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Text mining of gene–phenotype 
associations reveals 
new phenotypic profiles 
of autism‑associated genes
Sijie Li1,7, Ziqi Guo2,7, Jacob B. Ioffe3, Yunfei Hu3, Yi Zhen4* & Xin Zhou3,5,6*

Autism is a spectrum disorder with wide variation in type and severity of symptoms. Understanding 
gene–phenotype associations is vital to unravel the disease mechanisms and advance its diagnosis 
and treatment. To date, several databases have stored a large portion of gene–phenotype associations 
which are mainly obtained from genetic experiments. However, a large proportion of gene–phenotype 
associations are still buried in the autism‑related literature and there are limited resources to 
investigate autism‑associated gene–phenotype associations. Given the abundance of the autism‑
related literature, we were thus motivated to develop Autism_genepheno, a text mining pipeline to 
identify sentence‑level mentions of autism‑associated genes and phenotypes in literature through 
natural language processing methods. We have generated a comprehensive database of gene–
phenotype associations in the last five years’ autism‑related literature that can be easily updated 
as new literature becomes available. We have evaluated our pipeline through several different 
approaches, and we are able to rank and select top autism‑associated genes through their unique and 
wide spectrum of phenotypic profiles, which could provide a unique resource for the diagnosis and 
treatment of autism. The data resources and the Autism_genpheno pipeline are available at: https:// 
github. com/ maizi ezhou lab/ Autism_ genep heno.

Many human diseases are the result of a complex interplay between genotype, the set of genes that each organism 
carries, and the environment. Gene–phenotype association analysis plays an important role in understanding 
the mechanisms of different genetic diseases, however substantial gaps in our knowledge  remain1–4. Autism 
Spectrum Disorder (ASD) is such a genetic condition with heritability estimated at close to 90%5. Despite many 
Genome-Wide Association Studies (GWAS), known genetic effects can only account for only 24–33% of cases. 
For the majority of patients, the etiology is unknown. Part of the problem is that autism is a “spectrum” disorder, 
with wide variation in the type and severity of symptoms patients  experience6,7. To date, the SFARI autism data-
base has curated close to 1000 genes associated with autism, and this number is increasing every  year8. A vast 
amount of gene–phenotype associations has been reported in the biomedical literature. Understanding how ASD 
phenotypes rise from a patient’s genetic composition is highly valuable to advance diagnosis and  treatment4,9–14.

Given the complexity of the condition, the number of genes implicated, and the variability of symptoms in 
individual patients, there is an enormous amount of literature for Autism studies. Phenotypes have been made 
available in several databases such as  ClinVar15, Online Mendelian Inheritance in Men (OMIM)16, and the Human 
Phenotype Ontology (HPO)17 by many genetics experiments. Phenotype ontologies have also been developed to 
easily integrate and compare phenotypes among different species. There is also a recent integration of phenotype 
ontologies for autism: Autism Spectrum Disorder Phenotype Ontology (ASDPTO)18. Systematic extraction of 
gene–phenotype association from this literature is challenging. Development of automated text mining tools to 
extract a comprehensive database for gene–phenotype associations is therefore highly valuable and can alleviate 
the burden of manual  curation2,19.
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We were thus motivated to develop Autism_genepheno, a text mining pipeline to generate a comprehensive 
database of gene–phenotype associations in ASD that can be easily updated as new literature becomes available. 
We designed Autism_genepheno to identify sentence-level mentions of autism-associated genes and pheno-
types from HPO and ASDPTO in literature through natural language processing (NLP) methods. To further 
determine the strength of gene–phenotype associations, we applied a measure of Normalized Pointwise Mutual 
Information (NPMI) on the comprehensive extracted gene–phenotype associations. We used Autism_genepheno 
to process the last five years of autism publications and generated a large gene–phenotype association matrix 
for autism-associated genes classification. We evaluated gene–phenotype associations from Autism_genepheno 
through comparison with existing gene–phenotype associations in reference databases. Gene Ontology (GO) 
analysis we performed for some specific clusters of autism-associated genes further confirmed the strength of our 
gene–phenotype associations. The gene classification analysis for SFARI genes also revealed specific phenotypic 
profiles for different classes of SFARI genes which conferred autism risk at different levels, and we were able to 
select the top 10% SFARI genes with the most influential roles in a genetic interaction network based on their 
phenotypic profiles.

Methods
Pipeline overview. We assumed a gene–phenotype association exists if gene–phenotype co-occurrence 
pairs were detected in the same sentence of the published articles. We introduced a pipeline to detect gene–phe-
notype associations of Autism Spectrum Disorder from PubMed Central (PMC) articles. The overview pipeline 
is shown in Fig. 1. The input of the pipeline is a corpus consisting of autism research articles in XML. The output 
is a list of quantitative gene–phenotype associations detected from the corpus. The pipeline includes three steps: 
(1) detecting sentence-level gene–phenotype associations with curated gene list and phenotype list; (2) stand-
ardizing the detected phenotypes and their top-level phenotypic category with HPO; and (3) ranking gene–phe-
notype associations by Normalized Pointwise Mutual Information (NPMI).

