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As our understanding of the tumor microenvironment grows, the pathology field is increasingly utilizing multianalyte
diagnostic assays to understand important characteristics of tumor growth. In clinical settings, brightfield chromogenic
assays represent the gold-standard and have developed significant trust as the first-line diagnostic method. However,
conventional brightfield tests have been limited to low-order assays that are visually interrogated. We have developed
a hybrid method of brightfield chromogenic multiplexing that overcomes these limitations and enables high-order
multiplex assays. However, how compatible high-order brightfield multiplexed images are with advanced analytical
algorithms has not been extensively evaluated. In the present study, we address this gap by developing a novel
6-marker prostate cancer assay that targets diverse aspects of the tumor microenvironment such as prostate-specific
biomarkers (PSMA and p504s), immune biomarkers (CD8 and PD-L1), a prognostic biomarker (Ki-67), as well as an
adjunctive diagnostic biomarker (basal cell cocktail) and apply the assay to 143 differentially graded adenocarcinoma
prostate tissues. The tissues were then imaged on our spectroscopic multiplexing imaging platform andmined for pro-
teomic and spatial features that were correlated with cancer presence and disease grade. Extracted features were used
to train a UMAP model that differentiated healthy from cancerous tissue with an accuracy of 89% and identified
clusters of cells based on cancer grade. For spatial analysis, cell-to-cell distances were calculated for all biomarkers
and differences between healthy and adenocarcinoma tissues were studied. We report that p504s positive cells were
at least 2×closer to cells expressing PD-L1, CD8, Ki-67, and basal cell in adenocarcinoma tissues relative to the healthy
control tissues. These findings offer a powerful insight to understand the fingerprint of the prostate tumor microenvi-
ronment and indicate that high-order chromogenic multiplexing is compatible with digital analysis. Thus, the pre-
sented chromogenic multiplexing system combines the clinical applicability of brightfield assays with the emerging
diagnostic power of high-order multiplexing in a digital pathology friendly format that is well-suited for translational
studies to better understand mechanisms of tumor development and growth.
Introduction

Brightfield histological assays are the clinical standard for cancer diag-
nostics and have long been the first-line method for interpreting solid
tumors.1,2 Chromogenic stains such as hematoxylin and eosin (H&E) and
diaminobenzidine (DAB) are established gold-standard techniques that
have become mainstays in the workflow of clinical cancer diagnostics.3

Accordingly, brightfield assays have developed a great deal of trust in the
field and they remain the assay of choice in clinical settings.2 Although
pathology laboratories continue to adopt digital tools, clinical diagnosis
of primary tumors is largely performed by visual interrogation of
chromogenically stained tissue such as H&E, single biomarker immunohis-
tochemistry (IHC) staining with DAB, and special stains.4 However, as our
understanding of the complexity of tumor development and the associated
immune response grows, thefield is looking tomultianalyte assays to reveal
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mechanistic drivers of tumor growth to help inform treatment decisions.5,6

Multiplex IHC allows for the simultaneous detection of multiple biomarkers
in a single tissue section and permits direct observation of different cell
populations within a specimen. Multiplex IHC is therefore well-suited to
help evaluate prognostic characteristics of tumor growth by detecting func-
tionally active phenotypes as well as spatial descriptors of the disease and
associated immune response.7–10 In fact, multiplex IHC has been reported
to outperform single IHC, tumormutation burden, and gene expression pro-
file assays in predicting response to PD-1/PD-L1 checkpoint blockade.11

There has recently been an explosion of digital pathology tools that can
be used to quantitatively analyze histologically stained slides and extract
important prognostic and predictive contextual features.12–14 These
approaches enable mining of phenotypic cellular subtypes within the
spatial context of the tumor microenvironment (TME) for correlation with
outcome data.15 Features such as proximity to other cell types and distance
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to the tumor margin are increasingly being recognized as important to
understand how the TME is functioning and what treatment options are ex-
pected to be themost beneficial.16,17 For instance, the spatial distribution of
CD8 T cells and FoxP3 tumor infiltrating lymphocytes impacts prognosis in
gastric cancer.18

Simultaneous use of multiple conventional chromogens (DAB, Hema-
toxylin, Fast red) presents technical challenges to multiplex assays because
the dyes have broad and overlapping absorption spectra. This makes it
difficult for a pathologist to visually interrogate the tissue, especially in
complicated situations such as with co-localized antigens. From an imaging
perspective, conventional dyes are difficult to reliably separate which
ultimately limits the capability and robustness of downstream analysis
algorithms. To circumvent these technical limitations, there has been
significant work developing multiplex immunofluorescence (mIF)-based
approaches that have the ability to resolve colocalized antigens with high
sensitivity.19 Despite its technical performance, clinical adoption of mIF
has not materialized due to the technology’s high cost, low sample through-
put, difficulties standardizing the system, and because clinical workflows
are designed for brightfield assays.20,21

