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MOTIVATION The treatment of tuberculosis (TB), which kills 1.8 million each year, remains difficult, espe-
cially with the emergence of multidrug resistant strains ofMycobacterium tuberculosis (Mtb). While there is
an urgent need for new drug regimens to treat TB, the process of drug evaluation is slow and inefficient,
owing to the slow growth rate of the pathogen, the complexity of performing bacteriologic assays in a
high-containment facility, and the context-dependent variability in drug sensitivity of the pathogen. The al-
gorithms ‘‘DRonA’’ and ‘‘MLSynergy’’ described here use transcriptomes of drug-treated Mtb to predict
drug response and drug interaction in diverse contexts.
SUMMARY
There is an urgent need for new drug regimens to rapidly cure tuberculosis. Here, we report the development
of drug response assayer (DRonA) and ‘‘MLSynergy,’’ algorithms to perform rapid drug response assays and
predict response of Mycobacterium tuberculosis (Mtb) to drug combinations. Using a transcriptome
signature for cell viability, DRonA detects Mtb killing by diverse mechanisms in broth culture, macrophage
infection, and patient sputum, providing an efficient and more sensitive alternative to time- and resource-
intensive bacteriologic assays. Further, MLSynergy builds on DRonA to predict synergistic and antagonistic
multidrug combinations using transcriptomes of Mtb treated with single drugs. Together, DRonA and MLSy-
nergy represent a generalizable framework for rapid monitoring of drug effects in host-relevant contexts and
accelerate the discovery of efficacious high-order drug combinations.
INTRODUCTION

New treatment regimens containing multiple drugs are needed

to achieve rapid and complete clearance of Mycobacterium

tuberculosis (Mtb), the causative agent of tuberculosis (TB).

However, the discovery of effective multidrug combinations is

a challenging endeavor, burdened by the enormous number of

testable combinations (e.g., a collection of 1,000 compounds

yields �500,000 pairwise combinations and exponentially larger

numbers of higher-order combinations). Multicomponent drug

discovery is particularly challenging for Mtb, a slow-growing

pathogen that is capable of generating phenotypically heteroge-

neous subpopulations. These phenotypically diverse subpopu-

lations allow Mtb to persist and survive the variable conditions

encountered during infection as well as thwart drug treatment.
Cell Repo
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Because of drug-tolerant subpopulations within the host, a large

proportion of drug regimens that are effective in killing Mtb

in vitro are futile in patients (Ji et al., 1996; Sarathy et al., 2018,

2019). Suffice it to say, new approaches are needed to reduce

the search space and prioritize combinations for experimental

testing, while also taking into account the host context and

different subpopulations of Mtb.

Another challenge in the development of new antitubercular

drug regimens is the reliance on growth assays to monitor treat-

ment response. Current methods to monitor treatment response

include counting of colony forming units (CFUs) on solid agar

platesandmeasuring the time it takes for a sample in liquidculture

to become culture positive forMtb, in what is termed time to pos-

itivity (TTP) assay. Both CFU counting and TTP have their draw-

backs including loss of sensitivity, vulnerability to contamination,
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and lengthy time tomeasure results. Furthermore, cultureonsolid

media or in liquid media requires actual growth, which limits the

detection of mycobacterial subpopulations that are viable but

not actively growing (Diacon et al., 2012). Instead, profiling 16S ri-

bosomal RNA as a proxy for Mtb load in sputum is emerging as a

more sensitive technique that addresses the shortcomings of

growth-based assays (Honeyborne et al., 2011, 2014). This is a

promising development because information in RNA can be

amplified using technologies such as probe capture and PCR to

develop highly sensitive methods for investigating the drug

response of Mtb, especially from patient samples. Furthermore,

genome-wide expression studies of Mtb from broth, sputum,

and in vivo infections have been used to uncover physiologic

states and transcriptional mechanisms of drug tolerance (Honey-

borne et al., 2016; Peterson et al., 2019). Here, we have investi-

gated if transcriptome profiling of Mtb can report on the effect

of drug treatment, and whether this information can also enable

in silico identification of drug combinations that are likely to

have synergistic or antagonistic effects on the pathogen.

We report the development of a framework of two algorithms

drug response assayer (DRonA) and ‘‘MLSynergy’’ that can use

transcriptomes to predict Mtb’s response to drug treatment and

classify two- and three-drug combinations based on the likeli-

hood of synergistic or antagonistic action on Mtb. DRonA is a

machine learning algorithm that was trained on publicly available

transcriptomes of Mtb cultured in diverse conditions (with and

without perturbation) to detect a gene signature for loss of Mtb

viability. Using drug-induced transcriptional changes, DRonA

calculates a cell viability score (CVS), which distinguishes the

extent of a drug’s bacteriostatic or bactericidal activity on Mtb.

We demonstrate that DRonA accurately detects within the tran-

scriptome profile of drug-treated Mtb evidence for loss of bacte-

rial viability, regardless of the drug’s mechanism of killing.

Furthermore, DRonA was equally accurate in determining

drug-induced viability reduction in Mtb from broth culture,

macrophage infection, and patient sputum. Finally, MLSynergy

uses transcriptomes from single-drug treatment to predict the

interaction of drugs in combination. Using the ratio of the ex-

pected CVS (based on CVSs of individual drugs) and the pre-

dicted CVS (based on the inferred multidrug transcriptome)

calculated by DRonA, MLSynergy can distinguish between syn-

ergistic and antagonistic combinations. We demonstrate that

MLSynergy accurately classified experimentally determined

synergistic and antagonistic combinations. Thus, the DRonA/

MLSynergy framework can accelerate antitubercular drug dis-

covery by reducing the reliance on growth-based treatment

response assays and guiding the experimental assessment of

novel drug combinations.