Data resources. We searched 15,070 autism research articles in PMC as our corpus. The search criteria were 
defined as including the keywords ‘Autism’ AND ‘Gene’ over the last 5 years, from 2015 to 2020.

We used 19,979 genes from  VariCarta20, a comprehensive database of harmonized genomic variants found 
in autism spectrum disorder sequencing studies. Among 19,979 genes in VariCarta, we further identified 992 
autism-associated genes from the SFARI database, and they were categorized into four classes (class 1: High 
Confidence, N = 194; class 2: Strong Candidate, N = 207; class 3: Suggestive Evidence, N = 507; class S: Syndro-
mic, N = 84) based on their gene scores.

Figure 1.  The overview pipeline of Autism_genepheno. For the standardized phenotype, it includes the unique 
UMLS concept ID, its preferred name in UMLS, its vocabulary source, and its corresponding HPO ID if it exists.
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We constructed a phenotype list from two sources: Autism Spectrum Disorder Phenotype Ontology 
(ASDPTO) and Unified Medical Language System (UMLS)21. The phenotype list covered 284 concepts from 
ASDPTO; 33,384 concepts in Human Phenotype Ontology (HPO), 31,822 concepts in Online Mendelian 
Inheritance in Man (OMIM), 102 concepts in Diseases Database (DDB), 208,086 concepts in the Systematized 
Nomenclature of Medicine-Clinical Terms (SNOMED-CT, US edition) and 56,825 concepts in the Medical 
Subject Headings (MSH), respectively from UMLS. We extracted the above phenotype concepts from UMLS 
by filtering two data files MRCONSO.RFF and MRSTY.RFF from the UMLS Metathesaurus 2020AA. The file 
MRCONSO.RFF includes all concepts with their concept identifier, concept names, connected languages and 
source vocabularies. The file MRSTY.RFF provides a semantic type for each concept. The two layer filtering 
includes: (1) Filtering by source vocabularies, we added the concepts from MRCONSO.RFF into the phenotype 
list by selecting HPO, OMIM, DDB, SNOMED-CT and MSH as the source vocabularies. (2) Filtering by seman-
tic types, we selected the concepts from the above five source vocabularies with their corresponding semantic 
types. We included concepts with semantic types of T047 (Disease or Syndrome), T048 (Mental or Behavioral 
Dysfunction) and T184 (Sign or Symptom) for the source vocabularies OMIM, DDB, SNOMED-CT and MSH. 
For HPO, we included all concepts to the phenotype list excluding concepts with semantic types of T045, T077, 
T079, T080, T082 or T169, etc.

Detecting sentence‑level gene–phenotype associations. We detected phenotype and gene infor-
mation at the sentence-level from autism research articles in XML format with NLP methods. The step of detect-
ing the sentence-level gene–phenotype associations in each article included four sub-steps: (1) process each 
article into sentence level with tokenizer, stop-words remover and lemmatizer; (2) tokenize and lemmatize all 
terms in the phenotype list that is constructed with ASDPTO and UMLS; (3) identify target sentence if at least 
one tokenized phenotype term from the phenotype list and one gene symbol from the gene list are mentioned in 
the processed sentence with sub-string match; (4) extract all mentions of phenotype and gene in target sentence. 
Finally we detected the sentence-level gene–phenotype ASD association in the corpus.

Ontology based phenotype standardization. The mentions of phenotype identified in the corpus 
have multiple verbal expressions, synonyms and lexical variants due to human language features. We developed 
a source based method to standardize the mentions of phenotype in a consistent and systematic way. The source 
based method used the sources of the constructing phenotype list to standardize the mentions of phenotype 
with the most commonly preferred name in standard biomedical vocabularies. The Human Phenotype Ontology 
(HPO) is the highest priority source for a standard vocabulary of human phenotype. Other standard vocabular-
ies were utilized as a complement to the HPO with the following descending priority order: ASDPTO, OMIM, 
DDB, SNOMED-CT and MSH. The standardization of phenotype with HPO further enabled us to group these 
identified phenotypes into 23 top-level phenotypic categories of phenotypic abnormality: Abnormal cellular 
phenotype, Abnormality of blood and blood-forming tissues, Abnormality of head or neck, Abnormality of 
limbs, Abnormality of metabolism/homeostasis, Abnormality of prenatal development or birth, Abnormality 
of the breast, Abnormality of the cardiovascular system, Abnormality of the digestive system, Abnormality of 
the ear, Abnormality of the endocrine system, Abnormality of the eye, Abnormality of the genitourinary sys-
tem, Abnormality of the immune system, Abnormality of the integument, Abnormality of the musculoskeletal 
system, Abnormality of the nervous system, Abnormality of the respiratory system, Abnormality of the thoracic 
cavity, Abnormality of the voice, Constitutional symptom, Growth abnormality and Neoplasm. We used these 
top-level phenotypic categories to label autism-associated genes in the analysis that followed. If the standardized 
phenotype was not included in HPO, we defined its top-level phenotypic category as “NA”.