As previously described, we have developed a hybrid method of
multiplexing that supports high-order multiplex assays.22–24 We utilize
chromogens that are conjugated with tyramide and quinone methide
precursors that are enzymatically activated to covalently bind the dyes to
tissue components in near proximity to the targeted protein.22 This
approach permits rapid development of new chromogens with narrowband
absorption profiles and peaks tuned to be appropriately separated, so they
are amenable to high-order multiplexing. The associated imaging system
utilizes a purpose-built spectroscopic imaging platform and accompanying
spectral deconvolution algorithms to reliably separate dyes from a stained
tissue section into well-resolved images of the individual biomarkers.23

Brightfield multiplexing has been traditionally limited to single or
low-order biomarker assays that can be readily assessed by a pathologist,
although there has been increased interest recently in extending the capa-
bilities of chromogenic multiplexing.25,26 However, there is a shortage of
work exploring how compatible high-order brightfield multiplex images
are with modern digital analytical algorithms. This work addresses this
gap by exploring how suitable our chromogenic multiplexing system is
with modern digital pathology tools such as cell segmentation and
enumeration, digital phenotyping, dimensionality reduction, and spatial
biology-based algorithms.

To detail the system’s capabilities, we developed a 6-marker assay
(basal cell cocktail, CD8, Ki-67, p504s, PD-L1, and PSMA) using novel
narrowband chromogens and imaged the assay using our spectroscopic im-
aging platform. This multiplex assay targets biomarkers that are recognized
to be actively modulated in prostate cancer (PCa) development and
progression. Basal cell expression in the human prostate is associated
with normal organ development and function, which indicates that its com-
plete absence is usually associated with malignancy.27,28 CD8 is a marker
for the population of cytotoxic T cells which are powerful effectors in the
anticancer immune response and play an important role in the success of
current immunotherapies.29 CD8 helps in predicting patient survival rates
as higher density of CD8 positive cells is associated with prolonged survival
of high-risk PCa patients.30 PSMA staining helps differentiate PCa risk,
because 80% of patients diagnosed with PCa were PSMA positive and a
higher density of PSMA in prostate glands is correlated with reduced
outcomes.31–33 p504s is a cytoplasmic protein that is highly sensitive and
specific to prostate carcinoma that is absent or weakly present in benign
prostate glands.34 Furthermore, it has been reported that the combination
of PSMA and p504s is advantageous for PCa detection.35 Ki-67 is a protein
that is expressed in proliferating cells in all non-rest cell cycle phases.36

High Ki-67 proliferation index can indicate a fast growing tumor that has
been linked to more aggressive disease and worse overall outcome.37,38

PD-L1 is highly expressed in tumor tissues compared to benign and
indicates the tumor may be adapting to the immune system by inhibiting
the native antitumor response.39
2

The assay developed in this study presents a multifaceted approach to
evaluate the TME by detecting prostate-specific biomarkers (PSMA and
p504s), immune biomarkers (CD8 and PD-L1), as well as a known prognos-
tic biomarker (Ki-67) and an adjunctive diagnostic biomarker (basal cell
cocktail).40–42 We apply our 6-marker prostate assay to 2 distinct tissue mi-
croarrays (TMA) with 134 differentially graded PCa tissues. The prostate
TMA tissues were then imaged on our hybrid high-order chromogenic
multiplexing platform. The objective of this study was to evaluate if our
chromogenic multiplex platform produced high-fidelity images that could
be used to discover features that define the presence of cancer and to
explore changes with tumor grade. To accomplish this goal, images of indi-
vidual cancer biomarkers were quantified for protein abundance and
expression levels were compared. Furthermore, we evaluated if our
multiplexing platform could be used to evaluate spatial signatures, and
after analysis we report several protein-to-protein distance relationships
that are markedly closer in adenocarcinoma versus healthy prostate tissue.
Interestingly, the majority of spatial descriptors that were found to be sig-
nificantly different in healthy tissue were related to prostate-specific
markers (p504s and PSMA).