RESULTS

DRonA detects signatures for loss of viability within
transcriptomes of Mtb, irrespective of mechanism of
killing
To investigate whether Mtb viability can be deciphered from its

transcriptome state, we sought to define a classifier that could

accurately identify transcriptomes of viable Mtb. We hypothe-

sized that the degree of deviation of a transcriptome from the
2 Cell Reports Methods 1, 100123, December 20, 2021
boundary defined by the above-mentioned classifier would indi-

cate the loss of viability of Mtb cells. Further, we hypothesized

that the loss of viability would be agnostic of the inhibitory effect,

making it possible to predict drug-mediated killing, irrespective

of the mechanism of action (Figure 1). While there are many

good classification techniques (e.g., artificial neural networks,

decision trees, Bayesian classifiers), the support vector machine

(SVM) algorithm is one of the best techniques to optimize the ex-

pected solution (i.e., identifying a signature of viable states of

Mtb) with limited datasets. Moreover, classification based on

SVM offers potential for feature analysis to identify specific

genes whose expression levels are diagnostic of the viability

state of Mtb. Therefore, we trained a single-class support vector

machine (SC-SVM) using a compendium of 3,151 transcrip-

tomes of Mtb grown in diverse conditions to accurately identify

the transcriptomes that belong to ‘‘viable’’ states of Mtb. The

compendium of 3,151 transcriptomes was compiled from 173

studies available in the Gene Expression Omnibus (GEO). These

studies used microarray and RNA sequencing (RNA-seq) to

assess gene expression changes in Mtb from various growth

medium compositions, culture conditions, and drug treatment

(Table S1). Batch effects and platform-specific bias across the

transcriptome profiles were corrected with rank normalization,

and each profile was labeled as ‘‘viable,’’ ‘‘non-viable,’’ or ‘‘un-

classified’’ by manual inspection of the associated metadata.

Specifically, 24 transcriptomes ofMtb cultured in optimal growth

conditions (mid-log phase of growth in 7H9 nutrient-rich media,

incubated at 37�C with aeration) were labeled as ‘‘viable,’’ and

193 transcriptomes of Mtb cultures treated with 17 different

drugs at >13 MIC50 for >12 h were labeled as ‘‘non-viable’’.

The remaining 2,319 transcriptomes were labeled as ‘‘unclassi-

fied.’’ The labeled transcriptome compendium was used for

SC-SVM training, which was performed to broaden the classi-

fier-defined boundary of viability by iteratively including tran-

scriptomes from the ‘‘unclassified’’ set that are from viable Mtb

adapted to non-lethal, sub-optimal growth conditions (see

STAR Methods for details). The classifier was iteratively trained

on the ‘‘viable’’ set until addition of transcriptomes from the ‘‘un-

classified’’ set caused a drop in its performance in accurately

classifying viable and non-viable transcriptomes (Figure S1).

The final classifier was trained on 994 transcriptomes (Table

S1) of Mtb from diverse growth conditions, including log phase,

vehicular control samples, nutrient starvation, low pH, hypoxia,

and intracellular growth. As such, the SC-SVM classifier identi-

fied Mtb transcriptomes from slow-growing (i.e., dormancy-

inducing), but viable conditions. In contrast, the excluded

transcriptomes (total 1,940) (Table S1) were from stressful condi-

tions (e.g., drug treated, heat treated, amino acid starved) and le-

thal genetic perturbations (e.g., phoP, espR, mihF mutants) that

reduced cell viability in Mtb cultures (Foddai et al., 2010; Oder-

matt et al., 2018; Pérez et al., 2001; Roy et al., 2020; Tiwari

et al., 2018).

The linear SC-SVM classifier, named drug response assayer

(DRonA), can take as input transcriptomes of Mtb to calculate a

CVS (see STAR Methods for details). The calculated CVS is pro-

portional to the deviation of a given transcriptome from the lower

limit of the classifier-defined viable transcriptome space. This

lower limit is set as the cell viability threshold (cell viability



Figure 1. Overview schematic of DRonA/MLSynergy framework

DRonA is a SC-SVM that was trained on transcriptomes from viable Mtb

cultures. DRonA was trained through an iterative process to define a region

in the hyperplane that classifies transcriptomes from Mtb grown in varying

growth conditions as viable and distinguishes them from non-viable tran-

scriptomes (i.e., drug treated at >MIC50 concentration). DRonA takes tran-

scriptomes as input and outputs a CVS, which is the empirical distance from

the viable class and indicative of efficacious drug treatment. Using an in-

ferred transcriptome of a drug combination from single-drug tran-

scriptomes, MLSynergy predicts the outcome of the drug interaction.
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threshold = �3.5e10), below which a CVS indicates a transcrip-