Ranking gene–phenotype associations. To select high-confidence gene–phenotype associations, 
we ranked each association between a gene and phenotype using Normalized Pointwise Mutual Information 
(NPMI). NPMI is a measure of association between two  terms22,23. NPMI ranges from –1 to 1, with –1 indicating 
that the two terms never occurred together, 0 indicating that the terms occurrence independently, and 1 indicat-
ing that the terms always co-occurred together. In our study, the two terms are gene and phenotype. We calculate 
the NPMI between a gene G and a phenotype P as

where p(G) and p(P) are the probability of gene and phenotype occurring in the corpus separately, and p(G, P) is 
the observed probability of gene and phenotype occurring in the same sentence. In our study, p(G) = nG/ntot , 
where nG is the number of sentences containing the gene, and ntot is the total number of sentences in our corpus; 
p(P) = nP/ntot , where nP is the number of sentences mentioning the phenotype; p(G, P) = nG,P/ntot , where nG,P 
is the number of sentences where the gene and phenotype co-occurs. Thus, the NPMI of a gene and a phenotype 
is calculated by the following formula:

Autism‑associated gene classification by gene–phenotype associations. We constructed a 
gene–phenotype matrix in which each row represented a gene and each column represented a phenotype. Each 
entry in the matrix was set to “1” if the NPMI of the gene–phenotype association was larger than zero, and “0” if 

(1)NPMI(G, P) = (ln
p(G, P)

p(G)p(P)
)/(− ln p(G, P))

(2)NPMI(G, P) = (ln
nG,Pntot

nGnP
)/(− ln
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ntot
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the NPMI of the gene–phenotype association was less than or equal to zero. We then performed dimensionality 
reduction through t-distributed stochastic neighbor embedding (t-SNE) and Kmeans clustering for the gene–
phenotype matrix, to identify different clusters of autism-associated genes.

Evaluation metrics of clustering results. We used four evaluation methods for clustering results, as we 
have described before in  Bfimpute24 : adjusted Rand index, Jaccard index, normalized mutual information, and 
purity score. We used these metrics to analyze the concordance between the phenotype’s top-level phenotypic 
category labels and the Kmeans clustering results on the two dimensions of the t-SNE results. With the exception 
of the adjusted Rand index, these measurements range from 0 to 1, where 1 indicates a perfect match. Only the 
adjusted Rand index yields negative values, when the concordance is less than what is expected by chance. The 
Jaccard and Rand Index are similar measures, but the Jaccard index does not take into account pairs of elements 
that are in different clusters for both clusterings. The normalized mutual information integrates multiple cluster-
ings into a single one, ignoring the original features or methods that created these clusterings. Finally, the purity 
score in our analysis calculates the proportion of the total number of cells that are classified correctly.

GO analysis. GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses 
were conducted for each cluster of autism-associated genes from Kmeans clustering results through the Data-
base for Annotation, Visualization and Integrated Discovery (DAVID) v6.825 (https:// david. ncifc rf. gov/).

Genetic interaction network graph. We constructed a genetic interaction network graph for SFARI 
genes in our database for the later analysis. The nodes/vertices in this network graph were SFARI genes and an 
edge was added to the graph if a certain pair of nodes shared a standardized phenotype (we used the global aver-
age NPMI value as the threshold for both genes sharing the same phenotype). If multiple edges existed between 
two nodes, these edges were compressed (combined) and the total number of edges was treated as the weight of 
the compressed edge.

We used betweenness centrality to rank SFARI genes. The betweenness centrality is widely used in graph 
analysis as a measure of centrality based on shortest  paths26,27. It is used to quantify the amount of influence a 
node (SFARI gene in our genetic interaction graph) has over the flow of information in a graph. The between-
ness centrality calculates the shortest (weighted) path between every pair of nodes in a connected graph. Nodes 
(SFARI genes) will receive a higher betweenness centrality score if it most frequently lie on these shortest paths 
and serve as a bridge among all nodes in the graph. The betweenness centrality CB(v) for a node v is defined as 
below:

where σst is the total number of shortest paths from node s to node t and σst(v) is the number of those paths 
that pass through v.