Materials and methods

Background of analyzed tissue microarrays

Two different PCa TMAs were used in this prevalence study. The first
TMA (Pantomics, Inc.) consisted of 102 cases of prostate tissue in which 7
cases were normal/benign and 95 cases had cancer. The age of the patients
ranged between 34 and 90. Each core was labeled with disease type and
cancer grade. Tissue cores had diameters of 1.5 mm. Out of 95 cancer
cores, 94 cores were adenocarcinoma, and so only those tissues were ana-
lyzed. The second TMA (Novus Biologicals, LLC) consisted of 49 total pros-
tate tissue cores (40 cancerous, 9 benign normal) from 40 patients. The age
of the patients ranged between 44 and 75. Tissue cores fromNovus Inc. had
a diameter of 2 mm and were labeled with disease type, cancer grade, and
Gleason score. Due to the larger diameter, this TMA was used for spatial
analysis. Because both TMAs were labeled with cancer grade (I, II, or III),
this feature was used for classification in this study. Tissues from each
TMA were sectioned to a thickness of 4 μm. For both TMA vendors, all
tissues were acquired in an anonymized fashion with informed consent.

Reagents and design of multiplex assay

A fully automated staining protocol was performed using a DISCOVERY
ULTRA platform (Roche Tissue Diagnostics, Tucson, AZ). Antibodies were
used against basal cell (cocktail of 34βE12+p63, VMSI Cat# 790-4536),
p504s (SP116, VMSI Cat# 790-6011), Ki-67 (30−9, VMSI Cat# 790-
4286), PSMA (EP192, VMSI Cat # 760-6076), CD8 (SP57, VMSI Cat #
790-4460), and PD-L1 (SP263, VMSI Cat # 740-4907). Detection of these
biomarkers was accomplished using the DISCOVERY RUO Purple kit
(VMSI Cat# 760–229), and 5 other research chromogen substrates. The
DISCOVERY Universal Procedure was used to create a protocol for the 6-
plex IHC assay. All dyes were sourced from Roche Tissue Diagnostics. The
antibody-chromogen assignments for the assay are listed in Table 1.

Staining began with tissue sections mounted on a glass slide that was
warmed to 72 °C for 3, 8-min cycles to deparaffinize the tissue. The tissue
was then prepped for staining by completing antigen retrieval, which
consisted of using Cell Conditioning 1 (VMSI Cat# 950-124) and warming
the slide to 100 °C for 64min. Next, the primary antibody targeting the first
biomarker in the panel was incubated following by a rinse in 1× Reaction
Buffer (VMSI Cat# 950-300). This was followed by incubating the anti-
species antibody targeting the primary antibody (either anti-mouse HQ or
anti-rabbit HQ) conjugated to anti-HQ HRP, washing with 1× Reaction
Buffer, incubating with tyramide chromogen or tyramide chromogenic pre-
cursor (DBCO) and hydrogen peroxide, and washing with 1× Reaction
Buffer. When using a precursor to the chromogen, a chromogenic dye was



Table 1
Overview of assay antibodies, clones, and chromogens used for the 6-plex prostate cancer assay.

Antibody Clone Dilution Staining pattern Dye Color

Basal cell cocktail 34βE12 + p63 Pre-dilute Cytosolic, Nuclear N-Methyl Coumarin Non-visible Near UV
CD8 SP57 Pre-dilute Membranous Rhodamine 110 Red-Pink
Ki-67 30-9 Pre-dilute Nuclear Rhodamine 800 Yellow
p504s SP116 Pre-dilute Cytosolic Tamra Purple
PD-L1 SP263 Pre-dilute Cytosolic, Membranous, Nuclear (debated) Cy7 Non-visible Near IR
PSMA EP192 Pre-dilute Cytosolic, Membranous Coumarin 343 Yellow
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added following the last 1× Reaction Buffer wash. Prior to staining the
next detection stack in the assay, Cell Conditioning 2 (VMSI Cat# 950-
123) was applied at 100 °C for 12 min and the slide was rinsed in 1×Reac-
tion Buffer. This process was then repeated for all biomarkers in the multi-
plex assay. Unless the detection kits specified otherwise, multiplex IHC was
performed at 37 °C. After IHC staining was complete, slides were counter-
stained by applying Hematoxylin II (VMSI Cat# 790-2208) for 4 min
followed by applying Bluing (VMSI Cat# 760-2037) for 4 min. After
counterstaining, the slide was rinsed in 1× Reaction Buffer and then
dehydrated using a Sakura Tissue-tek Prisma (Sakura Finetek USA) with
Fig. 1. Overview of 6-marker prostate multiplex assay. (a) Representative H&E image o
plex assay stained from serial section of (a). (c) Darkfield pseudo-colored visualization of
unmixing.
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dehydration series through 3× 100% ethanol, 1 min each, and 3× xylene,
1 min each at ambient temperature, and mounted in mounting media
(Sakura Finetek USA) using an automated glass coverslipper (Tissue-Tek
Glas g2, Sakura Finetek USA). The same staining protocol was used for
both TMAs.