tomesignature of nonviableMtb.Using an independent compen-

diumof 72 transcriptomes generated for this study (Table S2), we

ascertained that the CVS scoring scheme of DRonA accurately

classified as ‘‘viable’’ (i.e., with a CVS >�3.5e10) all 27 transcrip-

tomes of Mtb grown in 7H9 medium in the absence of drugs. By

contrast, DRonA predicted loss of viability (CVS < �3.5e10) from

transcriptomes of Mtb cultures treated for 72 h in 7H9 growth

medium with each of the seven frontline TB drugs at R MIC50

concentration (p value < 0.001, Figure 2A). As expected, pyrazi-

namide treatment at 3.0 mg/mL was not predicted to reduce

the viability ofMtb (Peterson et al., 2015). Next,we tested the per-

formance of DRonA in predicting Mtb viability within an intracel-

lular host context, using as input 39 transcriptomes of Mtb from

naive, lipopolysaccharide (LPS)-activated, and drug-treated in-

fected macrophages of J774A.1 lineage (Table S2) (Liu et al.,

2016). Again, DRonA correctly classified the transcriptomes

from untreated Mtb as viable and the drug-treated transcrip-

tomes as non-viable (Figure 2B). Moreover, DRonA detected

the known increase in the intracellular efficacy of pyrazinamide

(Salfinger et al., 1990; Zhang et al., 2002) and also the decreased

efficacy of rifampicin (Adams et al., 2011) in killing Mtb within

macrophages. DRonA also detected a loss in the viability of

Mtb within interferon-gamma-activated macrophages upon

LPS treatment (Fang et al., 2020). Together this demonstrates

that DRonA was able to identify non-viable transcriptomes, irre-

spective of the context and underlying mechanism of killing

(i.e., whether immune or drug induced). Finally, we tested the per-

formance of DRonA in predicting drug response within TB pa-

tients, using as input 16 transcriptomes of Mtb from the sputum

of eight patients at the start of and after 7 or 14 days of successful

TB treatment with isoniazid (H), rifampicin (R), pyrazinamide (Z),

and ethambutol (E) (Honeyborne et al., 2016). DRonA efficiently

differentiated cell viability from theMtb transcriptomes collected

from patients on day 0 from transcriptomes collected on day 7 or

14 of drug treatment (p value < 0.01) (Figure 2C), demonstrating

that DRonA can detect drug treatment response from bacterial

RNA in patient sputum.

DRonA can estimate the decline in CFUs upon drug
treatment
We next tested whether the CVS was proportional to the magni-

tude of drug effects based on CFU assessment. We compared

DRonA-generated CVSs with the relative CFUs observed after

Mtb was treated for 24 and 72 h with seven frontline TB drugs

at various concentrations and conditions (Tables S3 and S4).

The CVS scores calculated from transcriptomes of both un-

treatedMtbcultures and those treatedwith drugs at <MIC50 con-

centrations were higher than the viability threshold. Although, the

inferred CVS from cultures treated with <MIC50 drug was less

than the CVS of untreated cultures (difference in average =

�3.53 e10, p value < 0.01), indicating amoderate loss of viability.

In contrast, the CVS scores calculated from transcriptomes of

Mtb cultures treated with RMIC50 concentration of drug were
MLSynergy uses the Loewe additivity principle and calculates the ratio of

predicted CVS to expected CVS to determine synergy or antagonism for

drug combinations.
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Figure 2. DRonA-generated CVSs for transcriptomes of Mtb sourced from broth culture, macrophage infection, and patient sputum

(A) CVSs for transcriptomes of Mtb cultures grown in 7H9-rich media with or without drug treatment for 72 h.

(B) CVSs for transcriptomes of Mtb cultured in 7H9 broth with drug treatment for 24 h and macrophage with or without drug treatment for 24 h. Circles with black

border indicate transcriptomes from interferon-gamma-activated macrophages with lipopolysaccharide treatment.

(C) CVSs for transcriptomes of Mtb in patient sputum collected at the start and end of 7 or 14 day chemotherapy with HRZE: isoniazid (H), rifampicin (R), pyr-

azinamide (Z), and ethambutol (E). Red dashed line is the cell viability threshold (�3.5e10), below which the samples are considered to be non-viable. Black dot

and error bars indicate themean and standard deviation away from themean. Statistical significance (black dashed line) was calculated as p value with Student’s

t test. ***: p value < 0.001.
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consistently below the viability threshold. Furthermore, for both

Mtb grown in 7H9 medium and within macrophages, the reduc-

tion in CVS was proportional to the decrease in CFU for most

drugs (Figures 3 and S2), with the exception of bedaquiline. It is

known that bedaquiline kills Mtb relatively slowly compared

with other frontline drugs and could explain the discord between

CFU and CVS within 72 h of treatment (Andries et al., 2005; Koul

et al., 2007, 2008, 2014; Peterson et al., 2016). It is remarkable

that despite the slow bactericidal activity of bedaquiline, its lethal

effect was captured in transcriptome changes at a significantly

earlier time point, and we still observed a significant correlation

between relative CFUs and CVS across all drug treatments

(r = �0.9, p value < 0.001).

A notable disadvantage of performing drug response assess-

ment via CFU counting is the limitation that it only measures cul-

turable bacteria (Dusthackeer et al., 2019). Mtb from in vivo

models of latent TB infection are non-culturable and require

resuscitation-promoting factors or conditions to resume growth

(Biketov et al., 2007; Dhillon et al., 2004). Thus, CVS scores deter-

mined using mRNA signatures represent a comprehensive assay

of drug effects on dormant Mtb that are unable to grow on solid

medium but retain full potential of recovering to a physiologically

active state. To test this hypothesis, we investigated the accuracy

of DRonA in predictingMtb killing by a moderate concentration of

rifampicin (5 mg/mL) in potassium-deficient growthmedium (Igna-

tov et al., 2015). Mtb shifts to a dormant state that is unable to

grow on solid medium, but able to recover and proliferate in albu-

min, dextrose, and sodium chloride (ADC)-supplemented Sauton
4 Cell Reports Methods 1, 100123, December 20, 2021
medium containing potassium (Salina et al., 2019). The results

demonstrated that CFU counting overestimated rifampicin-treat-

ment-induced killing of the pathogen, as demonstrated by a min-

imum probable number (MPN) performed in the same context in

ADC-supplemented liquid Sauton medium. Notably, similar to

MPN results, therewas no significant drop in CVS, demonstrating

that DRonA accurately predicted the overall drug response in cul-

tures that consist of non-culturable Mtb (Figure 4).