Results
We applied Autism_genepheno to five years of literature that included the keywords autism and gene (N = 
15,070), and extracted a total of 71,558 gene–phenotype associations from 6,892 autism-associated genes and 
5493 standardized phenotypes (2742 from HPO, 46 from ASDPTO, 119 from OMIM,2 from DDB, 1418 from 
SNOMED-CT, US edition and 1133 from MSH) (“Methods” section). Before analyzing phenotypic associa-
tions, we tested how well genes identified with this process corresponded with those identified in a well-known 
database of autism genomic data, SFARI Gene 3.0, which includes approximately 1,000 genes associated with 
autism risk. SFARI genes are categorized into four classes, associated with ASD risk at different confidence levels 
(“Methods” section). Our results identified gene–phenotype associations for 751 SFARI genes, of which 172 were 
SFARI genes labeled as class 1 (conferring highest autism risk), 154 were SFARI genes labeled as class 2, 349 
were SFARI genes labeled as class 3, and 76 were SFARI genes labeled as class S. The rest 6,139 genes were not 
included in the SFARI autism gene database, but were included in the VariCarta autism gene database. In this 
paper, we labeled the rest of the genes as “NA”.

Top mentioned genes and phenotypes in ASD. For a general description of all genes and associations, 
we simply applied NPMI > 0 and nG,P > 5 as thresholds to filter out low-confidence gene–phenotype associa-
tions. The result showed that SFARI genes accounted for 29.8% of the total percentages of genes extracted by 
Austim_genepheno and SFARI gene–phenotype accounted for 44.9% of the total gene–phenotype associations. 
Class 1 SFARI genes in particular (red bars in Fig. 2A) made up 10.6% of the genes but accounted for more than 
twice as many associations (24.5%). These statistics indicated that the highest-risk SFARI genes were most fre-
quently mentioned in the context of ASD phenotype associations.

To investigate whether the most frequently mentioned genes in our data sources matched the confidence 
pattern observed in SFARI Gene, we plotted the top 30 genes in terms of number of papers referencing each 
gene. The plot in Fig. 2B shows that more than half (18) of the genes, including the top 9 genes with the highest 
frequencies were SFARI genes labeled with class 1 (red bars). SFARI genes labeled with class 2 (blue bars) made up 
the second largest group, followed by genes labeled with class 3 (green bars) and genes labeled with class S (yellow 
bars). This result confirmed that frequency of gene reference in the literature alone is well predictive of risk in 
ASD. Indeed, the SFARI Gene system integrates gene frequencies from literature mining into their scoring model.

(3)CB(v) =
∑

s �=v �=t

σst(v)

σst

https://david.ncifcrf.gov/
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This analysis also identified four genes (TP53, BRCA1, COMT and STAT3) not included in the most recent 
SFARI gene list, and thus labeled as “NA” in our plot (black bars). We were interested to investigate whether this 
occurence was spurious, or reflected a hitherto unnoticed autism association. In Table 1, we randomly selected 
eight SFARI genes (two genes for each class label, and three high-confidence standardized phenotypes with 
highest NPMI values where nG,P > 5 for each gene, respectively), and four additional “NA” genes. We evaluated 
all these gene–phenotype associations through the OMIM database. The TP53 gene encodes a protein called 
tumor protein p53 (or p53) that acts as a tumor suppressor to regulate cell division by keeping cells from grow-
ing and dividing in an uncontrolled way. The top three phenotypes extracted by Austim_genepheno for TP53 
were Li-Fraumeni Syndrome, neoplasia, and cancer (Table 1). The top three phenotypes for the BRCA1 gene 
were ovarian cancer, breast cancer and cancer, and the top three phenotypes for the STAT3 were prostate cancer, 
retinoblastoma, and Buckley syndrome. The phenotypes from the three genes suggested that biological processes 
related to cancer could play an important role in ASD that has been missed by the SFARI database. Recent studies 

Figure 2.  Top mentioned autism-associated genes correspond to the classes of SFARI genes. (A) The percentage 
distribution of different classes of SFARI genes and “NA” genes in our data resource (left panel). The percentage 
distribution of different classes of SFARI genes associated standardized phenotypes and “NA” genes associated 
standardized phenotypes in our data resource (right panel). (B) Top 30 mentioned autism-associated genes. 
(c) Top 30 mentioned autism-associated standardized phenotypes. The standardized phenotype and top-level 
phenotypic category are separated by “|” here for each term. Top-level phenotypic category “NA” means the 
standardized phenotype is not included in HPO.
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have also shown that autistic brains share gene expression and biological pathway abnormalities with  cancer28–30. 
The top three phenotypes for COMT gene were 22q11 microdeletion with velocardiofacial syndrome phenotype, 
schizophrenia, and aggression. Emerging studies also suggest that there are both clinical and biological links 
between autism and  schizophrenia31–33.

