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A B S T R A C T   

Manual delineation of volumes of interest (VOIs) by experts is considered the gold-standard method in radiomics 
analysis. However, it suffers from inter- and intra-operator variability. A quantitative assessment of the impact of 
variations in these delineations on the performance of the radiomics predictors is required to develop robust 
radiomics based prediction models. In this study, we developed radiomics models for the prediction of patho-
logical complete response to neoadjuvant chemotherapy in patients with two different breast cancer subtypes 
based on contrast-enhanced magnetic resonance imaging acquired prior to treatment (baseline MRI scans). 
Different mathematical operations such as erosion, smoothing, dilation, randomization, and ellipse fitting were 
applied to the original VOIs delineated by experts to simulate variations of segmentation masks. The effects of 
such VOI modifications on various steps of the radiomics workflow, including feature extraction, feature se-
lection, and prediction performance, were evaluated. Using manual tumor VOIs and radiomics features extracted 
from baseline MRI scans, an AUC of up to 0.96 and 0.89 was achieved for human epidermal growth receptor 2 
positive and triple-negative breast cancer, respectively. For smoothing and erosion, VOIs yielded the highest 
number of robust features and the best prediction performance, while ellipse fitting and dilation lead to the 
lowest robustness and prediction performance for both breast cancer subtypes. At most 28% of the selected 
features were similar to manual VOIs when different VOI delineation data were used. Differences in VOI 
delineation affect different steps of radiomics analysis, and their quantification is therefore important for 
development of standardized radiomics research.   

1. Introduction 

Breast cancer is one of the most frequent cancer types in women, 
with an increasing incidence rate worldwide [1]. Histopathological ex-
amination of breast biopsies is the gold standard for cancer diagnosis 
and grading, but has limited capabilities for capturing tumor heteroge-
neity [2–4]. Non-invasive imaging techniques such as magnetic reso-
nance imaging (MRI) can capture the intra- and inter-tumour 
heterogeneity and are widely used for breast cancer screening, diag-
nosis, and local staging [4,5]. Based on the cancer subtype and stage, 
different treatment plans such as neoadjuvant chemotherapy (NAC) are 
recommended to patients [6]. With the advent of computerized ap-
proaches such as advanced machine learning (ML)-based techniques, 

tumor characteristics can be extracted from images in an automatic 
manner in addition to the clinical interpretation of MRI scans by 
specialized radiologists that is prone to inter- and intraobserver vari-
ability [3,5,7,8]. Recently developed deep learning approaches can even 
directly classify or categorize MR images without handcrafted feature 
sets [7,9]. However, most of these approaches are data hungry, and the 
produced results are not interpretable, which makes it difficult to utilize 
them in clinical setting [10,11]. Radiomics refers to sets of computa-
tional and interpretable image features that can be used for the devel-
opment of machine-learning based predictors of clinical outcome and 
could thus improve clinical decision-making. As shown in Fig. 1, the 
generic workflow of a radiomics-based analysis pipeline includes 
manual or automatic tumor segmentation [5,12], radiomic feature 
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extraction from delineated volumes of interest (VOI) [5,13], feature 
selection to reduce the feature number by removing redundant or un-
important features [14,15], and a machine learning model [16,17] to 
classify images based on the clinical question (e.g., prediction of path-
ological complete response (pCR) to NAC) [11,18]. Feature selection 
methods are an important part of radiomics analyses due to high 
dimensionality of radiomics features and generally are categorized as 
filter, wrapper and embedded algorithms [19]. Filter based algorithms 
rely on the general statistics of the features themselves without 
involving any learning algorithm [19,20]. It is argued that these fea-
tures, which are selected based on their general characteristics, may not 
perform well in the final training because a learning algorithm is not 
involved in the feature selection phase [19]. To address this, wrapper 
methods have been introduced where we evaluate the predictive per-
formance of a learning algorithm based on a subset of features [19,21]. 
Such methods are search-based algorithms and therefore the computa-
tional complexity to evaluate the performance of all possible subsets of 
features is very high [19,22]. Embedded methods try to overcome these 
drawbacks by making use of the inherent learning process to find the 
best features. For example, Least Absolute Shrinkage and Selection 
Operator (LASSO) is often used as a regularized sparse classification 
algorithm, which by definition encourages the coefficients of the model 
to be zero [23,24]. The remaining features with non-zero coefficients are 
deemed important for prediction; this way LASSO classifier masquer-
ades as an embedded feature selection algorithm [22–24]. Features 
selected by such feature selection algorithms usually increase the per-
formance of radiomics-based prediction models. 