MLSynergy accurately predicts synergistic and
antagonistic drug combinations from transcriptomes of
single-drug-treated Mtb
Given that DRonA can detect Mtb’s response to drug treatment

from gene expression data, we investigated if DRonA could be

used to accelerate multicomponent drug discovery by predicting

the outcome of drug interactions from single-drug-treated tran-

scriptomes. To do this, we developed an approach to infer the

transcriptomes of multidrug treatments. Specifically, we inferred

the transcriptome of multidrug combinations by triangulation

(see STAR Methods for details) of the respective transcriptomes

obtained from single-drug-treated cultures of Mtb and then

used the inferred multidrug transcriptome with DRonA to predict

the CVS of the multidrug combination (i.e., the ‘‘predicted CVS’’).

Transcriptomes used for prediction of drug interactionswere from

Mtb treatedwith single drugs inmatched experimental conditions

(7H9medium and 72 h drug treatment). Using this method to pre-

dict the CVS of multidrug combinations, we developed a para-

metric method, ‘‘MLSynergy’’, to predict the interaction outcome



Figure 3. Correlation between CVS and rela-

tive CFU with and without drug treatment

Relative CFU was calculated in relation to 0 h (prior

to drug or vehicle control treatment). Numbers

associated with the points indicate specific drug

treatment time and concentrations found in Table

S3. Relative CFUs for the treatments in Table S3

were calculated with time-kill assay and are given in

Table S4. Solid blue line denotes the Pearson’s

correlation between CVS and relative CFU. Signifi-

cance was calculated as the average correlation

coefficient, r, from 100 iterations performed with

70% randomly selected data. Shaded blue region

denotes the variation in r from 100 iterations. Black

dotted line denotes 50%growth inhibition from drug

treatments and its corresponding CVS threshold

(�2.25e10). Dashed red line indicates bactericidal

activity and its corresponding CVS threshold

(�3.5e10).
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of the two- and three-drug combinations.MLSynergy predicts the

synergy or antagonism of multidrug combinations based on the

Loewe additivity principle (Loewe, 1928) by calculating the ratio

of predicted CVS to expected CVS, where the ‘‘expected CVS’’

for a drug combination is the average ofCVSs from respective sin-

gle-drug treatments (Figure 1). For example, the predicted CVS of

the antagonistic combination linezolid and moxifloxacin (Cokol

et al., 2017; Deshpande et al., 2016) is greater than the expected

CVS and lies above the additive plane (Figure 5A), whereas the

predicted CVS of the synergistic combination linezolid and POA

is less than the expected CVS and lies below the additive plane

(Figure 5B). Finally, the predicted CVS of linezolid with itself is

the same as the expected CVS and lies on the additive plane,

consistent with the Loewe additivity principle, which states that

a drug in combination with itself is additive in interaction (Loewe,

1928) (Figure 5C). As such, an MLSynergy score <1 predicts that

the drug interaction is synergistic, and a score >1 indicates an

antagonistic drug interaction. We calculated MLSynergy scores

for all two- and three-drug combinations of eight frontline drugs

(Table S2). We compared MLSynergy predictions of 26 two-

drug and 40 three-drug combinations of the eight frontline drugs

with their experimentally determined interaction, quantified by

fractional inhibitory concentrations (FICs) (Larkins-Ford et al.,

2021). This comparative analysis demonstrated that MLSynergy

was >90% accurate in predicting synergistic and antagonistic ef-

fects of two- and three-drug combinations (Figure 5D and 4E).

Moreover, MLSynergy scores were highly correlated with the

FIC values (r = 0.61, p value < 0.001, Figure S3). Interestingly,

three two-drug combinations (identified with red font in Figure

5D) were predicted as synergistic by MLSynergy, but were deter-

mined to be antagonistic by DiaMOND assay (Larkins-Ford et al.,

2021). Notably, these combinations were previously determined

to be synergistic by other studies (Cokol et al., 2017; Diacon

et al., 2012; Maltempe et al., 2017), suggesting that the effect

of their drug interaction could be highly dependent on the
Cell Report
assay method and conditions. Finally, we

checked the ability ofMLSynergy to predict

condition-dependent drug interactions in

Mtb, using as input 22 transcriptomes of
Mtb from untreated and drug-treated infected macrophages of

J774A.1 lineage (Table S2) (Liu et al., 2016). We predicted drug

interaction for two- and three-drug combinations of isoniazid,

rifampicin, and pyrazinamide in both broth culture and macro-

phages and compared the MLSynergy predictions with their

experimental FIC values (Larkins-Ford et al., 2021) (Table S5).

MLSynergy predicted that all the drug combinations are synergis-

tic in 7H9 media and turn antagonistic in macrophage. Similarly,

the experimental results found that mostly all the drug combina-

tions (with the exception of isoniazid + rifampicin) are synergistic

in broth and antagonistic in macrophage. This demonstrates that

MLSynergy is robust to the context in which a drug effect is

measured, and it can predict condition-dependent drug interac-

tions. The benefit of MLSynergy to perform condition-dependent

predictions will become clearer upon further availability of drug-

treated transcriptomes of Mtb from macrophages and other

in vivo contexts.

