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Transcriptomic analysis of primate
placentas and novel rhesus trophoblast cell
lines informs investigations of human
placentation
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Abstract

Background: Proper placentation, including trophoblast differentiation and function, is essential for the health and well-
being of both the mother and baby throughout pregnancy. Placental abnormalities that occur during the early stages of
development are thought to contribute to preeclampsia and other placenta-related pregnancy complications. However,
relatively little is known about these stages in humans due to obvious ethical and technical limitations. Rhesus macaques are
considered an ideal surrogate for studying human placentation, but the unclear translatability of known human placental
markers and lack of accessible rhesus trophoblast cell lines can impede the use of this animal model.

Results: Here, we performed a cross-species transcriptomic comparison of human and rhesus placenta and determined that
while the majority of human placental marker genes (HPGs) were similarly expressed, 952 differentially expressed genes
(DEGs) were identified between the two species. Functional enrichment analysis of the 447 human-upregulated DEGs,
including ADAM12, ERVW-1, KISS1, LGALS13, PAPPA2, PGF, and SIGLEC6, revealed over-representation of genes implicated in
preeclampsia and other pregnancy disorders. Additionally, to enable in vitro functional studies of early placentation, we
generated and thoroughly characterized two highly pure first trimester telomerase (TERT) immortalized rhesus trophoblast
cell lines (iRP-D26 and iRP-D28A) that retained crucial features of isolated primary trophoblasts.

Conclusions: Overall, our findings help elucidate the molecular translatability between human and rhesus placenta and
reveal notable expression differences in several HPGs and genes implicated in pregnancy complications that should be
considered when using the rhesus animal model to study normal and pathological human placentation.
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Background
The placenta is the physical link between the mother and
fetus as well as a critical site for nutrient and waste exchange
during pregnancy. Trophoblasts are the major functional cell
type of the placenta and can be divided into three subtypes:

(1) proliferative cytotrophoblasts (CTBs), which can differen-
tiate into (2) invasive extravillous trophoblasts (EVTs), or
fuse to form (3) multinucleated syncytiotrophoblasts (STBs).
Proper trophoblast differentiation and function are essential
for normal placentation and fetal development throughout
gestation. In humans, abnormal placentation is the primary
defect associated with major pregnancy complications, such
as preeclampsia, fetal growth restriction, recurrent miscar-
riage, and still-birth [1]. Investigation of early placentation is
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particularly important for combating these diseases since
many of the associated defects are thought to arise early to
mid-gestation. However, the ethical and technical limitations
of studying early human development have confined many
human placentation investigations to late gestational stages
closer to term. Thus, early human placental development, in-
cluding the origin and cause(s) of the placental abnormalities
underlying major pregnancy complications, are poorly
understood.
To overcome the limitations of studying early human

placentation, numerous human first trimester tropho-
blast cell lines have been isolated and immortalized
using various methods for in vitro investigations [2–4].
Unlike primary trophoblasts, immortalized trophoblast
cell lines are readily available, can be grown in culture
indefinitely, and are relatively easy to transfect for func-
tional studies. However, recent studies suggest that these
cell lines are not necessarily a pure population of tro-
phoblasts and/or have acquired karyotypic and pheno-
typic aberrations with continued passaging [5–7]. The
human choriocarcinoma cell lines, BeWo, JEG-3 and
JAR, have also been used to study trophoblast differenti-
ation and syncytialization [8], but these cells are highly
malignant and exhibit considerably different transcrip-
tomic profiles than primary trophoblasts [5], questioning
whether findings using these lines are truly representa-
tive of normal CTBs or EVTs.
While some of the limitations of performing human

in vitro and in vivo placental studies are overcome
using animal models, most mammalian species poorly
recapitulate human placentation. This is due, in large
part, to inherent genetic differences and variations in
the placental structure, steroidogenic synthesis, and
the intracellular signaling pathways mediating lineage-
specific trophoblast differentiation amongst mammals
[9, 10]. However, non-human primate animal models,
particularly rhesus macaques, are genetically similar
to humans and share many key features of human
placentation. Besides being comparable in placental
morphogenesis, the overall structure and nature of
both the STB interface layer and intervillous space, as
well as endocrine functions and extracellular matrix
changes, are similar between rhesus and human pla-
centa [11–14]. Further, there is a strong resemblance
between human and rhesus placental endovascular
EVT invasion and spiral artery transformation [15],
processes known to play a central role in the patho-
genesis of several pregnancy complications in humans
[16]. Unlike studies relying on human samples, access
to high-quality early gestational placental samples and
in vivo functional investigations are possible under
approved rhesus animal studies. However, rhesus first
trimester trophoblast cell lines are still not readily
available, which limits rhesus-based placental studies

and requires the laborious isolation and use of primary
term rhesus trophoblasts for in vitro investigations.
Although the human and rhesus placenta appear to be

morphologically and functionally similar, previous studies
have revealed some notable differences in the expression
level and/or protein-coding potential of well-known hu-
man placental markers, including CGA, HLA-G, ERVW-
1, and SIGLEC6 [17–20]. Differences in placental invasion
have also been noted, as the extent and depth of intersti-
tial EVT invasion is greater in human compared to rhesus
placentation [12]. Further, while a few cases of preeclamp-
sia have been documented in rhesus and other non-
human primates, this disease predominantly occurs in
humans [21–25]. Thus, the identification of the molecular
differences between human and rhesus placenta will not
only help elucidate the translatability between primate pla-
cental studies, but it may also provide valuable insight into
the molecular origin of human-specific placental features
and pregnancy-related diseases.
Here, we performed a cross-species transcriptomic

comparison of human and rhesus placenta to identify
differentially expressed genes (DEGs) and determined
that even though the majority of human placental
marker genes (HPGs) are similarly expressed across the
two species, there are gene expression differences that
likely underlie the distinct features of human placenta-
tion. Additionally, we generated and thoroughly charac-
terized two highly pure TERT-immortalized rhesus
trophoblast cell lines for in vitro functional studies that
retained features of primary rhesus trophoblasts. Overall,
this work provides a comprehensive list of genes differ-
entially expressed between human and rhesus placenta
that enhances the translatability of primate placental in-
vestigations and helps delineate the molecular differ-
ences underlying human susceptibility to preeclampsia
and other pregnancy-related diseases. It also offers previ-
ously unavailable first trimester immortalized rhesus
trophoblast cell lines for further functional investigation
and understanding of early primate placentation.

Results
Identification of genes differentially expressed between
human and rhesus placenta
Despite the structural and functional similarities be-
tween human and rhesus placentas, differences in the
level and route of invasion, as well as the increased pro-
pensity to develop pregnancy-related diseases in
humans, suggests that molecular differences exist across
primate species. To characterize such differences, we
compared gene expression levels between human and
rhesus macaque (Macaque mulatta) placentas using a
combination of newly generated and publicly available
RNA-seq data from bulk third trimester placenta sam-
ples [26]. The presence of EVTs in rhesus placental
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samples at this gestational time-period was confirmed
via immunohistochemical (IHC) staining of the pan-
trophoblast marker, KRT7 (Additional file 1: Fig. S1). In
order to make the RNA-seq gene expression data com-
parable across species (Additional file 2), we limited our
comparison to human protein-coding genes with ENSE
MBL-defined “high-confidence” “one2one” rhesus ortho-
logs and DEGs were identified by intersecting the results
of two complementary differential expression (DE) ana-
lyses (Additional file 1: Fig. S2A). First, RNA-seq data
from both species were mapped to the human reference
genome (GRCh38) (Fig. 1a) and DEGs were identified
based on the human gene annotations (DE-GRCh38).
Second, RNA-seq data from both species were mapped
to the rhesus reference genome (Mmul10) and DEGs
were identified based on the rhesus gene annotations
(DE-Mmul10) (Fig. 1b). A gene was considered differen-
tially expressed only if it was identified as significantly
(padj<0.05) upregulated or downregulated (|L2FC|>2) by
both analyses (Fig. 1c). Thus, DEGs called due to mapp-
ability issues instead of true expression differences
would not be called in the reciprocal analysis and ex-
cluded from the final set of DEGs. To avoid potential
batch effects, we repeated the DE analysis using three in-
dependent human placenta RNA-seq datasets [27, 28]
(Additional file 1: Fig. S1B, C). This final set of DEGs
consisted only of genes determined to be significantly
upregulated or downregulated by all three DE analyses
and resulted in a total of 952 DEGs, including 447
human-upregulated and 505 rhesus-upregulated genes
(Fig. 1d; Additional file 3). Quantitative reverse tran-
scription PCR (qRT-PCR) was used to validate eight of
the DEGs (Additional file 1: Fig. S3A, B). The 25 most
significant human and rhesus upregulated DEGs are
shown in Fig. 1e and highlights the upregulation of sev-
eral well-known placental markers in human including,
ADAM12, SERPINB2, BPGM, CYP19A1, SVEP1, GPC3,
PGF, FBN2, and PAPPA2. Collectively, these results pro-
vide a comprehensive list of gene expression differences
between human and rhesus placenta and show that not
all established human placental markers are expressed
equivalently in the two species.