We also wished to test whether the most frequently mentioned standardized phenotypes in our data sources 
corresponded well to autism pathologies. We therefore plotted the top 30 mentioned standardized phenotypes 
and their respective top-level phenotypic categories (Fig. 2C). The two most commonly mentioned top-level 
phenotypic categories were abnormality of the nervous system and neoplasm (Fig. 2C, red and blue bars). Among 
other top-level phenotypic categories (Fig. 2C, green bars), the most common standardized phenotypes ordered 
by frequency were: (1) Child mental disorders, (2) Autism, dementia, ataxia, and loss of purposeful hand use, 
(3) Having too much body fat, (4) Disease of nervous system (disorder), (5) FRAXA - Fragile X syndrome, (6) 
Child development disorders, (7) Ganglion unspecified or myxoid cyst, (8) Diabetes, and (9) Excitability. We 
conclude that our pipeline identified both genes and phenotypes highly relevant for autism. 

Evaluation of gene–phenotype associations from Autism_genepheno. To first evaluate all gene–
phenotype associations extracted by the pipeline, we manually curated 50 papers to serve as a gold standard 
and built a metric to evaluate our results (see details in Supplementary Information). We used precision and 
recall metrics at the sentence, gene and phenotype level to evaluate the pipeline’s performance. The results are 

Table 1.  Gene–phenotype association for eight SFARI genes and four “NA” genes. Each gene is associated with 
three standardized phenotypes with the highest NPMI values.

Gene Standardized Phenotype SFARI Class Label NPMI

FMR1 FXTAS Fragile X Tremor Ataxia Syndrome 1 0.514

FMR1 Mental retardation 1 0.506

FMR1 FRAXA - Fragile X syndrome 1 0.497

MECP2 Lubs X-linked intellectual disability syndrome 1 0.681

MECP2 Autism, Dementia, Ataxia, and Loss of Purposeful Hand Use 1 0.572

MECP2 Neonatal encephalopathy 1 0.469

CNTNAP2 CDFE (cortical dysplasia focal epilepsy) syndrome 2 0.620

CNTNAP2 Language impairment 2 0.399

CNTNAP2 Specific Language Disorder 2 0.381

GRIN2A Acquired Aphasia with Convulsive Disorder 2 0.596

GRIN2A Epilepsy, Rolandic 2 0.560

GRIN2A Epilepsies, Partial 2 0.445

DRD2 Alcoholism 3 0.364

DRD2 Addictive behavior 3 0.276

DRD2 Increased body weight 3 0.233

BRCA2 Ovarian cancer 3 0.501

BRCA2 Fanconi Anemia 3 0.439

BRCA2 Breast cancer 3 0.436

CACNA1A Familial Hemiplegic Migraine S 0.661

CACNA1A Ataxia 6s, Spinocerebellar S 0.657

CACNA1A Hemiplegic migraine S 0.654

DMD Benign Duchenne muscular dystrophy S 0.673

DMD Muscular dystrophy S 0.607

DMD BMD - Becker muscular dystrophy S 0.592

COMT 22q11 microdeletion with velocardiofacial syndrome phenotype NA 0.274

COMT Schizophrenia NA 0.184

COMT Aggression NA 0.176

TP53 Li-Fraumeni Syndrome NA 0.579

TP53 Neoplasia NA 0.317

TP53 Cancer NA 0.293

BRCA1 Ovarian cancer NA 0.550

BRCA1 Breast cancer NA 0.465

BRCA1 Cancer NA 0.339

STAT3 Prostate cancer NA 0.279

STAT3 Retinoblastoma NA 0.410

STAT3 Buckley Syndrome NA 0.520
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shown in Table 2. We extracted a total of 71,558 gene–phenotype associations. At the gene level, the recall and 
precision were approximately 91.4% and 74.4%, respectively. At the phenotype level, the recall and precision 
were approximately 77.1% and 98.7%, respectively. As we expected, these evaluation results suggested that genes 
were straightforward to detect but with a higher false positive rate, and phenotypes were intricate to detect but 
with a lower false positive rate. At the sentence level, recall and precision were approximately 80.3% and 71.9%, 
respectively.

To further evaluate the gene–phenotype associations with positive NPMI values, we used a reference annota-
tion database from the HPO (https:// hpo. jax. org/ app/ downl oad/ annot ation). A total of 2,913 genes identified 
by Autism_genepheno were present in HPO. If there was at least one gene–phenotype association found both 
in the reference database and our autism gene–phenotype association database for each gene, we defined the 
autism-associated gene as a true positive (TP). A total of 94.4% (136/144) SFARI genes labeled as class 1 were 
evaluated as TPs, followed by 82.9% (68/82) for SFARI genes labeled as class 2, 80.1% (129/161) SFARI genes 
labeled as class 3, 83.3% (60/72) SFARI genes labeled as class S, and 62.4% (1531/2454) “NA” genes, not included 
in SFARI (Fig. 3). This evaluation result showed the SFARI class 1 genes conferring the highest autism risk had 
the highest true positive rate, followed by SFARI class 2 and 3 genes. The result indicates that Autism_genepheno 
successfully extracted gene–phenotype associations, particularly for genes with high autism risk.