Although radiomics models have shown excellent results in charac-
terizing breast lesions and predicting the outcome in breast cancer pa-
tients, the robustness of such models is highly dependent on the 
delineation (=segmentation) of lesions as segmentation masks are 
typically used to extract quantitative radiomics features. While auto-
matic methods can be used for lesion segmentation of a radiomics model 
with acceptable predictive performance [25,26], manual delineation by 
experts is still considered the gold standard. However, this method is 
subjective and suffers from inter- and intra-operator variability. There-
fore, quantitative assessment of variations in delineation and their 
impact on the radiomics model performance is required. The effects of 
manipulating segmentation masks on the robustness and the classifica-
tion performance of ML-based predictive models have been investigated 
to some extent for different imaging modalities. Zhang et al. [27] 
applied different morphological operations (erosion, dilation, and 
smoothing) on the segmentation masks of MR images for two disease 
groups (metastasis in nasopharyngeal carcinoma and sentinel lymph 
node metastasis) and investigated their impacts on a predictive radiomic 
model. They showed that extensive changes to VOIs led to fewer 
reproducible features. VOI modification of only 3 mm had no significant 
effect on the AUC classification scores for most cases, while wider 
dilation (5 mm or 7 mm) affected predictive performance differently in 
different diseases. Mahbod et al. [28] showed in dermatoscopic skin 
lesion images that cropping images (utilizing dilated lesion segmenta-
tion masks) improved classification compared to original images. Kocak 
et al. [29] investigated the influence of a morphological erosion oper-
ation (2 mm) on segmentation masks for computed tomography. The 
erosion yielded better reproducibility of textural features than the 
original segmentations but led to poorer classification performance. Lu 

et al. [30] tried two manual delineation methods (minimum and 
maximum) on MR images of patients with rectal cancer. The study 
showed good robustness for most of the extracted radiomic features for 
both approaches, with significantly better prediction performance of the 
maximum method compared to the minimum method. 

In this study, first, we developed radiomic models to predict pCR to 
NAC in patients with human epidermal growth factor 2 (HER2) positive 
or triple-negative breast cancer (TNBC). A two-step feature selection 
method was proposed including, firstly, Univariate Feature Selection 
(UFS) and correlation coefficients and, secondly, different filter-, 
embedded- and wrapper- based feature selection algorithms. Combina-
tions of different feature selection methods with different ML models 
were investigated for the prediction of pCR based on radiomics from pre- 
treatment contrast-enhanced MRI. Thereafter, we thoroughly investi-
gated the effects of different VOI permutations on the feature robustness, 
feature selection and prediction performance of chemotherapy response 
using the developed radiomics models for the two breast cancer sub-
types separately. Different mathematical operations (erosion, smooth-
ing, dilation, randomization, and ellipse fitting) were applied to the 
original VOIs to generate diverse variations in the segmentation masks, 
and their effects on radiomics analysis were assessed. In addition, we 
quantified the differences in radiomics features due to VOI modifications 
as a reference for the radiomics analysis. 

2. Materials and methods 

2.1. Dataset 

We used the multicentre Investigation of Serial Studies to Predict Your 
Therapeutic Response with Imaging and moLecular Analysis (I-SPY1 
TRIAL) breast MRI dataset. This is an open-access dataset that includes 
contrast-enhanced MRI and tissue-based biomarkers to predict pCR and 
relapse-free survival (RFS) [31–33]. MRI scans were performed at four 
different imaging time points (T1-T4): T1 = pre-treatment/baseline 
within four weeks prior to chemotherapy initiation, T2 = early treatment, 
day 1/cycle 2, T3 = between regimens, and T4 = prior to surgery). MRI 
scans were performed using 1.5-tesla field strength scanners (with dedi-
cated breast radiofrequency coils). The imaging protocols included 
sagittal dynamic contrast-enhanced T1-weighted gradient echo sequences 
with TE = 4.5 ms, TR≤ 20 ms, 16–18 cm field of view, flip angle ≤ 45º, 
minimum matrix 256 × 192, slice thickness ≤ 2.5 mm, and 64 slices were 
used in this study to extract radiomics features. For each patient in the 
dataset a binary pCR score and three-level receptor status were available 
(see Table 1) [27]. A pCR score of 1 corresponds to complete response (no 
invasive cancer left on the surgical specimen obtained during surgery) 
and 0 otherwise. The hormone receptor positive and HER2 negative 
(HR+/HER2-) cohort was excluded from this study due to the low fraction 
of patients who showed complete response (Table 1). 