Inclusion of mouse placenta confirms the overall
molecular similarity in placentation between primates
To validate the primary DE analysis and provide an un-
biased assessment of the molecular similarity between
human, rhesus, and mouse [29] placenta, an orthologous
cross-species transcriptomic comparison was performed
that relied exclusively on RNA-seq data mapped to each
respective species genome. We used an approach similar
to the one recently described by Sun et al. [30], in which
transcripts per million (TPM) normalized gene expres-
sion values were calculated for each sample

(Additional files 4, 5, 6), then filtered to include only
genes with one-to-one orthologs across all three species
(human, rhesus, and mouse) for cross-species compari-
son. Consistent with Sun et al, hierarchical clustering of
TPM-normalized expression data showed that rhesus
placental samples were more closely-related to human
than mouse (Additional file 1: Fig. S4A, B; Add-
itional file 7). A total of 1787 DEGs, including 879
human-upregulated and 814 rhesus-upregulated DEGs,
were identified between human and rhesus placenta
using TPM-normalized expression data (Additional file 8).
Of the 952 DEGs identified in our primary DE analysis,
58% (n=554) were also identified by the TPM-based ana-
lysis (Additional file 1: Fig. S4C). It should be noted that
~8% (73/952) of DEGs in our primary analysis were ex-
cluded from the novel TPM-based approach due to a lack
of ENSEMBL-defined one-to-one human-to-mouse
ortholog, including preeclampsia associated genes
(ERVW-1, KISS1, LGALS13, SIGLEC6) and HPGs
(GPC3, INSL4, MAGEA4, NAA11, OLAH, PSKH2) (Add-
itional file 1: Fig. S4D, E). Thus, while inclusion of
mouse in the TPM-based transcriptomic comparison
allowed for an unbiased assessment of molecular similar-
ities between human and rhesus, it also minimized the
number of orthologous genes that could reliably be com-
pared, thereby excluding several key DEGs identified by
our primary analysis. Nonetheless, the results of the
TPM-based comparative analysis confirms the overall
molecular similarity between human and rhesus pla-
centa, as well as the stringency and confidence of our
primary DE approach and the final DEG set reported.

Cross-species comparison reveals enrichment of HPGs
implicated in pregnancy-related disorders
To elucidate the translatability of human placental
markers between human and rhesus, a set of previously
defined HPGs [31] was examined for differential expres-
sion between the two species. Out of the 190 HPGs,
~72% (n=137/190) were included in the primary DE ana-
lysis, while 28% (n=53/190) were excluded due to nonex-
istent (43%), low confidence (32%), or a lack of
“one2one” (25%) ENSEMBL-defined rhesus ortholog
(Fig. 1f). In certain cases, ENSEMBL-defined orthology
conflicted with orthologous genes described by previous
studies. For instance, the GH2 gene is defined as having
no ENSEMBL rhesus ortholog despite the well-described
placentally expressed GH/CS locus in the rhesus genome
that is highly similar to human [32–34]. Further, both
HLA-G and CGA are defined as having only “low-confi-
dence” rhesus orthologs, opposed to previous studies de-
scribing highly similar orthologous genes in the rhesus
genome [17, 18]. Of the 137 HPGs included in the ana-
lysis, the vast majority (~75%; n=102/137) showed simi-
lar expression levels between human and rhesus
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placenta. The remaining ~25% of HPGs (n=35/137) were
identified as differentially expressed between the two
species, with ~18% (n=25/137) upregulated in human
and ~7% (n=10/137) upregulated in rhesus placenta

(Fig. 1f; Additional file 9). Notably, several HPGs associ-
ated with invasive EVTs (ADAM12, PAPPA2, PGF) [35–
37], and pregnancy complications such as preterm birth
and preeclampsia (ADAM12, HSD17B1, KISS1, LGAL
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Fig. 1 Cross-species transcriptional comparison of human and rhesus bulk placental tissue. Volcano plots showing gene expression fold differences
between human (n=6) and rhesus (n=4) term placental tissue from DE#1, using data mapped to a the human genome and b the rhesus genome.
Dashed lines denote DE significance (padj<0.05) and fold change (|L2FC|>2) thresholds; genes passing padj threshold (green), L2FC threshold (cyan),
both (magenta), or none (gray). c Venn-diagram depicting intersection of DEGs identified using data mapped to human genome (stripes) and rhesus
genome (spotted) to identify intermediate human-upregulated (light blue) and rhesus-upregulated (light red) genes sets. d Venn-diagram depicting
the intersection of the results from the three DE analyses, to identify the final set of 447 human-upregulated genes (blue), and 505 rhesus-upregulated
genes (red) (Additional file 3). e Top 25 most significant differentially expressed (ranked by mean padj) human-upregulated (blue) and rhesus-
upregulated genes (red); box plots depict average Log2 fold change of each gene from the three DE analyses. f Differential expression results of HPGs.
(Left) Proportion of placental marker genes analyzed (purple) or excluded from (brown) DE analysis. Analyzed genes are further classified as either not
differentially expressed (not DE) (gray), human-upregulated (blue), or rhesus-upregulated (red). (Right) ENSEMBL-classification of HPGs excluded from
DE analysis; “no rhesus ortholog” (orange), “low confidence rhesus ortholog” (yellow), or “no one2one rhesus ortholog” (green). g Heatmap of
differentially expressed HPGs; human-upregulated genes (L2FC>2) are shown in blue and rhesus-upregulated genes (L2FC<2) are shown in red
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S13, PAPPA2, SIGLEC6, ERVW-1) [38–44], were found
to be upregulated in human compared to rhesus pla-
centa (Fig. 1g). Over-representation analysis (ORA) dem-
onstrated that genes associated with pregnancy disorders
including, “preeclampsia” (padj=6.73E-04), “HELLP syn-
drome” (padj=1.48E-01), “Gestational trophoblastic
tumor” (padj=1.52E-01), and “Eclampsia” (padj=4.43E-
01) were indeed upregulated in human compared to rhe-
sus placenta (Additional file 1: Fig. S5; Additional file 10).
Overall, these results provide a comprehensive list of dif-
ferentially expressed HPGs between human and rhesus
placenta that should be considered when studying cer-
tain aspects of placentation in rhesus, particularly those
that are associated with EVT invasion, preeclampsia, or
other placenta-related diseases.

DEGs detected between human and rhesus placenta
largely reflect species-specific changes
While both the human and rhesus RNA-seq data used
for our DE analysis was obtained from placenta samples
collected from third trimester cesarean sections without
labor, we note that the publicly available rhesus data was
generated from a slightly earlier (~80%) gestational age
(GA) than the term human placental samples. Therefore,
it is possible that some of the gene expression differ-
ences observed between the human and rhesus samples
may be the result of GA rather than species-specific
changes. However, examination of a set of previously de-
fined “GA-specific” genes expressed in primate placentas
[45] revealed that only a single GA-specific gene
(BAALC) was identified as differentially expressed in our
analysis. In addition, closer examination of the rhesus
placenta RNA-seq data showed little to no expression of
Y-linked genes in any of the samples, suggesting an un-
equal distribution of male and female samples may have
influenced the cross-species comparison. To determine
whether any of the DEGs identified were due to sex-
specific rather than species-specific differences, we com-
piled a set of “sex-differentially expressed” (SDE) genes
via DE analysis of known male (n=6) and female (n=5)
human placentas. A total of 11 significant SDE genes
were identified (Additional file 11), five of which over-
lapped with our human-upregulated DEGs (ZFY,
RPS4Y1, KDM5D, DDX3Y, CCK). Therefore, sex-specific
changes accounted for only ~0.53% (5/952) of the DEGs
in the cross-species analysis of human and rhesus pla-
centas. These results indicate that the DEGs identified in
our study largely reflect species-specific changes rather
than GA-related or sex-specific differences.

Establishment of TERT-immortalized rhesus placenta and
skin fibroblast cell lines
Because the placenta is a heterogeneous organ comprised
of many cell types in addition to trophoblasts, such as

immune, stromal, and vascular cells [46], we next sought
to isolate primary trophoblasts from bulk rhesus placentas
for immortalization and characterization, including a
comparison of gene expression. While previous studies
have successfully isolated and cultured primary tropho-
blasts from first and third trimester rhesus placenta [47–
50], as well as generated rhesus blastocyst- and placenta-
derived trophoblast stem cells [51, 52], no rhesus immor-
talized trophoblast cell lines currently exist for in vitro in-
vestigations. Using the strategy described in Fig. 2a, we
isolated primary trophoblast cells from rhesus placental
tissues collected at gestational day 26 (~6 weeks human
pregnancy), day 28 (~7 weeks human pregnancy), day 50
(~12 weeks human pregnancy), day 141 (~34 weeks hu-
man pregnancy), and day 149 (~35 weeks human preg-
nancy). After depletion of contaminating immune cells
using immunopurification, the cells were cultured for 24 h
before transduction with lentivirus containing TERT and
puromycin resistance (PAC) genes for antibiotic selection.
First and third trimester primary cell isolation methods re-
sulted in ~98% and ~69% cytokeratin (KRT7)-positive
trophoblast cells, respectively (Additional file 1: Fig. S6). A
total of six immortalized rhesus placental (iRP) cell lines
were generated, including four from first trimester (iRP-
D26, iRP-D28A, iRP-D28B, iRP-D50) and two from third
trimester (iRP-D140, iRP-D141) rhesus placentas. Male
and female rhesus primary skin fibroblasts were also used
to establish two immortalized rhesus fibroblast (iRFb) cell
lines, iRFb-XY and iRFb-XX, as controls. Cultures of iRP-
D26 and iRP-D28A contained purely polygonal epithelial-
like cells, while the other cell lines (iRP-D28B, iRP-D50,
iRP-D140, iRP-D141) appeared heterogeneous with a mix
of large flattened and elongated fibroblast-like cells
(Fig. 2b). Expression of the lentiviral-transduced genes,
TERT and PAC, was confirmed in each of the cell lines via
RT-PCR (Fig. 2c). These results suggested that the
lentiviral-based TERT-transduction strategy was quite ro-
bust, with 100% (n=8/8) of attempts resulting in the gen-
eration of a cell line with stable TERT expression.
Moreover, both the iRP-D26 and iRP-D28A have been
cultured beyond 30 passages, further supporting success-
ful TERT-immortalization of these cell lines.