Additionally, standardH&E stainingwas performed on serial sections of
each TMA so the tissue’s morphology could be visualized. Fig. 1(a) and (b)
present respective examplefields of the H&E stain and pseudo-colored visu-
alization of the multiplex assay in which significantly different tissue
features can be observed.
f adenocarcinoma prostate tissue. (b) Brightfield pseudo-colored visualization of 6-
6-plex assay (top left) and images of the individual biomarker channels after spectral
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Image acquisition and spectral unmixing

Imaging of multiplex slides was performed by retrofitting an Olympus
BX-63 microscope system (Olympus Corp.) with a pe-800 8-LED illumina-
tion system (CoolLED Limited) to permit spectroscopic imaging. Each chan-
nel of the pe-800 was paired with a custom-selected narrowband
transmission optical filter to optimally pair each dye’s absorption peak to
an illumination channel. Multispectral image acquisition was acquired
using an imaging macro written in the Cellsens software (Olympus
Corp.). Initially, thumbnail images were acquired with a 4× objective
(Olympus Corp., UPLXAPO4X). Subsequent high-resolution imaging was
performed using a 20× objective (Olympus Corp., UPLXAPO20X). Once
a multispectral image stack was acquired, the transmission image stack
was converted to absorbance. Finally, spectral unmixing was performed
to remove crosstalk using custom-developed software, to generate images
of individual biomarkers, as displayed in Fig. 1(c). Performance of spectral
unmixing was assessed analytically by calculating the signal-to-noise ratio
(SNR) of each unmixed channel. For the biomarker-chromogens combina-
tions used in this assay, the SNR was observed to be in the range of 50–
100, meaning the average squared signal intensity was 50–100 times
higher than the squared variation of the background signal. Ultimately,
Fig. 2. Image segmentation and analysis. (a) Darkfield pseudo-colored visualization o
biomarker in the assay (Basal cell, PSMA, Ki-67, CD8, p504s, and PD-L1) in adenoc
(yellow) or biomarker negative (blue). (b) Hematoxylin channel (left) and the associ
zoomed in dashed rectangle depicted in the Hematoxylin image of Fig. 2(a). (c) Visual
cell positive for a given biomarker (Ki-67) and the 10 nearest cells positive for an interac
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unmixing accuracy depends onmany parameters including chromogens, bi-
ological targets, and the used assay. For subsequent image analysis and cell
segmentation, individual mappings of biomarkers were used. Additional
details regarding our imaging system are described in the literature.23

Cell segmentation and feature extraction

To perform feature extraction, analysis, and downstream processing,
HALO (Indica Labs) and Python libraries were used. The HALO software
suite was used to visualize images, extract features, and perform quantita-
tive evaluation of tissues using a broad range of artificial intelligence (AI)
and computer vision algorithms. In this study, Indica Lab’s Highplex FL
module was used to perform cell segmentation to extract cellular informa-
tion and other features from the multiplex images. Example images of cell
segmentation are presented in Fig. 2(a). Core- and cell-level features were
extracted from the image using this module. In total, 26 core-level features
(Table A.1) and 68 cell-level features (Table A.2) were extracted from the
image. The Highplex FL module had multiple parameters which were
fine-tuned to perform nuclear detection and cell quantification for different
chromogens. Nuclear detection was carried out on the unmixed hematoxy-
lin channel and chromogen threshold values were optimized for each
f 6-plex assay (left) and example images of cell segmentation performed for each
arcinoma PCa tissues using HALO software. Cells are either biomarker positive
ated cell segmentation image (right) from the HALO AI software module for the
representation of cell-to-cell distance calculation. The distances between an anchor
ting protein (CD8) are used to compute an average distance between the cell types.
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channel. The prime parameters used for nuclear detectionwere nuclear seg-
mentation type, nuclear contrast threshold, minimum nuclear intensity,
and nuclear size. The “nuclear segmentation type” parameter was used in
detecting and segmenting nuclei regions. A pre-trained AI model, within
the HALOAI software package, performed the nuclear segmentation by uti-
lizing contrast between the backdrop and the luminous nucleus. The
amount of contrast necessary for nuclear detection was determined by the
“nuclear threshold” parameter. The “minimum nuclear intensity” parame-
ter ruled-out faintly dyed objects as nuclei and the “nuclear size” parameter
was used to fine-tune nuclei detection by setting realistic limits for nuclei
size. Example images of cell segmentation are displayed in Fig. 2(b). Cell
segmentation parameters were chosen based on assessment by subject mat-
ter experts to optimize the performance of HALO AI’s cell segmentation
capabilities with our unmixed brightfield mappings of protein abundances.
Different parameters were used to extract features from the TMAs (see
Tables A.3 and A.4 for Pantomics TMA parameter specifications and
Tables A.5 and A.6 for Novus TMA parameter specifications). For these
experiments, the cell positivity values are considered in percentages,
which is calculated by dividing the number of cells positive for a biomarker
by the total number of cells and multiplied by 100.