Autism‑associated gene classification by top‑level phenotypic categories of standardized 
phenotypes. To investigate whether we could classify autism-associated genes extracted from Autism_
genepheno based on gene–phenotype associations, we first generated a matrix from all the gene–phenotype 
associations, where each row represented a gene and each column represented a phenotype. Each entry in the 
matrix was set to “1” if the NPMI of the gene–phenotype association was larger than zero, and “0” if the NPMI 
of the gene–phenotype association was less than or equal to zero. We then applied t-SNE to this gene–phenotype 
matrix (see “Methods” section) and labeled genes based on their corresponding top-level phenotypic category 
(Fig. 4A). Since gene-to-phenotype mapping was not one-to-one but one-to-many, we selected the standardized 
phenotype with the highest NPMI for each gene and then obtained its top-level phenotypic category of this 
phenotype. Thus we only kept 3,683 autism-associated genes whose phenotypes with the highest NPMI were 
present in HPO since they could then be traced back to their corresponding top-level phenotypic categories. We 
then performed Kmeans clustering and produced seven gene clusters (Fig. 4B). The top and bottom gene clusters 
matched in the two scatter plots (Fig. 4A vs. B), which means that the strongest phenotypes associated with each 

Table 2.  Gene–phenotype associations evaluation from gene, phenotype and sentence levels by manual 
annotations from 50 autism research articles.

Gene level Phenotype level Sentence level

Benchmark 175 193 137

True Positive 160 148 110

False Positive 55 2 43

False Negative 15 44 27

Precision 74.4% 98.7% 71.9%

Recall 91.4% 77.1% 80.3%

Figure 3.  gene–phenotype evaluation rate through HPO for all classes of SFARI genes and “NA” genes which 
are not included in the SFARI database but in the VariCarta database.

https://hpo.jax.org/app/download/annotation
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gene (standardized phenotypes with the highest NPMI) was one of the main factors distinguishing different gene 
clusters. To quantify the concordance result of these two clusters from two different clustering and labeling sys-

Figure 4.  Autism-associated gene classification through top-level phenotypic categories and Kmeans clustering. 
(A) The t-SNE plot of all autism-associated genes labeled by top-level phenotypic categories. (B) The t-SNE plot 
of all autism-associated genes labeled by Kmeans clustering results. (C) Distribution of top-level phenotypic 
categories for top, central and bottom gene clusters marked in black circles from A. (D) The GO analysis for 
cluster 1 (red cluster) and 13 (blue cluster) from Kmeans clustering.
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tems, we evaluated it by four different metrics: adjusted Rand index, Jaccard index, normalized mutual informa-
tion, and purity (“Methods” section). The adjusted Rand index, Jaccard index, normalized mutual information, 
and purity score achieved 0.45, 0.53, 0.53 and 0.67, respectively.

As mentioned above, the top gene cluster (genes within the black circle of the top gene group) corresponded 
to the neoplasm top-level phenotypic category, and the bottom gene cluster (genes within the black circle of the 
bottom gene group) corresponded to the abnormality of the nervous system top-level phenotypic category. We 
then selected genes (dots of seven different colors) within the central circle as the third gene group (Fig. 4B). 
These genes were classified into many different top-level phenotypic categories: abnormality of the nervous sys-
tem, neoplasm, abnormality of the musculoskeletal system, abnormality of the genitourinary system, abnormality 
of the cardiovascular system, abnormality of the eye, and others (Fig. 4A). Even though the gene-to-phenotype 
mapping was one-to-many and we only chose standardized phenotypes with the highest NPMI to annotate each 
gene, each gene of the top and bottom groups was more likely to be associated with only one standardized phe-
notype. On the other hand, genes of the central group were more likely to be associated with many phenotypes. 
To demonstrate this, we plotted a percentage distribution of all phenotypes of genes for all three gene groups we 
marked in the circles (Fig. 4C). As expected, the phenotypes for the top group were dominated by the top-level 
phenotypic category of neoplasm (Fig. 4C, blue bars), and the phenotypes for the bottom group were dominated 
by the top-level phenotypic category of abnormality of the nervous system (Fig. 4C, red bars). However, the 
phenotypes of the central group were evenly distributed among several different upper classes (Fig. 4C, green 
bars). These results revealed the phenotypic pattern of autism-associated genes.