Assessment of genomic integrity in TERT-immortalized
rhesus cell lines
Cell lines are known to develop genetic abnormalities
during immortalization and/or prolonged cell culture,
such as aneuploidies, copy number variations (CNVs),
and chromosomal fusions. This is particularly true for
cell lines derived by Simian Virus 40 (SV40) or a similar
transformation approach as has been shown for first tri-
mester human trophoblast cell lines [53, 54], but it can
also occur in TERT-immortalized human trophoblasts
over time [7]. In addition, primary trophoblasts normally
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undergo cell fusion (syncytialization), which can compli-
cate nuclear assessment. Therefore, CNVs and whole
chromosome counts were examined in the cell lines
using low-input DNA-seq and metaphase spreads, re-
spectively. Approximately ten cells from each TERT-
immortalized cell line were manually transferred into a
single tube and prepared for DNA-seq as previously de-
scribed [55]. Normal diploid copy numbers were ob-
served for all autosomes in iRP-D26, iRP-D28A, and
iRP-D141, although sub-chromosomal losses of Chr1
and Chr7 were observed in iRP-D26, sub-chromosomal
gains of Chr11 and Chr16 in iRP-D28A, and a small
sub-chromosomal loss of Chr1 in iRP-D141 (Fig. 3a). In
contrast, numerous whole and sub-chromosomal CNVs
were identified in the other iRP cell lines, iRP-D28B,
iRP-D50, and iRP-D149. As expected, CNV analysis of
the female rhesus fibroblasts (iRFb-XX) showed normal
diploid copy numbers for all 21 rhesus chromosomes,
while the male fibroblasts (iRFb-XY) exhibited the ex-
pected ChrX “loss” and detection of ChrY. Comparison
to the male iRFb-XY control revealed a single copy of
ChrX without the detection of ChrY in iRP-D26,
highlighting the loss of a whole sex chromosome
(Fig. 3b). Metaphase spreads of iRP-D26 cells confirmed
the loss of one to two whole chromosomes, supporting
the DNA-seq results, and suggesting the existence of
chromosome fusion in cells with only 40 chromosomes
(Fig. 3c). Examination of metaphase spreads from iRP-
D28B, iRP-D50, and iRP-D149 further demonstrated a
heterogenous mix of predominantly polyploid cells, con-
taining between three (triploid) and four (tetraploid) sets
of chromosomes (Fig. 3d). Overall, these results suggest
that TERT-immortalization can be used to establish

normal diploid rhesus placental cell lines, but we ex-
pect that these cells cell could accumulate chromo-
somal abnormalities with continued passaging as has
been shown for human TERT-immortalized tropho-
blast cell lines [7, 56].

iRP-D26 and iRP-D28A represent two highly pure
immortalized rhesus trophoblast cell lines
In order to identify the placental cell lines containing a
pure population of trophoblast cells, we analyzed each line
for expression of highly conserved trophoblast and non-
trophoblast cell markers [57], including KRT7, a pan-
trophoblast cell marker; CDH1, a mononuclear tropho-
blast cell marker; VIM, non-trophoblast stromal marker;
and PTPRC (CD45), a pan-leukocyte marker. Antibodies
for these markers were first validated in rhesus placental
tissues using IHC staining and the observed expression
patterns were consistent with known patterns in the hu-
man placenta (Fig. 4a). Immunofluorescent (IF) staining
using the same antibodies showed robust staining of
KRT7 and CDH1 trophoblast markers, and the absence of
VIM and CD45 staining in both iRP-D26 and iRP-D28A,
indicating the enrichment of trophoblasts and the absence
of mesenchymal and immune cells within these cell lines,
respectively. In contrast, the remaining iRP cell lines (iRP-
D28B, iRP-D50, iRP-D141, and iRP-D149) were largely
contaminated with VIM-positive mesenchymal cells
(Fig. 4b). These findings were consistent with qRT-PCR
expression analysis, which showed significant enrichment
of KRT7 and CDH1 expression in iRP-D26 and iRP-D28A
compared to the other cell lines or bulk rhesus placental
tissue (Fig. 4c). Additionally, VIM and PTPRC (CD45) ex-
pression was not detected by qRT-PCR in iRP-D26 and
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iRP-D28A, but were highly expressed in all other cell lines
analyzed. Thus, despite careful trophoblast isolation pro-
cedures, only 50% (n=2/4) of the attempts with first tri-
mester placentas and 0% (n=2/2) with third trimester
placentas resulted in highly pure immortalized trophoblast
cell lines. This indicated that contamination of non-
trophoblast stromal cells occurred in ~67% (n=4/6) of the
primary trophoblast isolations and that only the iRP-D26
and iRP-D28A cell lines should be carried forward for fur-
ther characterization.

Transcriptomic comparison of immortalized and primary
rhesus trophoblast cells
To characterize gene expression levels in the immortal-
ized trophoblast cell lines and compare them to first tri-
mester rhesus primary trophoblast (RPT) cells, RNA-seq
was performed on two replicates each of iRP-D26, iRP-
D28A, and freshly isolated first trimester RPTs. RPT
trophoblast purity was confirmed via KRT7 staining and
showed ~98% KRT7+ trophoblast cells (Additional file 1:
Fig. S6). As a reference, publicly available human and
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rhesus peripheral blood mononuclear cells (PBMC) [58,
59], human primary trophoblasts (HPT) [60, 61], BeWo
[61, 62], and rhesus bulk placenta [26] RNA-seq datasets
were also included in the assessment. Principle compo-
nent analysis (PCA) based on the expression of all ana-
lyzed genes (n=15,787) revealed that a majority of the
sample variance was due to tissue-type differences, sep-
arating the PBMC samples from the placental/tropho-
blast samples (Fig. 5a). Bulk human and rhesus placenta
samples clustered closely together, further supporting
the overall molecular similarity between these two
closely related species. Both iRP-D26 and iRP-D28A
clustered with the primary trophoblast samples, indicat-
ing that our newly generated immortalized trophoblast
cell lines were most similar to freshly isolated RPT cells.
In contrast, the BeWo samples formed a distinct cluster
away from the other trophoblast samples, confirming

the major transcriptomic differences between primary
trophoblasts and this widely used choriocarcinoma
model. Despite broad transcriptomic similarities across
the human and rhesus placenta/trophoblast samples, dis-
tinct HPG expression was also observed between the
two species. Hierarchical clustering of the samples based
on this expression showed clustering of placenta/tropho-
blasts by species, with iRP-D26, iRP-D28A, RPT, and
bulk rhesus placenta samples forming a distinct branch
and HPT and bulk human placenta forming another
(Fig. 5b). Thus, with the exception of HPGs, transcrip-
tomic profiles were largely shared between our newly
generated immortalized trophoblast cell lines and freshly
isolated RPT cells, demonstrating the suitability of these
lines for in vitro primate placental studies.
By performing a DE analysis between (1) iRP-D26 vs.