A spatial biology analysis was performed on a subset of the PCa tissues
by analyzing the intercellular distance between pairs of the 6 biomarkers in
the multiplex assay. For this experiment, 18 cores of Novus TMA were
considered, with 9 healthy and 9 adenocarcinoma tissues frommatched pa-
tients. Intercellular distances of 377K cells were calculated using the
Euclidean distance between each cell’s X and Y coordinates. As described
in Fig. 2(c), a cell(X) positive for a biomarker was chosen and a “window”
of the 10 closest cells(Y), positive for a different biomarker were identified
and the distance between each was calculated and averaged.43 The same
process was carried out for all permutations of the 6 biomarkers. Cells pos-
itive for both cancer antigens were excluded. Finally, the average distance
for all biomarker combinations was calculated. Ultimately, spatial analysis
was meant to capture cell-to-cell interactions and was used as a mechanism
to extract meaningful relationships that describe tumor development and/
or the immune response. A “window” of 10 cells was established based on
previously published data from Schurch et al. in which they described a
methodology to analyze patient tissue using cellular neighborhoods based
on how cells are spatially arranged with respect to each other.43 A window
size of 10 cells represents an appropriatemetric to assess the local density of
individual cell types.
Fig. 3. Biomarker expression in adenocarcinoma PCa. Cell positivity percentage of basa
represent the interquartile range, whiskers extend from 10% to 90%, and outliers are re
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Python libraries were used for feature manipulation and for performing
spatial analysis of the multiplex slide. For this experiment, 5 open-source
Python libraries (Pandas, Matplotlib, Numpy, Umap, and scikit-learn)
were used to analyze and visualize the features extracted from the images.
Pandas is a powerful data analysis and manipulation tool used in analyzing
textual and numerical data. Matplotlib is a data plotting library built on
Numpy arrays that offers various charts and an easy to use data visualiza-
tion tool. UniformManifold Approximation and Projection (UMAP) feature
reduction was used to visualize features in a lower-dimensional space to
help explore the complex dataset and identify clusters within the high-
dimensional feature dataset. The lower dimensional core features were
validated using k-means clustering algorithm.

Results

Profiling biomarker expression levels of adenocarcinoma in prostate cancer

We initially sought to explore the profile of PCa tissue by evaluating
expression levels of each biomarker in the multiplex assay (Basal cell,
PSMA, Ki-67, CD8, p504s, and PD-L1). To quantify the cell positivity per-
centage and correlate expression with cancer grade, 91 adenocarcinoma
PCa cores of the Pantomics TMA were analyzed. Quantitative results are
displayed in the box and whiskers plot in Fig. 3. PSMA and p504s were
highly expressed compared to the other biomarkers. The average cell posi-
tivity percentage of the biomarkers were basal cell—2.49%, PSMA—
15.93%, CD8—2.99%, Ki-67—6.76%, p504s—16.63%, PD-L1—4.87%.
The highest average cell positivity percentage was observed in p504s
followed by PSMA and CD8, respectively. From this dataset, one can ob-
serve that some markers have significantly more variability in expression
levels (PSMA and p504s), whereas other biomarkers appear to have more
consistent expression levels (Basal cell and CD8).

Next, biomarker expression levels were analyzed by cancer grade. The
cumulative data was split into 3 subgroups: Grade I, II, and III for each
biomarker. There were 14 Grade-I, 31 Grade-II, and 43 Grade-III adenocar-
cinoma cores. Fig. 4 presents whiskers and boxes of each individual
biomarker’s positivity percentage versus cancer grade for each tissue
specimen. It's important to note that the samples lacked annotations to dif-
ferentiate normal glands, tumor cells, or stromal cells. Integrating these
distinctions could significantly enhance the granularity of our analysis.
However, the visualization offers a clearer picture of how biomarker
l cell, PSMA, Ki-67, CD8, p504s, and PD-L1. Gray bar represents the median, boxes
presented by diamonds (N = 91).



Fig. 4. Biomarker expression by grade in adenocarcinoma PCa. Biomarker positivity percentage of basal cell, PSMA, Ki-67, CD8, p504s, and PD-L1 in adenocarcinoma
prostate cancer tissues (N = 88); subcategorized by cancer grades (I, II, and III). Gray bar represents the median, boxes represent the interquartile range, whiskers extend
from 10% to 90%, and outliers are represented by diamonds.
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positivity varies among different cancer grades. This technology thus
enables proteomic analysis of cancer biomarker expression across disease
states.