DISCUSSION

Here, we report the first machine learning framework for drug

response prediction in Mtb. DRonA enables efficient prediction

of cell viability from transcriptomic signatures of perturbation,

including drug treatment. Using DRonA estimates of cell viability

from single-drug transcriptomic data, MLSynergy can then

predict synergy and antagonism of antitubercular drug combina-

tions. Our analysis using DRonA found a strong association be-

tween in silico estimates of cell viability following drug treatment

and experimentally observed reduction in CFUs. Moreover, the

loss of viability captured by DRonA from Mtb transcriptomes of

patients undergoing HRZE treatment supports the clinical utility

of our approach. Finally, we report several synergistic drug com-

binations, suggesting that the DRonA/MLSynergy framework is a

promising tool for the prioritization of new multicomponent drug

regimens. While we validated predictions of two- and three-drug
s Methods 1, 100123, December 20, 2021 5



Figure 4. Comparison of CVS from DRonA

with bacteriological assays determined by

most probable number (MPN) assay and col-

ony forming unit (CFU) enumeration fromhet-

erogeneous K+ starved cultures of Mtb

Transcriptomes for DRonA prediction were ob-

tained from GEO accession number GSE66408 and

viable cell counts according to MPN and CFU

counting assays were obtained from Ignatov et al.

(2015). Log phase is the exponentially growing cul-

tures of Mtb collected prior to K+ starvation, and

early, middle, and late dormant are the rifampicin

(5 mg/mL)-treated cultures collected after 10, 20,

and 30 days of K+ starvation. Red, blue and grey

dots indicate mean, and error bars indicate stan-

dard deviation from themean. The dashed red line is

the CVS threshold (�3.5e10) from DRonA and in-

dicates loss of cell viability.
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interactions, our framework is generalizable for higher-order

combinations.

The suitability of using the transcriptome as a reflection of Mtb

viability was studied by treating Mtb with seven frontline drugs

and isolating RNA for transcriptome profiling, while also evalu-

ating cell viability by CFU. The DRonA predicted the CVS of

Mtb exposed to bactericidal (i.e., >MIC50) concentrations of

drugs were below the cell viability threshold, proportional to rela-

tive CFU and significantly different from the CVS of untreated

Mtb cultured for the same duration as drug treatment. Moreover,

DRonA was able to perform effectively with other transcriptomic

datasets of Mtb drug treatment, including during macrophage

infection and from TB patients. The ability of DRonA to accu-

rately predict the consequence of drug treatment in 7H9

medium, withinmacrophages, and from patient sputum, demon-

strates that the definitions of viability in the DRonA model are

inclusive of both actively dividing and slow replicating (physio-

logically adapted) phenotypes of Mtb. Moreover, the accuracy

across datasets offers DRonA as a generalizable tool for use

across drug response screens and in studies where gene

expression was analyzed, but Mtb viability was not measured.

Here, we showed that DRonA complements bacteriological as-

says in evaluating treatment response. The decline in CVS corre-

sponded to the decline in the proportions of surviving bacilli

upon drug treatment, as measured by the relative CFU counts.

Since no culturing is required, DRonA can estimate drug effects

much faster than conventional bacteriological assays. Addition-

ally, the ability to enrich and amplify RNA should allow DRonA to

be used with samples where bacterial cell numbers are low (Mo-

thershed and Whitney, 2006). The high sensitivity and the auton-

omy fromculturingmakesDRonAespecially promising toevaluate

the efficacyof treatment regimensondormant non-culturableMtb

that are associated with latent infection in humans.

Using DRonA-predicted viability scores, MLSynergy accurately

predicted synergyandantagonism for two-and three-drugcombi-
6 Cell Reports Methods 1, 100123, December 20, 2021
nations. This performance compares with

INDIGO-MTB (Ma et al., 2019), an existing

strategy that quantifies synergistic and

antagonistic drug regimens using transcrip-

tomes of Mtb treated with individual drugs,

but only with drugs with known drug-drug
interactions. INDIGO-MTB requires known drug-drug interactions

to learn patterns and identify combinationsmost likely to be syner-

gistic. In contrast, the DRonA/MLSynergy platform is based on

gene signatures of cell viability and does not require any input

data related to drug combinations. Comparing the accuracy for

drugswithoutprior drug interaction information,MLSynergysignif-

icantly outperforms INDIGO-MTB (p value > 0.05, Figure S4). As

such, our models can be more easily applied (i.e., no re-training

required) to predict drug interaction for new drugs and conditions.

The DRonA/MLSynergy platform does have some potential

limitations. First, our approach to predict cell viability based on

gene expression signatures does not reveal information about

drug mechanism of action. As cell death can lead to transcrip-

tomic changes unrelated to drug treatment, these cell death sig-

natures could be a confounding factor to make inferences about

drug mechanism of action. Removing genes highly correlated to

cell death could improve mechanism of action identification

(Szalai et al., 2019). Future work also aims to integrate DRonA

with regulatory-metabolic networks (Chandrasekaran and Price,

2010; Immanuel et al., 2021; Peterson et al., 2014; Turkarslan

et al., 2015) to reveal the underlying pathways that contribute

to a drug’s bactericidal activity and interaction with other drugs.