For radiomics analyses, radiomics features were extracted from the 
VOI based on the segmentation masks and the first phase of the dynamic 
contrast-enhanced T1-weighted MRI at T1. From the segmentation 
masks provided for the I-SPY1 dataset [4,31–34], we used the manually 
annotated structural tumour volume (STV) to extract radiomic features 
(Section 2.2) [34]. The STV is defined based on the entire 3D primary 

Fig. 1. Generic workflow of radiomic-based image analysis.  

Table 1 
Summary of the number of patients, the prevalence in the dataset separated by 
the Hormone Receptor (HR) Status. Prevalence for each HR status is reported as 
the fraction of patients that show complete response (pCR=1).  

3-level Hormone Receptor (HR) Status Patients with pCR 
score 

Prevalence 

HR positive and HER2 negative (HR+/ 
HER2-)  

65  0.11 

HER2 positive (HR-/HER2+)  49  0.47 
Triple negative (TNBC)  37  0.35 
Total  151  0.28  
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lesion, including both the enhancing and the non-enhancing tumour 
regions. When confirming the location of the primary lesion from the 
provided VOI and functional tumour volume (FTV) [28], such STV an-
notations were created by manually delineating the primary lesion 
volume. These STV annotations were reviewed and approved by a 
fellowship-trained board-certified breast radiologist and were statisti-
cally significantly different from FTV. More details can be found in [28]. 
Several preprocessing steps, including bias field correction (N4 bias field 
correction with Simple ITK toolkit) [34,35], resampling to 1 mm3 

isotropic resolution using linear interpolation, and z-score normaliza-
tion were applied to the MRI data before radiomics feature extraction. 

2.2. Radiomics feature extraction 

Radiomics features can be divided into several categories, including 
shape, first-order, and higher-order features. Shape features describe the 
geometric properties of the lesion, such as its size, volume, and 
compactness. First-order features describe statistical properties of the 
voxel intensities within the lesion, such as mean, variance, skewness, 
and kurtosis. Higher-order features describe the spatial relationships 
between groups of voxels within lesions, (i.e. texture) which can be 
quantified using various methods such as gray-level co-occurrence 
matrices (GLCM), gray-level run-length matrices (GLRLM), gray-level 
size zone matrix (GLSZM), neighbouring gray tone difference matrix 
(NGTDM) and gray-level dependence matrix (GLDM) [36,37]. In this 
study, we used the Pyradiomics toolkit (version 3.0.1) [38] to extract 
radiomics features from the MRI. Pyradiomics is an open-source soft-
ware package written in Python that provides a wide range of standard 
feature extraction methods for medical images. Pyradiomics settings 
selected for feature extraction were set to include all feature classes - 
adding up to a total of 107 features. NGTDM features were excluded as 
they were not predictive in our preliminary experiments, resulting in 
102 features. Image type was set to original without any further pre-
processing in the extraction step and the bin count was fixed to 100 bins. 
The feature extraction method was set to be separated – processing every 
lesion in an image separately – and only the radiomics features of the 
largest lesion per subject were used for further analysis. For extraction of 
radiomics features, second phase dynamic contrast MRI was used which 
is the phase after injecting the contrast material. In addition, T1 imaging 
time point was used. 

2.3. Feature selection framework 

Feature selection is a common step in many radiomics-based work-
flows [20,39–45]. Given the high dimensionality of the input data in 
radiomics, X ∈ Rm×n, with the number of features n ≈ 100≫m, the 
number of patients, feature selection methods are employed to remove 
redundant and irrelevant features, to improve classification perfor-
mance [21,22,45]. 