RPT and (2) iRP-D28A versus RPT, we identified DEGs

A

C

B iRP-D28B iRP-D50 iRP-D141 iRP-D149 iRFb-XYiRP-D28AiRP-D26

K
R

T
7

C
D

H
1

P
T

P
R

C
 (

C
D

45
)

V
IM

Bulk placenta TERT-immortalized cell lines

VIM

Bulk
-D

50

Bulk
-D

14
0

Bulk
-D

14
1

iR
P-D

26

iR
P-D

28
A

iR
P-D

28
B

iR
P-D

50

iR
P-D

14
1

iR
P-D

14
9

iR
Fb-

XX

iR
Fb-

XY
0

1

2

3

4

5

PTPRC (CD45)

Bulk
-D

50

Bulk
-D

14
0

Bulk
-D

14
1

iR
P-D

26

iR
P-D

28
A

iR
P-D

28
B

iR
P-D

50

iR
P-D

14
1

iR
P-D

14
9

iR
Fb-

XX

iR
Fb-

XY
0

0.5

1

1.5

KRT7

Bulk
-D

50

Bulk
-D

14
0

Bulk
-D

14
1

iR
P-D

26

iR
P-D

28
A

iR
P-D

28
B

iR
P-D

50

iR
P-D

14
1

iR
P-D

14
9

iR
Fb-

XX

iR
Fb-

XY
0

1

2

3

re
la

tiv
e 

qu
an

tit
ie

s 
(±

 S
E

M
) ** **

CDH1

Bulk
-D

50

Bulk
-D

14
0

Bulk
-D

14
1

iR
P-D

26

iR
P-D

28
A

iR
P-D

28
B

iR
P-D

50

iR
P-D

14
1

iR
P-D

14
9

iR
Fb-

XX

iR
Fb-

XY
0

5

10

15 * *

Fig. 4 iRP-D26 and iRP-D28A represent two highly pure rhesus immortalized trophoblast cell lines. a IHC staining of gestational day 50 rhesus
placental tissue for mononuclear trophoblast (KRT7 and CDH1), stromal (VIM), and immune cell (PTPRC) markers (DAB, brown); hematoxylin nuclear
counter stain (blue). b IF staining of immortalized cell lines for KRT7 (red), CDH1 (green), VIM (green), and PTPRC (red); DAPI nuclear counterstain (blue);
results show that iRP-D26 and iRP-D28A cells express known mononuclear trophoblast markers, KRT7 and CDH1 (n=3). c Bar graphs of qRT-PCR
expression results; bulk rhesus placental samples (purple, n=3), iRP cell lines (green, n=8). Statistical significance was determined using two-sided
unpaired t test with alpha of 0.05 (*p<0.05, **p<0.01)

Rosenkrantz et al. BMC Biology          (2021) 19:127 Page 8 of 22



and specific pathways in the immortalized trophoblasts.
Out of the total 21,575 protein-coding rhesus genes ex-
amined, 5884 DEGs (padj<0.05 & |L2FC|>|1|) were
found between iRP-D26 and RPT, with ~39% (n=2,290)
upregulated and ~61% (n=3,594) downregulated in iRP-
D26 (Fig. 5c; Additional file 12). Further, a total of 6017
DEGs were identified between iRP-D28A and RPT, with
~43% (n=2592) upregulated and ~57% (n=3425) down-
regulated in iRP-D28A (Fig. 5c; Additional file 13). ORA
demonstrated that genes associated with herpes simplex
virus 1 (HSV1) infection were upregulated in both iRP-
D26 and iRP-D28A compared to RPTs. Since HSV1
infection is known to increase TERT activity [63], upreg-
ulation of HSV1-associated genes in both immortalized
trophoblast cell lines is likely a result of TERT-
immortalization induced expression changes. In
addition, “EVT-enriched,” “STB-enriched,” and “CTB-
enriched” gene sets derived from a previous single-cell
RNA-seq analysis of first trimester human placenta [64]
were included in the ORA between the cell lines and
RPTs. While genes associated with human EVTs and

extracellular matrix organization were upregulated in both
iRP-D26 and iRP-D28A, genes associated with human
STBs, CTBs, and the immune system were downregulated
in both immortalized trophoblast cell lines relative to
RPTs (Additional file 1: Fig. S5; Additional files 14, 15).
These results suggest that the immortalized trophoblast
lines are most similar to the previously described human
EVT trophoblast cell population [64] and that the RPT
samples likely contained a more heterogenous population
of trophoblast subtypes than the immortalized trophoblast
cell lines. Thus, downregulation of immune response-
related genes in the cell lines may be due to the absence
of specific trophoblast subtypes (CTB and/or STB), or the
presence of cytokine-stimulated trophoblasts within the
freshly isolated RPT samples.

Functional characterization of iRP-D26 and iRP-D28A
immortalized trophoblast cell lines
In order to test whether iRP-D26 and iRP-D28A be-
haved more like CTBs or EVTs, the fusogenic potential
of the cell lines was assessed by treating them with
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forskolin, an activator of adenylate cyclase and known
inducer of fusion and STB formation in BeWo human
choriocarcinoma [65] and trophoblast stem cells [66].
Unlike RPTs and/or forskolin treatment of BeWo cells,
neither iRP-D26 or iRP-D28A showed upregulation of
the key fusogenic/STB genes, ERVFRD-1 and ERVW-1
(Additional file 1: Fig. S7A-D). Rather, increased RNA
expression of several STB markers (SDC1, BMP1,
GCM1) was observed in forskolin treated iRP-D26 cul-
tures, as well as regions of reduced CDH1 plasma mem-
brane staining. However, closer examination of these
regions by confocal imaging did reveal a faint intact
membrane surrounding most nuclei, and only a low-
level of SDC1 (a STB marker) expression [67] (Add-
itional file 1: Fig. S7E-F). Taken together, it appeared
that the iRP-D26 cell line was sensitive to forskolin
treatment, but did not undergo complete STB formation.
Additionally, monkey CG (mCG) secretion could not be
detected in the culture media from either the iRP-D26
or iRP-D28A cell line (Additional file 1: Fig. S7G). Since
mCG is primarily secreted by the syncytiotrophoblast
and reduced and/or disrupted CDH1 staining is associ-
ated with both invasive cancerous and trophoblast cells
[68, 69], this further indicated that the cell lines might
be more EVT-like in origin. Indeed, both iRP-D26 and
iRP-D28A showed upregulation of several genes known
to facilitate human EVT and/or tumor cell invasion
(Additional files 12, 13), including SDC2, TIMP3,
MMP14, and ADAM12 [70–73]. Thus, to evaluate
whether the immortalized trophoblast cell lines were
capable of invasion, trans-well migration and Matrigel
extracellular matrix invasion assays were performed.
When grown on uncoated transmembrane inserts (n=3)
for 48 h, both the iRP-D26 and iRP-D28A cell lines ex-
hibited migration to the bottom side of the insert, indi-
cating that the cell lines possessed migratory capabilities
(Fig. 6a, b). From these cells, 22% of the iRP-D26 and
30% of the iRP-D28A line were also able to invade to
the other side of Matrigel-coated inserts (n=3) after 48 h
of culture (Fig. 6c). However, despite previous studies
showing an increased level of EVT invasion under hyp-
oxic conditions [74, 75], no significant differences in in-
vasion were identified when the assays were performed
under hypoxic (1% O2) compared to normoxic condi-
tions. This further supports the idea that even though
they are prevalent throughout pregnancy (Add-
itional file 1: Fig. S1), EVTs in rhesus placentas appear
to be less invasive than their human counterparts. None-
theless, the EVT-like characteristics of both iRP-D26
and iRP-D28A were confirmed by high expression levels
of IGF2 using qRT-PCR (Fig. 6d), which is most abun-
dantly expressed by EVTs in both human and rhesus
[76, 77]. Although high levels of IGF2 mRNA was de-
tected, however, iRP-D26 and iRP-D28A did not exhibit

substantial IGF2 protein secretion (Fig. 6e) that is known
to promote EVT migration [78, 79]. Thus, culture of
these cell lines with IGF2 supplemented media and/or
co-culture with IGF2 secreting cells may enhance their
migration and invasive abilities in subsequent studies.

Discussion
The wide variety of placental morphologies and physiol-
ogies that exist among mammals makes it difficult to ad-
equately model human placentation and placental
pathologies in other species [80–82]. However, many
distinctive features of human placentation are reportedly
conserved in rhesus monkeys [11–15]. Despite this con-
servation, no study has been conducted to comprehen-
sively assess the molecular similarities and potential
differences between human and rhesus placental tissues.
Comparative analyses of human and closely related spe-
cies are beginning to identify specific genetic and mo-
lecular changes that seem to account, in part, for
specific aspects of human evolution, including human
diseases [83]. Thus, identification of the molecular dif-
ferences between human and rhesus placenta is not only
needed to elucidate the translatability between human
and rhesus placental studies, but it may also provide
valuable insight into the molecular origin of human pla-
cental diseases, such as preeclampsia. Here, we per-
formed a cross-species transcriptomic comparison of
human and rhesus placental tissue in order to identify
molecular differences and ultimately elucidate the trans-
latability between human and rhesus placental investiga-
tions. Further, to increase the accessibility of rhesus
in vitro placental studies, we generated and thoroughly
characterized two highly pure TERT-immortalized rhe-
sus trophoblast cell lines that retained features of pri-
mary rhesus trophoblasts.
Our DE analysis of human and rhesus placental tissue

revealed that while the majority of HPGs were similarly
represented, certain genes were differentially expressed
between the two species. Specifically, genes associated
with preeclampsia and several well-known invasive EVT
markers were upregulated in human compared to rhesus
placenta. These results are consistent with previously re-
ported differences between human and rhesus placenta-
tion, such as the increased extent and depth of
interstitial EVT invasion [11, 12, 84] and heightened risk
of preeclampsia in humans [85]. Even though pre-
eclampsia is thought to originate in the first trimester,
many of the molecular and/or cellular processes that
occur during first trimester can also occur at lower levels
or in a smaller number of cells in third trimester placen-
tas, including EVT differentiation and invasion. Add-
itionally, third trimester placental abnormalities are well
documented in cases of preeclampsia [86], and thus,
examination of third trimester placental tissues may still
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provide insight into the genes associated with preeclamp-
sia as shown here. While this study was not designed to
provide mechanistic insight into preeclampsia, our find-
ings are not unexpected considering that preeclampsia oc-
curs frequently in humans and rarely in rhesus and other
primates. Comparison of first trimester human and rhesus
placental transcriptomes would likely identify more sig-
nificant differences and/or numerous additional human-
upregulated genes related to preeclampsia. However, it is
difficult to simultaneously analyze first trimester placentas
and allow the pregnancy to continue unless chorionic vil-
lous samples are collected as part of a prenatal screening.
Nonetheless, our results provide novel insight into the
molecular differences underlying human and rhesus