Although our analysis produced well defined clusters of genes based on associations retrieved from process-
ing the research literature with Autism_genepheno, we wanted to ensure that these corresponded with known 
gene functions. We thus, performed GO analysis for genes within two clusters (Cluster 1 and 13) obtained via 
the Kmeans clustering results (Fig. 4B). The GO results indicated that cluster 1 genes were most involved in neu-
roactive ligand-receptor interaction and several other components and pathways (N-Glycan biosynthesis, ribo-
some, serotonergic synapse, calcium signaling pathway, cAMP signaling pathway, and glutamatergic synapse). In 
every instance, the gene ontology revealed functions or pathways present in neurons, whose malfunctions were 
associated with the top-level phenotypic category of abnormality of the nervous system (Fig. 4D, left panel). For 
cluster 13, all the GO terms (such as cytokine-cytokine receptor interaction, MAPK signaling pathway, T cell 
receptor signaling pathway, Ras signaling pathway, prostate cancer, glioma, and melanoma) were relevant to the 
top-level phenotypic category of neoplasm (Fig. 4D, right panel). These results independently confirmed that 
Autism_genepheno recovered phenotypes correctly.

The unique top‑level phenotypic category profiles of SFARI genes and the genetic interac‑
tion network. We then wished to test if autism risk, as indicated based on SFARI gene class, correlated 
strongly with specific phenotypes, or top-level phenotypic categories. We thus plotted the spatial distribution 
of SFARI genes of different classes within the pattern of autism-associated genes identified based on pheno-
type. We labeled each gene from the SFARI Gene database based on its risk score, and labeled the gene as “NA” 
if it did not belong to the SFARI Gene database. Figure 5 shows that the 283 SFARI genes out of total 3,683 
genes were spread widely in the t-SNE plot, but did not lie in the top, bottom and central clusters which were 
mainly dominated by the other genes labeled as “NA” (Fig. 5A). This suggested that the phenotypic pattern of 
SFARI genes was highly variable and autism risk did not correlate strongly with specific phenotype clusters. To 
investigate the difference of phenotypic pattern for different classes of SFARI genes (class 1: 45, 2:77, 3:133 and 
S:28), we calculated the proportion of each class of SFARI genes belonging to each top-level phenotypic cat-
egory (Fig. 5B). To calculate this, for each gene, we selected the standardized phenotype with the highest NPMI 
and obtained its top-level phenotypic category. This result indicated that each class of SFARI genes had some 
unique phenotypic pattern. First, the SFARI genes associated with high confidence level autism risk were more 
involved in 3 top-level phenotypic categories: abnormality of blood and blood-forming tissues, abnormality of 
the integument, and abnormality of head or neck. Secondly, SFARI genes labeled as class 2 in terms of autism risk 
were more associated with 7 top-level phenotypic categories: abnormality of limbs, abnormality of metabolism/
homeostasis, abnormality of the cardiovascular system, abnormality of the digestive system, abnormality of the 
musculoskeletal system, abnormality of the ear, and abnormality of head or neck. Thirdly, SFARI genes labeled 
as class 3 in terms of autism risk were more involved in 14 top-level phenotypic categories: abnormal cellular 
phenotype, abnormality of blood and blood-forming tissues, abnormality of limbs, abnormality of the digestive 
system, abnormality of the ear, abnormality of the endocrine system, abnormality of the genitourinary system, 
abnormality of the immune system, abnormality of the musculoskeletal system, abnormality of the nervous sys-
tem, abnormality of the respiratory system, constitutional symptom, growth abnormality and neoplasm. Lastly, 
the SFARI genes labeled as syndromic only contributed to a small proportion of top-level phenotypic categories, 
such as abnormality of metabolism/homeostasis, abnormality of the endocrine system, and abnormality of the 
integument.

As we saw above, SFARI genes were widely spread in the t-SNE plot and demonstrated a unique and wide 
spectrum of phenotypes for different classes. To further rank SFARI genes and detect the group of autism-associ-
ated genes playing important roles in connecting different genes together based on their phenotypic profiles, we 
constructed a genetic interaction network graph (see “Methods” section). We calculated the betweenness central-
ity scores for all SFARI genes and selected the top  10% of SFARI genes (N = 60) with the highest betweenness 
centrality scores (Supplementary Table 1). The genetic interaction network graph for these 60 genes is shown in 
Fig. 5C, with the size of each node corresponding to its betweenness centrality score. The top 10% of nodes with 
the highest betweenness centrality scores included 15.9% (21/132) SFARI class 1, 8.1% (12/148) class 2, 6.3% 
(18/287) class 3, and 13.8% (9/65) class S genes.
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Secondary analyses are also possible based on the gene–phenotype associations that are identified by Autism_
genepheno. An example of relationships between language-related phenotypes and genes implicated in Autism 
are shown in the Supplementary material. A total of 44 phenotypes associated with language were selected from 
the normalized phenotype list. A total of 163 SFARI (class S, 1, 2, 3) genes for 639 gene–phenotype associations 
were reported in Supplementary Table 2 (MPMI> 0). The network of associations between these genes and the 
language-based phenotypes is shown in Supplementary Figure 1.