Fig. 2 represents our proposed two-stage feature selection workflow. 
Radiomics features extracted from the breast MRI scans are processed in 
three steps: (A) the largest feature set, which is a set including all fea-
tures fA, (B) a reduced set of features fB which is found using Univariate 
Feature Selection (UFS) (Stage I), (C) and finally the best feature set 
fC selected by the different feature selection algorithms (Stage II). 
Features selected at each step are a subset of the previous feature set, i.e 
fC ∈ fB ∈ fA and fA and fC are used for training and validation to report 
the prediction performance (see Section 2.4). 

In Stage I, in order to eliminate highly correlated, redundant features 
and to limit the search space, we first calculate the absolute spearman 
correlation matrix for all features inside a 5-fold cross validation (CV) 
loop [24]. Within each fold, features with a correlation coefficient r, 
below a given cutoff rc, are preserved under the assumption that they are 
relevant. Instead of simply removing the remaining correlated features 
(r > rc), they are given a second chance based on their relevance for 
classification (see Algorithm 1). The feature relevance is decided by UFS, 
which naively looks for the association or influence of a single inde-
pendent variable (feature) with the dependent variable (target) using a 
classifier. As each feature is taken from a set of correlated features, the 
feature here is clearly not independent, but our goal is only to test for 
relevance of a feature that may be lost due to a harsh thresholding. A 
union of features selected from all folds is taken to form the set fB, which 
is fed into the main feature selection algorithms (Stage II). Note that rc is 
a hyperparameter that can be further optimized. In this study we have 
used 9 feature selection methods including F-Score, Relief, Mutual In-
formation (MI), Gini Importance, LASSO, Genetic Algorithm (GA), 
Sequential Backward Search (SBS), Sequential Forward Search (SFS), 
and Recursive Feature Elimination (RFE) [21,46]. The selected feature 
set from each of the above algorithms is evaluated for classification 
performance (Area Under the ROC Curve (AUC)) and the algorithm that 
maximizes this score is selected as the best feature selection algorithm 
and provides the best feature set fC. 

Fig. 2. Breast MRI with manual segmentation of the largest lesion of multifocal breast cancer (left panel) and diagram showing processing of extracted radiomics 
features in three steps (middle and right panels): (A) all features are kept, (B) a reduced set of features is found, (C) and finally the optimal number of feature set is 
found. The features found in A and B are used for training and validation. 
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Algorithm1. : Stage I feature selection with UFS. 

2.4. Training and prediction of response 

The dataset, for a given breast cancer subtype (see Table 1), was split 
into an 80/20 ratio in a stratified manner, ensuring proportionate class 
distributions. The first split was used for feature selection (see Section 
2.3) and training. The second split was kept aside as a hidden/test set for 
final evaluation. Evaluation was performed using AUC score, sensitivity, 
and specificity. A stratified k-fold CV loop with k = 5 was used for 
training. During training, each feature in the training fold was centered 
and scaled by calculating the relevant statistics (mean and standard 
deviation). The extracted statistics were used to further transform the 
validation fold. The pCR labels were already binarized by the data 
provider with 0 (non-complete response) and 1 (complete response), 
therefore target encoding was not necessary. Each training fold gener-
ates a fitted model, and an average CV score is reported along with its 
standard deviation. The fitted model and statistics from each of the 
k-training folds were saved for testing. The final evaluation was per-
formed on the test set using the ensemble of k models after scaling with 
the saved training statistics. The average score and the standard devia-
tion are reported. Due to the limited number of samples and high 
dimensionality, in our experiments we utilized two linear ML models 
(classifiers) [24]: 1) Logistic Regression (LR) with L1 and L2 regulari-
zation, commonly known as ElasticNet, with balanced class weights and 
the SAGA solver [23,47] 2) Shrinkage enabled Linear Discriminant 
Analysis (LDA) with the eigenvalue decomposition solver [24]. The 
preprocessing and modelling pipelines were developed using the 
scikit-learn (version 1.0.2) [46,48]. Important hyperparameters for LR 

that control the regularization such as l1_ratio and C, and for LDA such 
as shrinkage were tuned within the CV loop after UFS [24]. Hyper-
parameter tuning was performed using Optuna (version 3.0.0) [49]. 