placentation and an evolutionary perspective of how pre-
eclampsia and other pregnancy-related diseases may have
arisen during human development.
Despite the existence of several prior placental tran-

scriptomic comparisons across distantly related species
[87, 88], the majority of the DEGs identified here have
not been previously reported. Our study was different in
that we not only examined highly conserved orthologous
genes, but were also able to compare and identify differ-
ential expression of recently evolved primate placental
genes such as LGALS13 [89]. In particular, we show that
LGALS13 is significantly upregulated in human com-
pared to rhesus placenta. This gene encodes galectin-13,
which interacts with glycoproteins and glycolipids to
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Fig. 6 Functional characterization of iRP-D26 and iRP-D28A. a Representative micrographs of iRP-D26 and iRP-D28A trans-well inserts after migration and
Matrigel invasion assays. Nuclei were counterstained with DAPI (blue). b Box plot of average cell counts (n=5) from uncoated (migration, n=3) and Matrigel-
coated (invasion, n=3) inserts under normoxic (blue) and hypoxic (red) conditions. A two-sided unpaired t test with alpha of 0.05 was used to determine
significance. c Box plot of percent invasion (ratio of invasive cells relative to migratory cells) determined for each of the cell lines under normoxic (blue) and
hypoxic (red) conditions. d Bar chart of IGF2 qRT-PCR expression levels of iRFb (n=2) and iRP samples (n=4). e Bar chart of IGF2 protein secretion levels for iRFb
(n=2), iRP (n=3), and the rhesus serum pool (n=4); error bars depict standard error (SE)
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facilitate the expansion of uterine arteries and veins dur-
ing pregnancy in an endothelial cell-dependent manner
via the eNOS and prostaglandin signaling pathways [90].
While downregulation of LGALS13 in preeclampsia and
other pregnancy disorders is thought to contribute to
aberrant uteroplacental blood flow [41, 91], lower ex-
pression in rhesus placenta may underlie differences in
the extent and depth of EVT invasion, or represent an
alternative mechanism for uterine vessel expansion.
Thus, our results suggest that recently evolved highly
expressed human placental genes may contribute to the
increased risk of aberrant placentation and preeclampsia
[1]; however, further investigation of the evolutionary
and functional requirements of these genes is required
to confirm this notion.
Ideally, equivalent gestational ages should be used to

compare DE in placentas between primates, but access
to early third trimester samples (~80% gestation) from
healthy human pregnancies was not possible due to ob-
vious ethical constraints. Further, since rhesus monkeys
are known to consume the placenta immediately after
birth, both in captivity and in the wild, placentas from
time-mated breeding pregnancies are typically collected
before term to prevent the risk of losing precious third
trimester rhesus placental samples. Due to these limita-
tions, it was possible that some of the gene expression
differences we detected between the human and rhesus
were due to GA rather than species-specific differences.
However, examination of a set of previously defined
“GA-specific” placentally expressed genes [45] demon-
strated that only a single GA-specific gene (BAALC) was
differentially expressed in our analysis. Moreover, the
seeming unequal distribution of male and female sam-
ples within the rhesus RNA-seq data suggested that it
was possible that some of the gene expression differ-
ences we detected were sex-specific rather than species-
specific differences. However, only five SDE (ZFY,
RPS4Y1, KDM5D, DDX3Y, CCK) overlapped with DEGs
identified from our cross-species analysis. Taken to-
gether, this suggests that GA- and sex-related changes
accounted for a small percentage of the DEGs in our
cross-species analysis, substantiating that the DE differ-
ences detected between human and rhesus placenta were
largely species-specific.
Although there are previous reports of primary rhesus first

and third trimester trophoblast collections [47–49], the pro-
cedure for their isolation is laborious and the cells have a fi-
nite lifespan once in culture. Immortalization of isolated
primary rhesus trophoblast cells could help overcome these
limitations, but such a cell line does not currently exist. In
this study, we generated several TERT-immortalized cell
lines from freshly isolated primary rhesus placental cells and
demonstrated the robustness of the lentiviral-based TERT-
immortalization approach. However, contamination with

non-trophoblast stromal cells occurred in the majority of pri-
mary trophoblast isolations. Thus, additional efforts to re-
duce contaminating non-trophoblast cells during primary
cell isolation, such as additional immunopurification steps or
FACS sorting, should be implemented to increase the suc-
cess rate of future attempts. In total, six TERT-immortalized
rhesus placental cell lines were generated; however, only two
of the lines (iRP-D26 and iRP-D28A) consisted of highly
pure mononuclear trophoblast cells devoid of large-scale
CNVs. These results are consistent with previous studies that
revealed few karyotypic differences in TERT-immortalized
cells compared to SV40-immortalized cells [92]. Neverthe-
less, genome duplication may still occur in TERT-
immortalized trophoblast cells over time with continued pas-
saging [7], suggesting that the genome integrity of the cell
lines be routinely monitored.
In spite of broad transcriptomic similarities across hu-

man and rhesus placenta/trophoblast samples, distinct
HPG expression was observed between the two species,
indicating that not all human placental markers are con-
served in rhesus. Transcriptomic differences between
immortalized and primary rhesus trophoblasts likely re-
flect TERT-induced gene expression differences, changes
acquired with extended culture, an enrichment of
specific rhesus trophoblast cell subtypes, or the stage of
differentiation captured in the immortalized cell lines.
We suspect that the increase of HSV1-associated genes
in iRP-D26 and iRP-D28A compared to RPTs was the
result of TERT-immortalization, since HSV1 infection
increases TERT activity [63]. However, the upregulation
of EVT markers and extracellular matrix organization
related genes is likely due to an enrichment of EVT-like
cells in the immortalized cell lines compared to primary
trophoblast samples. Thus, even though we intended to
isolate and immortalize CTBs, it is possible that residual
cell column EVTs were still attached to the villous tissue
and carried over during primary trophoblast isolation or
that TERT-immortalization drove the cells towards a
more EVT-like phenotype during culture. We note that
the same isolation procedure used here resulted in the
generation of other immortalized human first trimester
EVT cell lines that retained characteristics of their
in vivo counterparts [4, 93, 94].
Recent single-cell RNA-seq studies of human first tri-

mester placenta identified the presence of several differ-
ent EVT and CTB subtypes [46], as well as cells at
different stages of EVT/STB differentiation within pri-
mary trophoblast isolates [64]. It is well-established that
several different EVT subtypes exist in human [95], and
based on IHC staining and the localization of EVTs in
non-human primates, there is evidence that similar EVT
subpopulations also exist in rhesus [96]. Thus, the differ-
ences we detected within and between the immortalized
trophoblasts and RPTs may reflect two distinct subtypes
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or unique stages of EVT differentiation (e.g., interstitial,
endovascular, cell column) normally present in first tri-
mester rhesus placenta. We speculate that since the iRP-
D26 cell line is sensitive to forskolin treatment, it may
represent an EVT subpopulation that gives rise to pla-
cental bed giant cells, while the iRP-D28A cell line rep-
resents one of the other invasive EVT subpopulations.
Integration of rhesus placenta single-cell RNA-seq data
would help classify the cell lines and elucidate whether
these transcriptomic differences represent natural vari-
ation among rhesus trophoblast populations or are sim-
ply a byproduct of immortalization and continued
culture; however, no such dataset currently exists.
While human CG (hCG) levels remain relatively high

throughout human pregnancy, rhesus mCG secretion and
serum levels peak at gestational day 25 and rapidly de-
crease to baseline levels ~10 days later [97]. Since the im-
mortalized trophoblast cell lines were generated from
rhesus placental tissue near the peak of mCG secretion,
and both hCG and mCG are predominantly secreted from
the STB during pregnancy, we interpreted the lack of
mCG secretion by the immortalized rhesus trophoblast
lines as further support for an EVT-like phenotype. It
should be noted that there are previous reports of CG ex-
pression in human EVTs [98–100], and while a similar
rhesus study has not been conducted in vivo, the recent
derivation of rhesus trophoblast stem cells indicates that
EVT-like cells do secrete CG in vitro [52]. Nonetheless,
iRP-D26 and iRP-D28A showed overall transcriptomic
similarity to primary rhesus trophoblasts and retained key
expression and functional characteristics of invasive EVTs,
highlighting the suitability of these lines for future in vitro
functional investigations. Specifically, these cell lines could
be used for overexpression and/or knockdown studies of
the genes identified as differentially expressed in human
placentas here or in other reports since primary cells,
trophoblast or otherwise, are notoriously difficult to trans-
fect. In particular, we envision assessing the function of
genes shown to be upregulated in human placentas and
associated with preeclampsia to determine the effects on
trophoblast invasion and signaling, as well as provide
insight into the mechanisms underlying the disproportion-
ate incidence of pregnancy-related disease between
humans and non-human primates.

