 5–8, we plot the energy structure and the LDOS pattern of the hybrid honeycomb and Lieb optome-
chanical lattices by numerically solving system Hamiltonian. Firstly, the flat bands are exhibited under the reso-
nant condition ∆ = Ω, as shown in Fig. 5(a,c) and the middle flat band in Fig. 7(a,c). Note that the lattice 
geometry in a normal honeycomb lattice will not induce the destructive interference, and hence no flat band 
appears in the normal photon (or phonon) honeycomb lattice. Even for the normal Lieb lattice, there only is one 
flat band induced by the destructive interference resulted from its lattice geometry, and it will be holden when the 
geometry structure is not changed.

Secondly, similar as the case of 1D lattice, the flat band and the middle flat band, respectively, appearing in the 
optomechanical honeycomb and Lieb lattices are induced by the hybrid photon-phonon-interference. Because 
they corresponds to the same photon-phonon-localization pattern shown in the 1D optomechanical lattice, i.e., 
photons are only localized in the optical sublattice and phonons are localized in the optomechanical sublattice. 
This is quite different from the flat band localization induced by the destructive interference resulted from Lieb 
geometry, i.e., the excitations (photon or phonon) are only localized in the sublattice including sites B and C. This 
can be seen more clearly by comparing the points ω = Ω (corresponding to the new flat band localization) and 
ω = Ω ± g  (corresponding to the flat band localization in normal Lieb lattice) of Fig. 8(a,c,e).

Lastly, Figs 5–8 also show that the hybrid-interference-induced flat band localizations in 2D optomechanical 
lattices can be controlled by tuning the driving frequency applied in the optomechanical sites (i.e., changing Δ). 
This also can not be applied into the flat band localizations in the normal Lieb lattice induced by its special geom-
etry structure, as shown in Figs 7(b,d) and 8(b,d,f).

In addition, Fig. 9 plots the LDOS pattern in real space. It can been seen that excitations are dispersive, mean-
ing that the localization does not exist for the case of ω = Ω ± J, as shown in Fig. 9(a,d). And Fig. 9(b,c) show two 
flat band localizations resulted from distinct origins, which corresponding to ω = Ω, and ω = Ω + g . Photons 
are localized at optical sublattice (i.e., A-sites), and phonons are localized at optomechanical sublattice (i.e., 
B-sites) at ω = Ω; i.e., the photon-phonon flat band localization in hybrid Lieb lattice. And Fig. 9(c) shows the 
intrinsic flat-band localization due to its geometry, in which photons and phonons are localized at optomechani-
cal sublattices (i.e., B, C-sites).

Discussion
We have investigated the flat band localization in the bipartite optomechanical lattice both in the cases of 1D and 
2D, including a pure optical sublattice and an optomechanical sublattice. We shown that a new flat band together 
with a special photon-phonon-localization property is exhibited under the optimal photon-phonon-resonant 
condition i.e., ∆ = Ω. This leads to the results that the present flat band localization is detectable experimentally, 
and can be easily controlled by tuning the frequency of driving laser applied into the optomechanical sublattice. 

Figure 7.  Energy structure of 2D optomechanical Lieb lattice. Energy structure of 2D optomechanical Lieb 
lattice under the condition (a,c) ∆ = Ω, (b,d) ∆ = Ω − J. The system parameters are same as that in Fig. 2.
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This study might inspire further explorations regarding the connection bewteen cavity optomechanics and the 
many-body physics.

Methods
Here we will examine the local density of states (LDOS) of lattice sites for both photon ρ ω αj( ; )O  and phonon 
ρ ω βj( ; )M . In experiments, the LDOS of the photon at each site can be directly measured via a auxiliary probe 
laser. The photon and phonon LDOSes are formally defined as

ρ ω α ω α α= −j G j j( ; ) 2Im ( ; , ),O OO
R

ρ ω β ω β β= −j G j j( ; ) 2Im ( ; , ), (6)M MM
R

where ω α αG j j( ; , )OO
R  and ω β βG j j( ; , )MM

R  are the retarded Green’s function of photons and phonons in real space, 
respectively. And the definitions are

α α θ′ ′ ′ = − − ′ 〈
′ ′

′ 〉α α
†G j t j t i t t a t a t( , ; , ) ( ) [ ( ), ( )] ,OO

R
j j

Figure 8.  The LDOS of 2D Lieb lattice. The LDOS of 2D optomechanical Lieb lattice for different decay rate κ. 
The local photon or phonon DOS of sites A, B and C under the condition (a,c,e) ∆ = Ω and (b,d,f) ∆ = Ω − J. 
Here the points ω = Ω (indicated by red dashed-dotted line) and ω = Ω ± g  (indicated by blue dotted lines) 
correspond to the middle and the up (or down) flat bands in Fig. 7(a,c), respectively. Note that, sites B and C 
have same photon and phonon localization properties. The parameters are same as that in Fig. 7 except for 
γ = − J10 3 .
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β β θ′ ′ ′ = − − ′ 〈
′ ′

′ 〉.β β
†G j t j t i t t b t b t( , ; , ) ( ) [ ( ), ( )] (7)MM

R
j j

To calculate the Green’s functions, we start from the Heisenberg-Langevin equation of motion in momentum 
space,

ψ ψ ξ∂ = +i M , (8)t

where ψ is the vector of the photonic and phononic annihilation operators of lattices, and ξ is the vector of the 
noise operators of baths. Their specific formula depends on the lattice considered. For example, 
ψ = a a b( , , )A B B

T
k k k  and ξ = a a b( , , )A B B

T
k
in

k
in

k
in  for the 1D case we consider. In k space, the retarded Green’s func-

tion θ ψ ψ′ = − − ′ 〈 ′ 〉†G t t i t t t t(k; , ) ( ) [ ( ), ( )]R  satisfied

δ∂ − ′ = − ′ .i M G k t t t t( ) ( ; , ) ( ) (9)t
R

Then the retarded Green’s function can be obtained via Fourier transformation:

ω ω= − .−G M( ; k) ( ) (10)R 1

The diagonal components of ωG ( ; k)R  matrix give the photonic and phononic retarded Green’s functions. With 
Fourier transformation, the photonic and phononic LDOSes can be expressed as:

∑ρ ω α ω α= −j
N

G( ; ) 2 Im ( ; k ),O OO
R

k

∑ρ ω β ω β= −j
N

G( ; ) 2 Im ( ; k ),
(11)M

R

k
MM

where N is the number of unit cells of lattices.
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