2.5. Modifications of regions of interest 

To investigate the effect of varying delineations of the VOIs on 
different radiomics features and predictive models, we have modified 
the segmentation contours in different ways and analysed the robustness 
of the features and models with respect to the change in contour. The 
VOI modifications used were as follows: 

Systematic and uniform enlargement/shrinking of the lesions using 
morphological operators, to assess the effect of over- or underestimating 
the outline of the region; smoothing of the lesion contour to simulate a 
less-detailed segmentation approach by getting rid of sharp corners and 
small details in the outline; randomization of the contour outline by 
modifying the outline randomly by a small value to simulate random 
segmentation differences that may occur between multiple readers 
performing manual segmentations. Additionally, we have applied an 
approximation of an ellipsoid to investigate whether some radiomics 
features stay robust even if the segmentation is only a simple ellipsoid 
roughly encompassing the lesion. For all operations the volumes were 
resampled to an isotropic spacing in all 3 dimensions (choosing the 
lowest pixel spacing among the 3 axes for all 3 axes) using nearest 
neighbour interpolation and after processing, the modified volumes 
were resampled back to their original spacing. The isotropic resampling 
was applied for the operations to have the same magnitude in all 3 axes. 

2.5.1. morphological operators 
Morphology is a mathematical concept which is based on analysis of 

the shape of objects. It uses an input image A and a binary structural 

Fig. 3. Two-dimensional point cloud representation of an example lesion. Blue 
dots represent original lesion VOI, orange dots represent VOI after morpho-
logical dilation was applied causing the VOI to grow larger (left) and after 
morphological erosion was applied causing the VOI to shrink (right). 

Fig. 4. Two-dimensional point cloud representation of unmodified VOI (blue 
dots) and smoothed VOI (orange dots). Sharp corners (i.e. upper right corner) 
have been smoothed out by the smoothing operator. 

Fig. 5. Two-dimensional point cloud representation of unmodified VOI (blue 
dots) and randomized VOI (orange dots). Over the entire surface of the lesion 
patches can be seen where the modified VOI is bulging out from the original 
VOI, and also patches where it bulges in. Thus, the overall rough shape of the 
VOI remains similar but with variations in the exact boundary. 
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element B. 
Morphological operators act on the input image and change its pixel 

values based on the method defined and considering the shape of the 
given kernel. Similar to a sliding window average operation the kernel is 
shifted across all pixels in the given image. For each position (X, Y, Z) the 
kernel passes the corresponding morphological operation and is applied 
over all pixels covered by the kernel. One important aspect to 
morphological operations is the shape and size of the chosen kernel, as 
this directly affects the shape and size of the enhanced/reduced features. 
For uniform manipulation a circular or spherical kernel shape is usually 
chosen, but the kernel can in theory have any arbitrary shape. Mathe-
matically the two main morphological operations (Fig. 3) are defined as 
follows: 

Morphological dilation of an image A by a structural element B is 
denoted as A ⊕ B and is defined as 

A ⊕ B = {Bz ∩ A ∕= 0}

This means that dilation is the amount of pixel positions z where the 
structural element B when shifted by an amount of z still overlays one or 
more pixels in A with a value of 1. 

Morphological erosion of an image A by a structural element B is 
denoted as A ⊖ B and is defined as 

A ⊖ B = {Bz ⊆ A}

This means that erosion is the amount of pixel positions z where the 
structural element B when shifted by an amount of z overlays only pixels 
in A with a value of 1. 

To perform the morphological operations on the VOI, spherical bi-
nary kernels with radiuses of 1 mm and 2 mm were chosen (denoted as 
dilation 1, dilation 2, erosion 1, erosion 2), resulting in two different 
sizes for the eroded and dilated VOI modified images. 

2.5.2. Smoothing 
Smoothing operations on the binary VOI were performed via 

gaussian smoothing, implemented via a sliding window function based 
on the equation 

G(X,Y,Z) =
1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ e−
x2+y2+z2

2σ2 

With (x/y/z) being the distance in the 3 respective axes to the current 
center point (X,Y,Z) and σ denoting the magnitude of smoothing. 
Finally, the new segmentation Sn is created as 

Sn(X,Y,Z) = {1if G(x, y, z) > 0.5; 0otherwise 

Smoothing (Fig. 4) was performed on the VOI using two different 
magnitudes with σ values of 1 mm and 2 mm respectively, resulting in 
two versions of the smoothed binary image (denoted as smoothing 1 and 
smoothing 2). 