Profiling phenotypic descriptors of adenocarcinoma prostate cancer

A phenotypic analysis of biomarker expressionwas performed to survey
which combinations of biomarker expression were correlated. The cell pos-
itivity values of adenocarcinoma cores from the Pantomics TMA were con-
sidered for correlation analysis. As displayed in Fig. 5, we see that basal cell
expression is positively correlated with CD8 (0.55) as well as several other
correlated biomarkers pairs with weaker correlated expressions. This indi-
cates several phenotypes observed across the adenocarcinoma tissues that
appear to have interdependencies with other cancer biomarkers and thus
present potentially valuable targets for future research to understand the
mechanism of the relationship. We also identify multiple biomarker combi-
nations with independent expression levels as indicated with relatively low
correlation coefficients (e.g., <0.2).

Profiling IHC signatures that differentiate healthy and cancerous tissue

In this section, the biomarker expression for adenocarcinoma and
healthy tissue was compared. For this experiment, the biomarker cell posi-
tivity percentage of 18 total cores from the Novus TMAwas considered. The
dataset consisted of 9 adenocarcinoma PCa cores and 9 matched healthy
cores. Although this is a small-scale underpowered study that is susceptible
to sample variability, because the samples were matched, it presented a
unique opportunity to directly compare diseased and healthy tissues.
When comparing expression levels between healthy and cancerous tissue,
substantial differences were detected and all biomarkers were found to
have statistically significant differences. Complete results of the dataset
are presented in Fig. 6. For 4 biomarkers (PSMA, CD8, p504s, and PD-
L1), the cell positivity expression of adenocarcinoma tissues was higher
compared to healthy tissues. Conversely, for basal cell and Ki-67, higher
cell positivity was detected in healthy tissue compared to adenocarcinoma
cores. For Ki-67, this is an unexpected result that may be an artifact of the
low number of samples because Ki-67 is expressed in spreading cancerous
6

tissues, although it has not been established as an independent prognostic
marker.37 Additionally, there was substantially more variability in several
biomarker’s expression in adenocarcinoma tissue when compared to a
healthy baseline (Basal cell, PSMA, CD8, p504s, and PD-L1).

In the following section, we employed deep feature extraction and anal-
ysis algorithms to differentiate healthy and cancerous tissues using a rich
set of features such as staining intensity and completeness, in addition to
biomarker expression. Models were built to analyze tissues both at the
macro-level (i.e., core-level) as well as at the scale of an individual cell
(cell-level). For core-level analysis, 26 featureswere extracted and analyzed
(Table A.1) and for cell-level analysis 64 features were extracted and ana-
lyzed (Table A.2). To differentiate healthy and adenocarcinoma cores
using all of the extracted features, dimensionality reduction of core- and
cellular-level features of the Novus TMA was employed. The 26 core-level
features were labeled as healthy and adenocarcinoma. The data was re-
duced to 2 features using UMAP with optimized parameters (n_neigh-
bors=5, min_dist=0.1, n_components=2), selected based on parameter
tuning experiments. K-means clustering (n_clusters=2) to the extracted
features for categorizing healthy and adenocarcinoma cores. The clustering
achieved an ARI (Adjusted Rand Index) of 0.58, indicating substantial
agreement with ground-truth labels and NMI (NormalizedMutual Informa-
tion) of 0.59 supporting our effective separation of core types. Results are
displayed in Fig. 7(a) with red data points representing adenocarcinoma
cores and blue data points representing healthy cores. The 2 subgroups
were well-differentiated into defined clusters. For cell-level clustering, 64
cell-level features were reduced to 2 features using the same UMAP algo-
rithm. Results are displayed in Fig. 7(b) where each data point represents
a single cell that is labeled based on cancer grade. Clusters of different can-
cer grades are labeled on the figure with delineated groups representing
collections of Grade I, Grade II, and Grade II–III cells. Cell-level clusters
were manually identified and marked using distinct colors; no clustering
algorithms were employed in this process.

Spatial analysis of prostate cancer

In this section, the distance between cells expressing pairs of biomarkers
was calculated and the values for adenocarcinoma and healthy cores were