Conclusions
In conclusion, our comparative analysis between human
and rhesus bulk placenta showed that while a majority of
HPGs are similarly expressed between the two species,
certain genes are differentially expressed between human
and rhesus placenta. These results suggest that rhesus is a
suitable surrogate for most investigations of human pla-
centation; however, notable molecular differences related
to EVT function and preeclampsia should be considered

and further interrogated in future investigations. More-
over, we generated immortalized rhesus trophoblast cell
lines that represent a useful tool for primate placental in-
vestigations, especially for in vitro experiments that inter-
rogate the putative function of genes identified in this
study. Transcriptomic comparison and functional assess-
ment of these cell lines suggest that they retain attributes
of rhesus primary first trimester EVTs. Collectively, the re-
sults of this study (1) provide a comprehensive list of
genes differentially expressed between human and rhesus
placenta that informs the translatability of primate placen-
tal investigations, (2) help delineate the underlying mo-
lecular basis of increased EVT invasion and heightened
susceptibility to preeclampsia and other pregnancy-related
diseases in human, and (3) offer a reliable source of first
trimester rhesus trophoblasts for current and future
in vitro studies of early primate placentation.

Methods
Tissues and cell lines
Deidentified human term placental samples were col-
lected by and acquired through the Labor and Delivery
Unit at the Oregon Health and Science University Hos-
pital and deposited into a repository under a protocol
approved by the Institutional Review Board with in-
formed consent from the patients. A total of five differ-
ent human placentas from healthy cesarean section term
births, ranging from 38.9 to 41.3 gestational weeks, were
used for RNA-seq library generation (Additional file 2).
All rhesus monkey (Macaque mulatta) tissues were col-
lected in compliance with the guidelines established by
the Animal Welfare Act for housing and care of labora-
tory animals and conducted per the Institutional Animal
Care and Use Committee (IACUC protocols #0514 and
#0580) at the Oregon National Primate Research Center
(ONPRC). All rhesus placentas were collected from
time-mated breeding pregnancies delivered via cesarean
section. Two frozen rhesus third trimester placental
samples, collected at 140 and 141 gestational days, were
used for RNA isolation and qRT-PCR validation of DE
analysis results. Six fresh rhesus placentas were used for
primary rhesus trophoblast TERT-immortalization, in-
cluding two term placentas (D141, D149) and four first
trimester placentas (D26, D28A, D28B, D50). An add-
itional first trimester rhesus placenta (D50) was used for
primary trophoblast culture and RNA-seq analysis; these
cells were not included in TERT-immortalization experi-
ments. For all samples, the placentas were separated
from the fetus and amniotic sac, collected in cold sterile
saline and immediately processed for isolation of pri-
mary trophoblasts. The primary female and male rhesus
macaque skin fibroblasts cell lines, Fb.XX (AG08312)
and Fb.XY (AG08305), were acquired through Coriell
Institute. Frozen stocks of the highly pure rhesus first
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trimester trophoblast cell lines, iRP-D26 and iRP-D28A,
were generated at various passage numbers and can be
made available to researchers upon request. While earl-
ier passages were used for the initial characterization
(passages 8–26), later passages were subjected to func-
tional analyses, including Matrigel invasion, forskolin
treatment, and hormone/growth factor secretion (pas-
sage 19-32) (Additional file 16).

RNA isolation and purification
Frozen placental samples were ground into a powder
using liquid nitrogen-cooled mortar and pestle then dir-
ectly added to TRIzol reagent (Thermo Fisher
#15596026); for cell lines media was removed and TRIzol
reagent was added directly to the tissue culture dish. RNA
was isolated from TRIzol reagent, treated with Turbo
DNAse (Thermo Fisher #AM1907), and purified using
RNA Clean and Concentrator-5 spin columns (Zymo
#R1013) according to manufacturer's instructions.

RNA-seq library preparation and sequencing
NEBNext® Ultra II Directional RNA Library Prep Kit for
Illumina and NEBNext rRNA Depletion Kit (NEB, Ips-
wich, MA) was used to generate RNA-seq libraries from
purified RNA following the manufacturer’s instructions.
Libraries were quantified with the Qubit High Sensitivity
dsDNA Assay (Invitrogen, Carlsbad, CA), and size distri-
bution was assessed with a 2100 Bioanalyzer High Sensi-
tivity DNA Analysis Kit (Agilent). Multiplexed bulk
human placental libraries were sequenced on the Next-
Seq500 platform using 150 cycle single-end protocol
generating a total of 36.9 to 70.9 million 101bp reads per
sample. Multiplexed rhesus trophoblast cell lines were
sequenced on the NextSeq500 platform using 100 cycle
single-end protocol generating a total of 57.8 to 68.5
million 75bp reads per sample.

Human and rhesus orthologous gene annotations
Human protein-coding gene annotations (GRCh38.99)
including associated rhesus orthologous gene annota-
tions (Mmul10.99) were downloaded from ENSEMBL
BioMart [101, 102]. Gene annotations used for DE ana-
lysis were filtered to include only human protein-coding
genes with “high-confidence” “one2one” rhesus ortholo-
gous genes, producing a final set of 15,787 human gene
annotations and associated 15,787 rhesus orthologs
(Additional file 3). A total of 13,471 orthologs genes
passed the minimum DEseq2 default expression thresh-
old for differential expression statistical analysis.

Differential expression (DE) analysis
For human and rhesus cross-species DE analysis, raw
fastq files were trimmed of low-quality and adapter se-
quences using Trimmomatic [103] and mapped to both

the human (GCh38) and rhesus (Mmul10) reference ge-
nomes using Bowtie2 [104] with a very sensitive param-
eter. Resulting BAM files were filtered to remove low
quality and multi-mapped reads (MAPQ ≥10) using
samtools [105] view -q 10. Raw read counts for
GRCh38.99 human gene annotations were generated
from GRCh38 mapped data, while raw read counts for
Mmul10.99 rhesus gene annotation were generated from
Mmul10 mapped data, using featureCounts [106]—pri-
mary and filtered to include gene annotations described
above. Gene counts were normalized and DEGs (padj<
0.05 & Log2FC>|2|) were identified using default setting
of DEseq2 [107]. DE analysis was performed with human
mapped data (DE-GRCh38) and with rhesus mapped
data (DE-Mmul10). A gene was considered differentially
expressed only if it was identified as significantly (padj<
0.05) upregulated or downregulated (|L2FC|>2) by both
DE-GRCh38 and DE-Mmul10 analyses. The DE analysis
was repeated a total of three times, with three independ-
ent sets of human placental RNA-seq data (Add-
itional file 1: Fig. S2A-C). The first DE analysis included
the five human placental RNA-seq samples generated by
our group (DE#1), the second DE analysis included six
publicly available human placental RNA-seq datasets
(DE#2), and the third DE analysis included two publicly
available human placental RNA-seq datasets (DE#3); all
three DE analyses included the same four publicly avail-
able rhesus placental RNA-seq datasets. The final set of
DEGs consisted only of genes determined to be signifi-
cantly upregulated or downregulated by all three DE
analyses.
The DE analysis between male and female human pla-

cental samples was performed as described above with
the exception that trimmed reads were mapped exclu-
sively to the human reference genome. Additionally, the
DE analysis between immortalized trophoblast and RPT
cells was performed as described above with the follow-
ing exceptions: (1) trimmed reads were mapped exclu-
sively to the rhesus reference genome, (2) differential
expression was analyzed for all 21,575 protein-coding
rhesus gene annotations (ENSEMBL v98), and (3) a gene
was identified as significantly differentially expressed if
padj<0.05 and Log2FC>|1|.
PCA and heatmap visualizations were generated using

DEseq2 variance stabilizing transformation (VST) nor-
malized human gene count data. PCA analysis was per-
formed with VST-normalized expression data from all
genes included in DE analysis. Morpheus webtool
(https://software.broadinstitute.org/morpheus) was used
to generate heatmaps and perform hierarchical cluster-
ing (metric: one minus Pearson correlation, linkage
method: complete). Statistical over-representation ana-
lysis of the human and rhesus upregulated gene lists was
performed using g:Profiler webtool [108]. Custom
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background gene lists containing the final 15,787 ortho-
logs described earlier and 21,575 rhesus protein-coding
genes were used for human/rhesus upregulated and iRP
over-representation tests, respectively. Query DEG lists
were tested for over-representation of several functional
genes sets, including the default g:Profiler biological
pathway (KEGG, Reactome, and WikiPathways) gene
sets; Human Protein Atlas (HPA) trophoblast subtypes
g e n e s e t s ( h t t p s : / / w ww . p r o t e i n a t l a s . o r g /
humanproteome/celltype); “Rare_Diseases_GeneRIF_
Gene_Lists” and “Jensen_DISEASES” human disease
gene sets extracted from Enrichr webtool [109, 110]
(https://maayanlab.cloud/Enrichr/).

qRT-PCR
Primers were carefully designed to amplify both human
and rhesus sequences of all genes examined, with noted
exceptions (Additional file 17). Purified RNA was reverse
transcribed into complementary DNA (cDNA) using
SuperScript VILO cDNA Synthesis Kit (Thermo Fisher
#11754050). Samples were prepared for high-throughput
qRT-PCR using 96.96 gene expression dynamic array
(Fluidigm BioMark) following manufacturer's protocol
“Fast gene expression analysis using Evagreen.” Briefly,
preamplification of cDNA was performed using a 500-
nM pooled primer mix, unincorporated primers were re-
moved with exonuclease I treatment, and diluted 5-fold
before samples and detectors were loaded and run on a
96.96 array with the following thermocycler settings:
70°C for 40 min, 60°C for 30 s, 95°C for 1 min, 40 cycles
of 95°C 15 s, 59.5 °C for 15 s, and 72 °C for 15 s. Two no
template control (NTC) samples and four technical rep-
licates of each reaction were included. The analysis was
performed using qbase+ software, with GAPDH, HPRT1,
and TBP serving as the reference genes used for
normalization. Statistical significance was determined
using two-sided unpaired t test with alpha of 0.05. Mean
calibrated normalized relative quantities (CNRQ) were
exported from qbase+, Log2 transformed, then used as
input for heatmap generation with Morpheus web tool.