2.5.3. Randomization 
We propose a randomization approach which involves modifying the 

outline of the VOI by moving each point inward or outward of the VOI 
by a random, yet smooth, distance (Fig. 5). This resulted in a new outline 
that followed the general shape of the original VOI but introduced some 
variability. To achieve this, we first converted the outline of the VOI into 
a mesh object using the marching cubes algorithm implemented in the 
scikit-image Python package (version 0.20.0) [46]. We then used the 
open3d Python package (version 0.16.0) [50] to manipulate the mesh 
and compute the normal vectors of all vertices. Specifically, we 
smoothed the mesh to obtain a more accurate representation of the 
rough shape of the VOI and computed the normal vectors of each vertex 
based on this smoothed copy. To modify the outline, we used Perlin 
Noise. Perlin Noise is a type of gradient noise that generates smooth and 
natural-looking patterns. It works by generating a series of 
pseudo-random gradients at different points in space and interpolating 
between them. The resulting noise values have a smooth transition be-
tween neighbouring points, which helps avoid sharp spikes or artifacts 
in the final modification. The magnitude and direction of the shift for 
each vertex were determined by calculating the Perlin Noise value of the 
normalized coordinates of the vertex and multiplying it by the maximum 
distance that the modification should incorporate. By normalizing the 
coordinates, we ensured that the noise function was scale-invariant and 
could be used on VOIs of different sizes. The maximum distance 
parameter controlled the overall magnitude of the modification and 
allowed us to tune the level of variability introduced. 

We simulated different magnitudes of alteration by setting the 
maximum distance parameter for the modification to values of 1 mm 
and 2 mm, resulting in two different versions of the randomized VOI 

Fig. 6. Two-dimensional point cloud representation of the unmodified VOI of 
the lesion (blue dots) and the approximated ellipsoid that best represents the 
shape and size of the VOI (orange dots). 

Fig. 7. Demonstration of the effect of VOI manipulations on a single slice of the breast MRI. Blue contour shows original volume of interest (VOI) outline and red 
contour shows the corresponding operation. 
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outline per image (randomization 1, randomization 2). 

2.5.4. Ellipsoid fitting 
While mathematically optimal ellipsoid fitting can be a complex and 

computationally intensive task, our goal is to simulate the process of an 
operator drawing an approximate ellipsoid around the lesion (Fig. 6). To 
achieve this, we first convert the outline of the VOI into a mesh object 
using the marching cubes algorithm and then smooth it using the 
open3d package to obtain a more accurate representation of the rough 
shape of the VOI. In practice, a grader would typically estimate the 
major axis of the ellipsoid by approximating the longest part of the VOI, 
and then rotate and scale the perpendicular axes to best fit the shape of 
the VOI. To simulate this process, our implementation calculates the 
Euclidean distance between all pairs of vertices in the mesh and selects 
the pair with the highest distance as the start and end coordinates of the 
major axis. The two perpendicular axes are then rotated in 1◦ increments 
around the major axis, and the fit of the ellipsoid around each rotation is 
measured by the sum of squared differences between the ellipsoid and 
the VOI outline. The rotation and scale with the lowest error is selected 
as the optimal fit. Finally, a new mesh object is created using the 
approximated ellipsoid parameters and converted into a solid VOI which 
can be used for radiomics feature extraction. 

Demonstration of the effect of different VOI manipulations on a 2D 
slice of the volume is shown in Fig. 7. 

2.6. Radiomics feature robustness 

To quantify the robustness of individual radiomics features against 
changes in the segmentation of the VOI we calculated the Intraclass 
Correlation Coefficient (ICC). The ICC assesses the reliability of ratings 
by comparing the variability of different ratings of the same subject to 
the total variation across all ratings and subjects. VOIs obtained via the 
aforementioned VOI manipulation techniques can be interpreted as 
VOIs obtained from a different reader who, for example for 

morphological dilation, systematically delineates lesions larger than the 
original reader. Radiomics features obtained from a modified VOI can be 
compared with radiomics features from the unmodified VOI using the 
ICC as a measure of reliability or robustness. This comparison is per-
formed for the values of every extracted radiomics feature for all sub-
jects for each VOI manipulation method separately against the 
corresponding extracted features of the unmodified VOI, providing one 
ICC value per VOI manipulation operator, per feature. For analysis, 
these ICC values are grouped into the different radiomics feature cate-
gories (shape, first order and texture) to better understand which types 
of radiomics features are robust against which type of VOI manipulation. 
The proportion (in percentage) of each feature category with ICC above 
0.9 is reported. 