Fig. 5.Analysis of phenotypes expressed in adenocarcinoma PCa tissue. (a) Cellular-level correlation analysis of biomarkers (Basal cell, PSMA, Ki-67, CD8, p504s, and PD-L1)
expressed in PCa tissue. The heatmap illustrates the strength and direction of correlations between these biomarkers providing insights into potential relationships among
them.
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compared. For this section, the larger Novus TMA cores were analyzed. The
distanceswere ranked based on the highest difference and the top 13 values
(<1.5×) were selected and included in Table 2. The ratio of distances
between healthy and adenocarcinoma cores was calculated to generate a
relative metric and is presented in the fifth column. The average closest
distance between PD-L1 and p504s was found to be 3.52 times higher in
healthy cores compared to adenocarcinoma cores. Similarly, the inter-
cellular distance was at least 2× times higher in 4 other biomarker combi-
nations (CD8 to p504s, Ki-67 to p504s, basal to p504s, and basal to Ki-67).
This analysis reveals p504s positive cells tend to 2–3× closer to PD-L1,
CD8, Ki-67, basal cell, and PSMA positive cells in cancerous adenocarci-
noma tissue versus healthy tissue. This observation is potentially supported
in the literature because p504s is upregulated in cancer tissue which would
present more opportunities for p504s positive cells to be in close proximity
to other cell phenotypes.34

Discussion

As our understanding of the tumormicroenvironment grows, there is an
increased need for solutions that can detect multiple analytes within the
context of the tissue to better understand mechanisms that are driving
tumor growth. Furthermore, with a larger number of detected analytes,
drawing insights from the data becomes increasingly difficult for patholo-
gists which drives the need for digital analysis support. Ultimately,
multiplexed assays used in conjunction with digital algorithms will be
critical to match patients with a therapy that is optimally suited to be effec-
tive against their disease and will preserve precious tissue to facilitate test-
ing with orthogonal methods, such as sequencing. Multiple multiplexing
7

solutions have been developed recently that hold promise to meet this
need such as mass spectroscopy,44–46 spatial transcriptomics,47–49 and
immunoflourescent-based IHC staining.19,50 Although all of these tech-
niques hold great promise as research tools to study cancer characteristics,
each faces significant hurdles to clinical implementation such as cost,
throughput, standardization, integration into clinical workflow, reimburse-
ment, and acceptance by worldwide laboratories.51,52

In this work, we present a hybrid multiplexing platform that has many
of the benefits of clinically implemented brightfield microscopy but has
been augmented with a novel spectroscopic imaging system as well as nar-
rowband chromogenic dyes that enable high-order multiplexing with
brightfield imaging. Because brightfield multiplex imaging is not typically
associated with digital analysis, there is little work exploring the suitability
of brightfield multiplex images with digital pathology algorithms.20 We ad-
dress this need by exploring the characteristic profile of PCa samples that
were imaged and analyzed with our chromogenic multiplexing platform
after developing a 6 marker panel that targets prostate-specific biomarkers
(PSMA and p504s), the immune profile (CD8 and PD-L1), as well as a
known prognostic marker (Ki-67) and diagnostic marker (basal cell cock-
tail). Overall, 143 different PCa tissues were analyzed. We report that the
cell positivity percentages showed several patterns across different cancer
grades. Dozens of features from each tissue were extracted and UMAP
dimensionality reduction was used to distinguish adenocarcinoma and
healthy cores. The reduced-dimensional features were fed into the k-
means clustering algorithm, successfully clustering the cores with an
accuracy of 89%. Additionally, a spatial analysis was performed to explore
the intercellular distance between cells expressing different biomarkers.
Multiple biomarker combinations were found to have different spatial



Fig. 6. Comparison of biomarker expression between healthy and adenocarcinoma PCa tissue. Cell positivity percentage of adenocarcinoma PCa tissues (N=9, red) and
matched healthy tissues (N = 9, green). P-value annotation legend: ns: 5.00e-02 <P<=1.00e+00, *: 1.00e-02<P<=5.00e-02, **: 1.00e-03<P<=1.00e-02, ***: 1.00e-
04<P<=1.00e-03, ****: P<=1.00e-04. Gray bar represents the median, boxes represent the interquartile range, whiskers extend to 10%–90%, and outliers are
represented by diamonds.
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organizations including PD-L1 and p504s which were 3.52 times further
apart in healthy tissues relative to adenocarcinoma cores.

We thus present data that our multiplexing platform can be combined
with digital analysis tools to create a novel diagnostic platform that can
be used for next generation diagnostic assays. One potential use of this di-
agnostic system would be to better understand which patients will respond
to immunotherapy. Immunotherapy is one area where a deep understand-
ing of the tumor’s molecular signature is critical. Immunotherapy harnesses
the power of the adaptive immune system by equipping the patient’s own
immune system with the ability to recognize and attack antigen presenting
cancer cells. These novel therapeutic treatments have been shown to pro-
duce durable responses in patients with several distinct cancer types such
as melanoma and non-small cell lung cancer and have revolutionized the
field of oncotherapy providing benefit to countless patients.53 However,
complete response rates to immune checkpoint inhibitors remain at
∼20%, which indicates that more advanced diagnostic assays are needed
8

to better predict which subsets of patients will respond to
immunotherapy-based treatments.54,55 Thus, combining our next-gen diag-
nostic platform with nex-gen therapies presents an attractive option for fu-
ture development. Additionally, this multiplexing platform could be an
enabling technology to push digital pathology, machine learning, and spa-
tial biology algorithms into clinical practice.We note that cell segmentation
and feature extraction were performed using HALO's Highplex FL module,
which is a software suite developed for usewithmIF images. Thus, we dem-
onstrate that our brightfield multiplex images are compatible with
algorithms designed for fluorescent images.