Second, the DRonA/MLSynergy platform requires transcrip-

tome profiling of Mtb drug treatment to predict drug interac-

tions. However, we argue that predicting drug interactions

using transcriptome analysis with DRonA/MLSynergy is

cheaper and faster, as compared with bacteriological assays.

Evaluating drug interactions with bacteriological assays re-

quires a significantly larger number of experiments, which in-

creases exponentially with every new drug and for testing

higher-order (i.e., three-drug) interactions. For example, to

evaluate all possible two-drug interactions between 10 drugs

(i.e., 45 combinations), a checkerboard or DiaMOND assay

would require a minimum of 55 experiments, whereas MLSy-

nergy would require just 10 experiments to generate



Figure 5. MLSynergy prediction of drug inter-

action

(A–C) Examples of the relationship between ex-

pected CVS and predicted CVS for (A) antagonistic,

(B) synergistic, and (C) additive drug combinations.

The expected CVS (red triangle) was calculated as

the average of DRonA-generated CVSs for experi-

mentally measured transcriptomes from single-

drug-treated Mtb. LZD; linezolid, POA; pyrazinoic

acid, MXF; moxifloxacin.

(D) MLSynergy classification of experimentally vali-

dated synergistic and antagonistic two-drug com-

binations. Drug combinations labeled in red: (1) LR;

linezolid and rifampicin (Maltempe et al., 2017), (2)

BP; bedaquiline and pretomanid (Cokol et al., 2017),

and (3) MP; moxifloxacin and pretomanid (de

Miranda Silva et al., 2019) were classified as syn-

ergistic by MLSynergy and experiments from liter-

ature, but antagonistic by Larkins-Ford et al. (2021).

(E) MLSynergy classification of experimentally vali-

dated synergistic and antagonistic three-drug

combinations. Black dot and error bars indicate the

mean and standard deviation away from the mean.

Statistical significance (black dashed line) was

calculated as p value with Student’s T test. **: p

value < 0.01.

Article
ll

OPEN ACCESS
transcriptomes of Mtb in response to treatment with each of

the 10 drugs. For three-drug combinations, checkerboard or

DiaMOND assay requirement increases to 120 drug dose

titration experiments, whereas requirements for MLSynergy

remains the same (i.e., 10 experiments). Furthermore, techno-

logical advancements are making it faster and cheaper to

profile the transcriptome of Mtb directly from patient samples

(Peterson et al., 2019), which could potentially extend the util-

ity of DRonA in rapid point-of-care devices for evaluating the

effectiveness of drug treatment in TB patients.

Drug response prediction with machine learning models is an

important area of current research, particularly for a slow-growing

pathogen, and our results highlight the practicality of using tran-

scriptome signatures to addressmajor bottlenecks in the drug dis-

covery process. The ability to detect changes in cell viability and

predictdrug interactionusing just transcriptomeprofilescouldsub-

stantiallyaccelerateTBdrugdiscoveryefforts.Recent studieshave

demonstrated that efficacy of the same drug combination can vary

significantlybetweenbrothconditions andanimalmodels (Larkins-

Ford et al., 2021). DRonA and MLSynergy could be valuable for

prioritizingdrugcombinations that are likely tobeeffective inanimal

models, given the challenges in performing high-throughput

drug assays in mouse models and non-human primates. Finally,

the DronA/MLSynergy framework can be easily extended to pre-

dict other genotypes and phenotypes of Mtb associated with a

gain in drug resistance (e.g., metabolic states and cell wall
Cell Report
composition), which could further improve

treatment response prediction and clinical

outcomes. To facilitate the widespread us-

age of these resources, the compendia of

Mtb transcriptomes collated from GEO and
generated in this study are publicly available, together with DRonA

andMLSynergy algorithms andmodels in theMTBNetwork Portal

(http://networks.systemsbiology.net/mtb/).

Limitations of the study
While we have demonstrated that DRonA is effective in quantifying

loss of viability of sensitive and resistant strains of Mtb in patient

sputa, and even in mixed cultures consisting of dormant bacteria,

we are yet to demonstrate the utility of this technique in quantifying

persister load. Persisters of Mtb can survive drug pressure and

cause treatment failure, and therefore, detecting and quantifying

persisters is essential to ascertain complete bacterial clearance.

Time-kill curves with CFU counting has been the gold standard

for quantifying persisters at single-cell resolution. In principle, as

and when technologies to profile Mtb transcriptomes at single-

cell resolution are sufficiently mature, DRonA could replace CFU

counting foraccuratequantificationofpersisters fromhost-relevant

conditions, including granulomas. Similarly, the DRonA/MLSy-

nergyplatformcanpredictwhether drugswouldcombinesynergis-

tically or antagonistically in any given context from which Mtb

transcriptomes can be derived. This capability is important,

because the nature of drug interactions can vary dramatically

from broth to in vivo conditions. The ability of generating sufficient

numbers of transcriptome profiles of drug-treated Mtb from an

in vivo context, such as from granuloma or from caseum, remains

a key limitation in demonstrating the utility of DRonA and
s Methods 1, 100123, December 20, 2021 7
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MLSynergy capability to predict drug interactions in an in vivo

context. We could address this limitation by leveraging methods

such as Path-seq to enrich and quantify Mtb transcriptomes from

in vivo contexts.
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Rodriguez, J. (2019). Signatures of cell death and proliferation in perturbation

transcriptomics data—from confounding factor to effective prediction. Nucleic

Acids Res. 47, 10010–10026.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Middlebrook 7H9 Broth Base (7H9 broth) Millipore-Sigma M0178-500G