Transcriptomic comparison of human, rhesus, and mouse
placenta
Human gene annotations (GRCh38.101) including asso-
ciated rhesus (Mmul10.101) and mouse (GRCm38.101)
orthologous gene annotations were downloaded from
Ensembl BioMart [101, 102]. Gene annotations were fil-
tered to include only human protein-coding genes with
“one2one” rhesus and mouse orthologous genes. The
orthologs were further filtered to exclude ribosomal
genes and genes from chromosomes X, Y, and MT, pro-
ducing a final set of 14,054 orthologous human, rhesus,
and mouse 1:1:1 gene annotations. The method used for
transcriptomic comparison of three species is largely

based off a previously described approach [111]. For this,
we used RNA-seq data generated in-house from human
(n=5) and publicly available rhesus (n=4) and mouse (n=
4) placenta RNA-seq data (Additional file 2). Raw fastq
files were trimmed of low-quality and adapter sequences
as described above. Transcripts per million (TPM) gene
expression values were calculated using RSEM v1.3.1
[112] with reference genome and gene annotation down-
loaded from Ensembl version 101 [101, 102] (Add-
itional files 4, 5, 6). For this, trimmed data were mapped
to respective genomes/gene annotations (RSEM index)
using Bowtie2 [104] with the following parameters --sen-
sitive --dpad 0 --gbar 99999999 --mp 1,1 --np 1 --score-
min L,0,−0.1. DEseq2 was used for normalization and
differential expression calling, with TPM values as in-
puts. One plus Log2 normalized TPM values were used
for heatmap generation and hierarchical clustering using
Morpheus webtool. DE results were filtered to include
only genes with |L2FC|>2 and padj<0.05.

Human placental marker gene (HPG) set analysis
HPGs were defined by combining previously identified
placenta “tissue enriched” and “group enriched” genes
from The Human Protein Atlas [31]. A total of 190 hu-
man placental markers were extracted from this data-
base, including 91 “placenta-enriched” genes having at
least four-fold higher mRNA level in the placenta com-
pared to any other tissue, and 99 “placenta group-
enriched” genes having at least four-fold higher average
mRNA level in a group of 2–5 tissues compared to any
other tissue [31]. Human placental marker genes lacking
an ENSEMBL-defined “one2one” or “high-confidence”
rhesus orthologous gene could not reliably be compared
and were excluded from our DE analysis.

Rhesus primary trophoblast cell isolations
Primary trophoblast cells were isolated from rhesus pla-
centas using protocols adapted from previously de-
scribed methods for human first trimester tissue [4, 113,
114] and human term tissue [115]. All rhesus placentas
were obtained immediately after cesarean section deliv-
ery, and procedures were performed in a biosafety cabi-
net using ice-cold and sterile solutions unless otherwise
noted. Placental tissue was transferred to a Petri dish
and covered with sterile saline, and the villous tissue was
dissected from the decidua and chorionic plate using
scissors and forceps; decidua and fetal membranes
were discarded. To remove any contaminating blood,
the villous tissue was washed until clear with several
changes of sterile saline then crudely minced using
scissors.
For first trimester placentas, villous tissue was trans-

ferred to a 50-mL tube containing warmed 0.25% trypsin
solution and incubated at 37 °C for 10 min, mixed by
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inverting every 2–3 min. The tissue was allowed to settle
at bottom of the tube for 5 min before the supernatant
was discarded, and the tissue was washed with three
changes of 1X phosphate-buffered saline without Ca2+
and Mg2+ (PBS--) (Caisson Labs #PBL05). To release
the CTB, the tissue was transferred to a fresh Petri dish
containing warmed 0.25% trypsin 0.2mg/mL DNAse I
solution and a scalpel or glass slide was used to thor-
oughly scrape the villi. The surrounding trypsin solution
containing desired CTBs was collected through a 70-μm
cell strainer into 50 -mL tubes containing 5-mL fetal bo-
vine serum (FBS) (Fisher #16-140-063). Cells were cen-
trifuged at 300g for 10 min and resuspended in Hanks
Balanced Salt Solution (HBSS). This suspension was
carefully layered over an equal volume of Lymphocyte
Separation Media (Corning #25-072-CI) in a 15-mL con-
ical tube, and centrifuging the gradient at 400g for
15min with the break off. While the red blood cells col-
lected as a pellet at the bottom of the tube, the interface
between the HBSS and LSM, containing the trophoblast
cells, was carefully removed using a transfer pipet. The
cells were pelleted then resuspended in cell culture
media (CCM): DMEM high-glucose glutaMAX (Fisher,
#10566-016), 10% FBS, 100 U/mL Pen-Strep (Fisher
#15-140-148).
For term placentas, villous tissue was digested for 30 min

shaking at 37°C with 0.25% trypsin and 0.2mg/mL DNAse I.
The supernatant was reserved and the digest was repeated
two additional times. The three digests were combined and
centrifuged. Pellets were resuspended in DMEM and re-
pelleted. Cells were carefully layered over a preformed Percoll
gradient layered at 60, 55, 50, 45, 35, 30, and 25%, prior to
centrifugation at 2800 rpm for 30 min without brake. The
CTB cells between 35% and 55% were collected, counted and
resuspended in CCM. For both first trimester and term pla-
centas, cells were centrifuged at 300g for 10 min, and the cell
pellet was resuspended to 108 cells/mL in 1X Nanobead buf-
fer (BioLegend #480017). Contaminating immune cells were
depleted using anti-CD45 Magnetic Nanobeads (BioLegend
#488028) following the manufacturer's instructions. Purified
trophoblast cells were resuspended in complete trophoblast
media (CTM): MEM – Earle’s with D-Val (Caisson Labs
#MEL12), 10% normal human serum (Gemini Bio #100-110),
100-U/mL Pen-Strep, 1-mM Sodium Pyruvate (Fisher #11-
360-070), and 0.1M HEPES (Fisher #15-630-106); and grown
on enhanced tissue culture dishes (Corning Primaria,
#C353802) in a humidified 37°C environment with 5% CO2.
Primary rhesus trophoblasts included in the RNA-seq (D50B)
were harvested after nanobead immuno-purification and
an additional CTM wash step.

TERT-immortalization
Primary rhesus trophoblasts and rhesus skin fibroblast
cells were immortalized using Alstem’s TERT-

immortalization kit (Alstem #CILV02) following
the manufacturer's instructions. In brief, following the
isolation of primary cells or 24 h after thawing of skin fi-
broblasts, the cells were plated at a density of 1.5 × 105

cells/well in a 6-well plate and transduced the following
day. Each well received 1 mL of media containing 4 μL
recombinant TERT lentivirus and 500x TransPlus re-
agent (Alstem # V020). After 16 h, the media were re-
placed with fresh culture media and the cells were
allowed to recover for 48 h before beginning puromycin
selection (Santa Cruz Biotechnology #SC-108071). Cells
were treated with 800ng/mL puromycin for a total of 72
h. The surviving cells were propagated and represent the
TERT-immortalized cell lines established and character-
ized throughout these studies. Mock transductions using
the same transduction conditions without lentivirus
added to media were included throughout puromycin
selection to ensure depletion of non-transduced cells.

Cell culture
All cell lines were grown in a humidified 37°C environ-
ment with 5% CO2. Cell culture media was changed every
2 days, and cells were enzymatically passaged using Try-
pLE (Gibco). Primary and TERT-immortalized tropho-
blast cell lines were cultured in CTM, while fibroblast
samples were cultured in CCM. iRP-D26 and iRP-D28A
cell lines were passaged at a density of 30,000 cells/cm2,
while all other lines were passaged at a density of 15,000
cells/cm2.