There are potential weaknesses with this study and the technology plat-
form. For instance, thework presented here is from a relatively small cohort
of samples which potentially biases the results (see Ki-67finding). In the fu-
ture, applying the system to a larger cohort of data would be valuable to
yield more reliable results. Although not a limitation of brightfield
multiplexing but rather our current implementation, it is worth noting



Fig. 7.Differentiating healthy and adenocarcinoma prostate tissuewith dimensionality reduction. (a) UMAP (UniformManifold Approximation and Projection) visualization
of core-level features extracted from adenocarcinoma PCa (N=18) tissue samples. The data has been clustered into 2 distinct groups using the k-means clustering algorithm,
misclassified samples are marked with X symbol. (b) UMAP representation of cell-level features of 50 adenocarcinoma PCa tissue samples. A total of 104 875 cells were
analyzed.
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that the analysis performed in this experiment were based on tissue-level
classification of cancer grade and not on annotated regions of the sample’s
subcompartments (tumor, stroma, and benign glands). This capability will
be incorporated into future work and will enable even deeper characteriza-
tion of the tumor-immune microenvironment such as tissue compartment
specific assessment (e.g., PD-L1 expression in tumor cells) as well as investi-
gation of additional spatial features (e.g., distance to tumor boundary).With
this in mind, and considering the relatively low number of tissue samples in
the study, the reader should be cautious about pathologic interpretations
from this study until validated by additional studies with more rigorous bi-
ological controls inplace.Anotherpotential gap in the systemis to character-
ize and optimize how accurately a biomarker’s dynamic range can be
detected by the system. Although we expect the dynamic range to be larger
than that of traditional lightmicroscopy, futureworkwill be needed to eval-
uate the limits of the dynamic range inmore detail. Finally, themultiplexing
imaging platform presented here is a technology demonstration and does
not represent a commercial-grade product that could be easily used for
Table 2
Table comparing the average distances between pairs of biomarkers.

Biomarker combination Adenocarcinoma
(μm)

Healthy
(μm)

Healthy/
Adenocarcinoma

Reference
cell (X)

Neighbor
cells (Y)

PD-L1 p504s 131.0 461.0 3.52
CD8 p504s 116.6 372.1 3.2
Ki-67 p504s 124.2 348.2 2.81
Basal p504s 140.3 337.3 2.41
Basal Ki-67 345.2 754.7 2.19
PSMA p504s 136.1 268.2 1.98
PD-L1 PSMA 243.7 479.9 1.97
CD8 PSMA 254.7 465.4 1.83
Ki-67 PSMA 214.0 362.6 1.7
p504s PSMA 290.2 474.1 1.64
PD-L1 CD8 147.0 235.8 1.61
Basal CD8 96.6 148.6 1.54
Ki-67 CD8 86.9 131.8 1.52

9

larger studies. A more mature hardware platform would be needed to facil-
itate larger translational studies or eventual clinical adoption.

Conclusions

In thiswork, the characteristic profile of PCa tissueswere analyzedwith a
novel hybrid multiplexing platform, demonstrating that our chromogenic
multiplexing system is a powerful tool that can be used to investigate the
TME by extracting features that may be used to understand cancer growth
and to ultimately deliver the most accurate diagnostic results. This work
details that chromogenic high-order multiplexing is compatible with AI-
based analytical tools and digital pathology algorithmswhich can help to au-
tomate the analysis of large amounts of data and identify complex patterns
that may not be apparent to the human eye. Chromogenic imaging boasts
several advantages such as overall robustness, expedited workflow, estab-
lished trust, and customer familiarity in the clinical setting. Thus, by combin-
ing chromogenic high-order multiplexing with advanced analytical tools,
researchers can enjoy a hybrid technology that can facilitate digital
multianalyte readouts in a potentially clinically applicable form factor. This
technology platform could enable the rapid translation of spatial biology-
based research into clinical practice, leading to improved diagnostic accu-
racy and better treatment outcomes for patients. Overall, the presented
brightfieldmultiplexing system combines the clinical applicability andwide-
spread acceptance of brightfield assays with the rising diagnostic power of
high-order multiplexing and digital pathology algorithms and is well-suited
for translational studies and potentially eventual clinical adoption.
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