Middlebrook 7H10 Agar Base (7H10 agar) Millipore-Sigma M0303

Bedaquiline Millipore-Sigma 843663-66-1

Clofazimine Millipore-Sigma 2030-63-9

Isoniazid Millipore-Sigma 54-85-3

Linezolid Millipore-Sigma 165800-03-3

Moxifloxacin hydrocholoride Millipore-Sigma 186826-86-8

Pretomanid Millipore-Sigma 187235-37-6

Pyrazinecarboxylic acid (Pyrazinoic acid) Millipore-Sigma 98-97-5

Rifampicin Millipore-Sigma 13292-46-1

SuperScript II Reverse Transcriptase ThermoFisher 18064014

Critical commercial assays

Ribo-Zero Bacteria rRNA Removal Kit Illumina 20040526

TruSeq Stranded mRNA HT library preparation kit Illumina 20020595

Deposited data

Transcriptomes from single drug treated Mtb This paper GEO: GSE165673

Mtb Transcriptome compendium for

training of DRonA

This paper GitHub: baliga-lab/DRonA_MLSynergy

Trained DRonA model (MTB_2020)

used in this paper

This paper GitHub: baliga-lab/DRonA_MLSynergy

Experimental models: Organisms/strains

Mycobacterium tuberculosis: H37Rv ATCC 27294

Software and algorithms

Python https://www.python.org/ N/A

SciPy https://www.scipy.org/ N/A

GEOparser This paper Zenodo: https://doi.org/10.5281/zenodo.5598251,

GitHub: baliga-lab/DRonA_MLSynergy

DRonA This paper Zenodo: https://doi.org/10.5281/zenodo.5598251,

GitHub: baliga-lab/DRonA_MLSynergy

MLSynergy This paper Zenodo: https://doi.org/10.5281/zenodo.5598251,

GitHub: baliga-lab/DRonA_MLSynergy

Google Colab notebook for DRonA

and MLSynergy

This paper Zenodo: https://doi.org/10.5281/zenodo.5598725,

GitHub: baliga-lab/Google-colab-notebooks/

blob/master/DRonA_MLSYnergy.ipynb
RESOURCE AVAILABILITY

Lead contact
Additional information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Nitin S.

Baliga (nitin.baliga@isbscience.org)

Materials availability

This study did not generate new unique materials nor reagents
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Data and code availability

d The raw sequencing data have been deposited in GEO with accession number GSE165673. Information also listed in the key

resources table.

d All original code for GEOparser, DRonA and MLSynergy has been deposited in Zenodo at https://doi.org/10.5281/zenodo.

5598251, GitHub (baliga-lab/DRonA_MLSynergy), and MTB Network Portal (http://networks.systemsbiology.net/mtb/). Imple-

mentation of DRonA andMLSynergy onGoogle Colab server has been deposited in Zenodo at https://doi.org/10.5281/zenodo.

5598725 and GitHub (baliga-lab/Google-colab-notebooks/blob/master/DRonA_MLSYnergy.ipynb). Information also listed in

the key resources table.

d Any additional information required to analyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains and growth conditions
Mycobacterium tuberculosis strains used in this study was H37Rv. Mtb cells were culture in standard 7H9-rich media consisting of

7H9 broth with 0.05% Tween-80, 0.2% glycerol, and 10% Middlebrook ADC. Frozen 1 mL stocks of Mtb cells were added to 7H9

medium and grown with mild agitation in a 37�C incubator until the culture reached an OD600 of�0.4–0.8. The cells were then diluted

to OD600 of 0.05 and added to 7H9-rich medium containing drugs at the predetermined amounts.

METHOD DETAILS

Minimum inhibitory concentration 50 (MIC50) determination
10mMworking concentrations of drugs considered in the studyweremadewith a suitable vehicle depending ondrug solubility (i.e., wa-

ter,DMSO, ormethanol). The 10mMworkingconcentrationsof drugswerediluted ina twofolddilutionseries for 11concentrations in96-

well plates. Each treatment series contained an untreated well as a control. Mtb H37Rv cultures were added to the wells and the plates

were incubated at 37�C.Growth in culturesweremeasured asOD600 at 0 and 72 hours of incubation. All MIC50 determinationswereper-

formed in biological triplicate. Growth inhibitionwas determinedby subtracting the initial reads from the final reads and then normalizing

the data to no drug controls. Growth inhibition was fit to a sigmoidal curve and MIC50 was calculated for each drug (Table S3).

Time-kill assays
Using growth conditions described above, cells were diluted into 7H9-rich media containing drugs at predetermined amounts, along

with vehicle controls (Table S3). Samples were taken after 0, 24 and 72 h, serially diluted and plated on 7H10 agar plates. All time-kill

assays were performed in biological triplicate. Relative CFUs were calculated as log10 ratio of CFUs/ml of culture observed at start of

treatment (T0) and after drug treatment.