DNA sequencing and chromosome copy number calling
Cells were dissociated using TryplE, pelleted, and resus-
pended in PBS-- containing 0.05% trypsin-EDTA
(Thermo Fisher Scientific). A stereomicroscope was used
to isolate, wash, and collect cells into individual sterile
PCR tubes. Immediately after collection, PCR tubes con-
taining single-cells (n=4), five-cells (n=1), and ten-cells
(n=1) were flash-frozen on dry ice, and stored at −80°C
until library preparation. Individual samples underwent
DNA extraction, whole-genome amplification, library
pooling, and DNA sequencing were performed as previ-
ously described [55]. Multiplexed libraries were loaded
at 1.6pM and sequenced on the NextSeq 500 platform
using the 75 cycle single-end protocol. The resulting se-
quencing data was filtered, trimmed, and mapped to the
rhesus reference genome (Mmul8) as previously de-
scribed [55]. Chromosome copy number calling and
plots were generated using Ginkgo [116]. The propor-
tion of Chr Y reads was determined for each sample by
dividing the number of reads mapped to Chr Y by the
total number of mapped reads. The relative proportion
of Chr Y reads was identified by normalizing samples to
the known male sample (iRFb-XY), and samples with a
mean relative proportion ≥ 0.50 were identified as male.
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Metaphase spread chromosome counts
Cells were treated with a 0.015-ug/mL colcemid over-
night (~12 h) to induce metaphase arrest. Cells were dis-
sociated using TryplE, pelleted, and resuspended in a
warm hypotonic solution (0.06 M KCl, 5% FBS) for 15
min before being fixed with 3:1 methanol:acetic acid.
Slides were made and baked at 95C for 20 min, cooled,
trypsinized for 45 s, and stained with Wright’s stain. At
least 20 metaphase spreads were analyzed and brightfield
images captured using 100X objective on a Nikon micro-
scope and counted using FIJI software.

IHC staining
Paraffin sections were deparaffinized and rehydrated
through xylene and a graded alcohol series, then washed
for 5 min in running tap water. Antigen unmasking was
performed using sodium citrate (pH 6.0) buffer in a
pressure cooker for 20 min and washed in three changes
of PBS. An endogenous enzyme block was performed by
incubating sections in 0.3% hydrogen peroxide for 10
min and washed in three changes of PBS. Nonspecific
proteins were blocked by incubating sections in 5%
horse serum for 30 min. Primary antibodies were diluted
as described for IF staining, and the tissue was incubated
in primary antibody dilutions for 2 h at room
temperature. Mouse IgG H+L (Vector Labs, BA-2000)
and rabbit IgG H+L (Vector Labs, BA-1100) biotinylated
secondary antibody dilutions were prepared at 1:250 in
PBS + 1% BSA. The tissue sections were incubated in
the secondary antibody dilution for 1 h at room
temperature, then washed in three changes of PBS.
VECTASTAIN Elite ABC HRP Kit (Vector Laboratories,
PK-6100), and ImmPACT DAB Peroxidase HRP sub-
strate (Vector Labs, SK-4105) were used according to
manufacturer's instructions. Nuclei were counterstained
with hematoxylin (Electron Microscopy Sciences, 26043-
05) and imaged using a brightfield microscope.

IF staining
The cell culture media was removed from the cells, fixed
with ice-cold methanol for 15 min at −20°C, then
washed in three changes of PBS. Nonspecific proteins
were blocked by incubating cells in 5% donkey serum
for 30 min. Anti-KRT7 (mouse monoclonal, Dako,
M7018), anti-CDH1 rabbit monoclonal (Cell Signaling,
3195S), anti-VIM rabbit monoclonal (Cell Signaling,
5741T), anti-PTPRC rabbit monoclonal (Cell Signaling,
13917S), and anti-SDC1 mouse monoclonal (Miltenyi
Biotec, 130-119-927) antibodies were diluted in PBS +
1% BSA (KRT7 1:250, CDH1 1:250, VIM 1:250, CD45 1:
250) and incubated for 2 h at room temperature. The
cells were then washed in three changes of PBS, before
incubating in secondary antibody dilutions for 1 h at
room temperature. Alexa Fluor 488 and 594 (Life

Technologies) secondary antibody dilutions were pre-
pared at 1:1000 in PBS + 1% BSA. Cells were counter-
stained with DAPI and washed with three changes of
PBS before imaging. Images of cells were captured using
the 20X objective on an epifluorescence microscope or
a Leica SP5 AOBS multi-spectral confocal microscope
and processed using FIJI software.

Forskolin fusion assay
The cell lines were passaged onto 6-well plates and
treated the following day with either media containing
25-uM forskolin or DMSO. After 48 h, two wells from
each condition were processed for RNA isolation and a
single well was processed for IF staining as described
above. Four technical replicates were included in subse-
quent qRT-PCR analysis, and five micrographs of immu-
nostained cells were captured per condition.

Monkey chorionic gonadotropin (mCG) concentrations by
radioimmunoassay (RIA)
mCG IRA was performed on media collected after 48 h
in culture from iRP-D26, iRP-D28A, and iRP-D28B cell
lines treated with 25uM forskolin (n=3) or DMSO (n=3).
Highly purified human CG (LER hCG) for radioiodina-
tion and reference standard was obtained from Dr. Leo
Reichert, Tucker Endocrine Research Institute; Tucker,
GA [117]. Each ampule of human CG contained 50 mi-
crograms. An ampule of hCG was re-dissolved in 50 ml
of phosphate-buffered saline (PBS) so that the concen-
tration of hCG was 1 mg/ml. After being completely dis-
solved, the hCG was separated into aliquots of 5 mg/5
ml for radioiodination. For reference standards, 24.95 ml
of 1% BSA-PBS was added to one hCG ampoule, result-
ing in a concentration of 200 ng/ml which was divided
into 0.5 ml per aliquot and stored at −80°C. Ovine anti-
serum H-26 has been established in RIA and used exten-
sively for measuring monkey CG concentrations in the
blood, urine, and cells [118]. While the antiserum was
generated against ovine luteinizing hormone (LH), it was
targeted toward monkey CG, and, for a very long time,
has been the only antibody available to a few laboratories
for measuring monkey CG. H-26 antiserum was diluted
to 1:2000 for use as the primary antibody in our labora-
tory. For precipitation, the anti-rabbit gamma globulin,
NIH #1, was diluted to 1:50 for use in the mCG RIA.
Assay tubes were centrifuged at 3000 rpm for 30 min in
a Beckman J-6 refrigerated centrifuge. Before the assay,
LER hCG was radioiodinated with Iodine-125 (I-125)
(Perkin-Elmer, Billerica, MA) for use as a trace. Briefly,
1.0 mCi of fresh I-125 was mixed with 5 μg of LER hCG
for 1 min under oxidative conditions. The reaction was
stopped by adding reductive solution, and the I-125-
labeled hCG was separated from free I-125 by column
chromatography (using Bio-Gel P60, 200-300 wet mesh,
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from Bio-Rad, Hercules, CA). The fractions containing
proteins were tested with antibody within 24 h, and the
specific and non-specific bindings were assessed. All
samples for mCG determinations were assayed at ori-
ginal concentration. Overall, the characteristics of the
standard curves indicated that the assays were well exe-
cuted. Of the 12 standard points in serial dilutions of
hCG from 10 ng/ml to 0.0049 ng/ml, 10 maintained
dose-response between 5 and 95% binding. The highest
point (10 ng/ml) and lowest point (0.0049 ng/ml) were
outside the 5% confidence limit at the upper and lower
end of the standard curve, respectively. However, these
standard points did not affect the calculation of samples
as the sample values were based on their specific bind-
ings. The sensitivity of the assay was estimated to be 0.1
ng/ml (at about 90% binding).

Trans-well migration and Matrigel invasion assay
24-well trans-well inserts with 8uM pores (Falcon
#353097) were coated with a 1.2-mg/mL Matrigel (Corn-
ing #354234), following the manufacturer’s instructions.
Migration and invasion assays were performed by cultur-
ing cells at 37°C for 48 h on uncoated (n=3) and
Matrigel-coated (n=3) trans-well inserts, respectively.
Assays were carried out under both normoxia and hyp-
oxia (~1% O2) conditions. A total of 25,000 cells in 250-
μL serum-free media were added to each insert, and 650
μL of complete trophoblast media was added to each
surrounding insert. At 48 h, the cells remaining on the
topside of the insert were wiped away with sterile cotton
swap before the insert was fixed with 4% paraformalde-
hyde and the nuclei were stained with DAPI. The 10X
objective of a Nikon Eclipse epifluorescence microscope
was used to capture five micrographs of the bottom side
of each insert, and the number of cells/nuclei were
counted automatically using FIJI software with default
threshold and measure functions. For each insert, the
mean average cell counts across the five micrographs
were used to calculate the “average cell counts per in-
sert” reported. For each cell line, the mean average cell
counts across all three uncoated inserts were used as the
denominator for calculating the percent invasion
(coated/uncoated) represented. A two-sided t test with
alpha of 0.05 was used to determine significance be-
tween conditions.

IGF2 secretion assay
Culture media samples were collected from cell lines
cultured for 48 h (n=2 for: iRFb, iRP-D26, iRP-D28A,
iRP-D28B; n=4 for rhesus serum pool), then centrifuged
for 5 min at 300g to remove cellular debris before IGF-2
secretion analysis. Secreted IGF-2 concentrations were
determined by ELISA following the manufacturer’s in-
structions (R&D Systems DG-100, Minneapolis, MN) in

the Endocrine Technologies Core (ETC) at ONPRC. The
assay range was 12.5–800 pg/mL. Intra-assay variation
for an in-house monkey serum pool was 4.0%. All sam-
ples were quantified in a single assay, and no inter-assay
variation was determined. The assay was validated for
use in monkey samples by the ETC prior to the analysis
of samples. This validation included analysis of a dilu-
tion series to test for assay specificity as well as a spike
and dilution analysis to test for analyte recovery and
matrix effects.
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