Discussion and conclusion
We introduce here an automatic text mining pipeline to extract gene–phenotype associations from the autism 
research literature. At present, gold-standard databases require substantial manual curation. Initial genetic stud-
ies identified genes mostly associated with stereotypical, syndromic autism. The condition is highly variable and 
multifactorial, suggesting only weak association of any given gene with a phenotype. As the publication rate 
accelerates and the broader spectrum of autism diagnosis is harnessed, this problem may only be compounded. 
Our approach integrates a comprehensive phenotype ontology list from the Autism Spectrum Disorder Pheno-
type Ontology and Unified Medical Language System, and a comprehensive autism-associated gene list from 
the VariCarta and the SFARI databases. We generated 71,558 gene–phenotype associations for a total of 6892 
autism-associated genes (see Supplementary Table 3 for details). All our data resources are freely available and 
will be updated frequently as more autism related articles are published. Our pipeline thus provides a resource 
that researchers can use at any time, to obtain the most up-to-date understanding of phenotypes associated with 
genes implicated in autism.

To evaluate the performance of our pipeline, we manually curated 50 articles and calculated the recall and 
precision rates for sentence-level extraction of gene–phenotype associations (80.3% for recall and 71.9% for preci-
sion). We then used a reference database to further evaluate the performance. SFARI class 1, 2, 3, S genes and NA 
genes achieved true positive rates of 94.4% , 82.9%, 80.1%, 83.3%, and 62.4%, respectively. This evaluation result 
corresponded to the SFARI gene class/scoring system in which SFARI class 1 genes conferred the highest autism 
risk, followed by SFARI class 2, 3 genes. In GO analysis for specific clusters of autism-associated genes, we further 
confirmed that phenotypes extracted by the pipeline were consistent with biological functions and pathways.

Figure 5.  The unique phenotypic profiles of four classes of SFARI genes. (A) The spatial distribution of SFARI 
genes on the t-SNE plot. (B) The proportion of each class of SFARI genes belongs to each top-level phenotypic 
category. Red: SFARI class 1, Blue: SFARI class 2, Green: SFARI Class 3, and Yellow: SFARI Class S. (C) The 
genetic interaction network graph of those top 10% SFARI genes with highest betweenness centrality scores.
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Since the same gene could lead to different disease symptoms, Autism_genepheno generated a special-
ized database of autism-associated gene–phenotype associations, which were specifically mentioned in autism 
research, rather than a generalized database of gene–phenotype associations for all genetic studies. To investigate 
the phenotypic pattern of each autism-associated gene, our pipeline provides a more autism-oriented database. 
We were able to demonstrate the unique and wide spectrum of phenotypes for SFARI genes from the top-level 
phenotypic categories, and ranked the 10% SFARI genes with the most influential roles in the genetic interaction 
network. These results could provide a unique resource for the diagnosis and treatment for ASD.

Our pipeline has some limitations. Firstly, our approach is purely correlational. The algorithm is agnostic 
to disease mechanisms and causality between any association. In fact, we see our contribution as revealing 
non-obvious associations, particularly in those cases where no a priori evidence exists to support a mechanistic 
explanation. Similarly, our approach does not attempt to extract a gene dosage effect. The strength of associa-
tions we report does not map linearly to the likelihood of diagnosis or severity of symptoms. Additionally, our 
evaluation showed the gene–phenotype associations results contained both false positives and false negatives. 
False positives are caused by the following two reasons. First, due to our pipeline mistakenly identifying abbrevia-
tions as gene symbols. For instance, the pipeline identified ’CARS’, the abbreviation of Childhood Autism Rating 
Scale, as a gene which encodes cysteinyl-tRNA synthetase (also an alias of gene CARS1). Secondly, the pipeline 
detected phenotype terms constructing non-phenotype noun phrases in the sentence. For example ’cancer’ in 
the noun phrase ’National Cancer Center’ was detected as the synonym of phenotypic abnormality ’Neoplasm’ in 
HPO. Most false negatives were due to the inability to identify all possible phenotype expressions in the human 
language. Other false negatives come from ambiguity in processing gene symbols in non-normalized written 
forms. Our pipeline currently detects gene–phenotype associations in sentence-level by their co-occurrence and 
ranked their associations by NPMI only. The pipeline did not capture any linguistic relations between genes and 
phenotypes co-occurring in sentence-level, such as verbs indicating affirmation or negation. In future work, we 
suggest ranking gene–phenotype associations at the sentence level by capturing and quantifying their semantic 
relationships, such as causal relationships, declining relationships, and reinforcing relationships.

Our work relied on a method of detecting gene–phenotype association through literature mining. We dem-
onstrated the functionality of the Autism_genepheno pipeline by mining autism related PubMED articles in the 
recent 5 years. In the future, we also expect to adapt our pipeline to other neurological diseases, such as Alzhei-
mer’s disease and Schizophrenia. Our approach can thus provide a comprehensive database of gene–phenotype 
associations for all neurological diseases to study the phenotypic pattern of each gene in different neurological 
diseases and their interactions.
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