Collection, RNA extraction, and analysis of single-drug transcriptomes
Using growth conditions described above, cells were diluted into 7H9-rich media containing drugs at predetermined amounts, along

with vehicle controls (Tables S2 and S3). Samples, in biological triplicates, were collected after 24 and 72 h. Samples were centri-

fuged at high speed for 5 min, supernatant was discarded and cell pellet was immediately flash frozen in liquid nitrogen. Cell pellets

were stored at�80�C until bead beating in a FastPrep 120 homogenizer and RNA extraction was performed as previously described

(Peterson et al., 2020). Total RNA was depleted of ribosomal RNA using the Ribo-Zero Bacteria rRNA Removal Kit (Illumina, San

Diego, CA). Quality and purity of the mRNA was determined with 2100 Bioanalyzer (Agilent, Santa Clara, CA). Sequencing libraries

were prepared with TrueSeq StrandedmRNAHT library preparation kit (Illumina, San Diego, CA). All samples were sequenced on the

NextSeq sequencing instrument in a high output 150 v2 flow cell. Paired-end 75 bp reads were checked for technical artifacts using

Illumina default quality filtering steps. Raw FASTQ read data were processed using the R package DuffyNGS as previously described

(Vignali et al., 2011). Read counts were further analyzed with Kallisto (Bray et al., 2016) and RPKM values were calculated.

Collection and curation of Mtb-GEO dataset for training of DRonA
GEOParser was developed to download transcript profiles andmetadata of drug-treated and untreated samples of Mtb-H37Rv from

Gene Expression Omnibus (GEO). GEOparser collected median spot intensity from microarray samples and Reads Per Kilobase of

transcript, per Million mapped reads (RPKM) from RNA-seq samples. The compendium dataset was curated by removing samples

with low coverage (i.e., samples with <70%of annotatedMtb genes). The curated dataset was normalized by rank normalization with

the ‘‘minimum’’ method with SciPy package (Virtanen et al., 2020).

Manual labeling of Mtb transcriptomes
Using themetadata collected byGEOParser (Table S1), transcriptomeswere labelled as ‘‘viable’’ if the sample description stated that

Mtb cultures were grown in optimal growth conditions (mid-log phase of growth in 7H9-rich media, incubated at 37�C with aeration)
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and ‘‘non-viable’’ if the sample description stated that Mtb cultures were treated with >1x MIC50 drug for >12 hours. The remaining

transcriptomes were labeled as ‘‘unclassified’’. Labels were saved as a comma separated value (.csv) file (Table S1).

Training and running DRonA
Rank, normalized transcriptomes along with the labels (Table S1) was provided to the SC-SVM classifier to start the iterative training

of DRonA. Each iteration consisted of the following steps: (1) a single class support vector machine (SC-SVM) was trained on the

training set i.e. transcriptomes labelled as ‘‘viable’’; (2) the accuracy of the trained SC-SVM was calculated with Equation 1 using

the test set i.e. transcriptomes labelled as ‘‘non-viable’’ initially and ones classified as ‘‘viable’’ through the iteration process;

Accuracy =
True positive+True negatives

True positive+True negatives+False positive+False negative
(Equation 1)

(3) assessment of the accuracy, (4) using the trained SC-SVM from (1), viability was predicted in transcriptomes labelled as ‘‘un-

classified’’, and (5) newly predicted viable transcriptomes from unclassified set were moved to the training set. The iterative process

was stopped when the accuracy of the classifier dropped below an accuracy threshold (85%) or when no new transcriptomes from

the unclassified set were found to be viable. The cell viability scores (CVS) were calculated for samples as the weighted sum of gene

expression ranks using the trained SC-SVM. CVSs were normalized by subtracting the score of a sample with maximum score

observed in that experiment.

Inference of multi-drug transcriptomes (triangulation)
Transcriptomes of the Mtb cultures treated with multi-drug combinations at effective doses were predicted by triangulation with the

single-drug treated transcriptomes and untreated control. Triangulation was called through ‘triangulate’ function in the MLSynergy

algorithm, which collects transcriptomes of the drugs in combination (each profiled as single-drug) and untreated control and aver-

ages them with geometric mean. The inferred multi-drug transcriptomes were then returned to DRonA for CVS determination.

Calculation of MLSynergy scores for drug combinations
Expected CVSswere obtained fromDRonAwith the transcriptomes of the single-drug treatments that make up the drug combination

and ‘‘expected CVS’’ was calculated by averaging the CVSs of single-drug treatments. The ‘‘predicted CVS’’ was obtained from

DRonA with the inferred transcriptome of the drug combination. MLSynergy score were calculated as the ratio of expected CVS

and predicted CVS. Further, MLSynergy scores were log normalized (base 2) in reference to the average of MLSynergy scores of

same drug combinations that are considered to be additive in nature.

Comparison of INDIGO-MTB and MLSynergy predictions
Two INDIGO (Ma et al., 2019) models were retrained with default parameters. Model-1 was trained with the complete dataset (202

combinations and 46 drugs) and Model-2 was trained with partial dataset (98 combinations and 40 drugs) which was obtained after

excluding combinations with bedaquiline, clofazimine, linezolid, moxifloxacin, pretomanid and pyrazinamide. Both models were

tested on the combinations given in Table S6. Transcriptomes provided in Ma et al. were used as input for the INDIGOmodels. Tran-

scriptomes generated in this study (summarized in Table S2) were used as input for the MLSynergy.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis reported in this article were performedwith SciPy package (Virtanen et al., 2020) in Python. The p value from the

Student’s t test, sample mean and SEM were used as indicated in Figures 2, 3, 4, 5D, S3, and S4. Statistically non-significant (NS)

were considered with p value > 0.05 and other qualifying p values were indicated accordingly * < 0.05, ** < 0.01, and ***< 0.001. The

correlations reported in Figures 3 and S3 were calculated as the average correlation coefficient, r, from 100 iterations performed with

70% randomly selected data, r and p values were reported in the figures.
e3 Cell Reports Methods 1, 100123, December 20, 2021
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