2.7. Evaluation of performance of the predictive models using different 
modifications of volumes of interest 

In a first analysis, we evaluated the performance of the achieved 
predictive models using the original manual segmentations (Section 3.1) 
also for data with delineation using different VOIs (described in Section 
2.5). In this case, the model (including features and classifier) as selected 
based on manual segmentations was used, but the radiomics features 
were extracted from modified VOIs for the test dataset only. This anal-
ysis provides insight into the robustness of the developed radiomics 
predictive models (Section 3.3) over different modifications of the VOIs 
in test data. In a second analysis, we let the model select the best per-
forming features based on the radiomics features extracted from each 
VOI modification. So, for each modification of the VOIs, a different 
model including different classifiers and features could be selected 
(Section 3.3). With this approach, we were able to evaluate whether the 
features selected from data using different VOIs show differences or not. 

A diagram showing the general proposed workflow is presented in 
Fig. 8. 

Fig. 8. A diagram presenting the general proposed radiomics workflow.  
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3. Results 

3.1. Feature selection and prediction performance analysis 

The AUC, sensitivity, and specificity of training and test datasets 
related to the three best performing radiomics models as well as selected 
features for the two subtypes of breast cancer, HER2 + and TNBC, are 
shown in Tables 1 and 2, respectively. An AUC of up to 0.96 and 0.89 
was achieved for test datasets for HER2 + and TNBC, respectively. In 
addition, the FS algorithms LASSO, SFS, and RFE were selected for both 
subtypes as the best FS methods. The number of selected features was up 
to 7. 

3.2. Feature robustness analysis 

The percentage of features with ICC values above 0.9 for both cancer 
subtypes are calculated for all features and for different feature groups 
(shape, first order, texture) (Tables 3 and 4). In addition, ICC values for 
all VOI variants were calculated for each feature individually (Appendix 
Figs. 1, 2). Furthermore, The ICC values were highest for smoothing 1, 
dilation 1, and randomization 1 for both cancer subtypes, with 
smoothing 1 showing the highest robustness. With these modifications, 
all shape features (100%) had ICC values above 0.9. In the 

HER2 + group, 97% of texture features but only 83% of first-order 
features had ICC values above 0.9. A similar pattern was observed for 
TNBC: a higher proportion of texture features (92%) showed an ICC 
above 0.9 compared to first order features (89%). Ellipsoid fitting, 
erosion 2, and dilation 2 showed the largest effects on feature values, 
with ellipse fitting showing the lowest robustness (11% and 13% of all 
features with an ICC above 0.9 for HER2 + and TNBC, respectively). For 
these three operators, shape features showed better robustness than first 
order features and texture features. Overall, smoothing 1 resulted in the 
highest number of robust features, while ellipse fitting had the lowest 
ICC range for both cancer subtypes. 

3.3. Model performance results using different modifications of volumes 
of interest 

For the best performing radiomics models for both HER2 + and 
TNBC, we compared the prediction results when using radiomics fea-
tures extracted from the original manual segmentations with those when 
extracting features from modified VOIs (Section 2.7). The FS algorithm, 
subset of radiomics features and the classifier were selected for training 
using original manual VOIs, but we assessed the performance of the 
model on test data using radiomics features extracted from VOIs that had 
undergone the different modifications described above (Tables 5, 6). To 

Table 2 
The Area under the curve (AUC), sensitivity (SE), specificity (SP), and selected features using the three best radiomics models selected for HER2 + breast cancer.  

Three best FS 
Algorithms 

Classifier Train dataset 
AUC, SE, SP 

Test dataset 
AUC, SE, SP 

Number of 
features 

Features 

LASSO LDA 0.82; 0.72; 
0.80 

0.96; 0.68; 
1.00  

7 [’firstorder_InterquartileRange’, ’firstorder_Variance’, 
’glrlm_ShortRunHighGrayLevelEmphasis’, ’glcm_DifferenceVariance’, 
’glszm_LargeAreaHighGrayLevelEmphasis’, ’glcm_MCC’, ’shape_SurfaceVolumeRatio’] 

SFS LR 0.62; 0.43; 
0.80 

0.70; 0.44; 
0.96  

1 [’firstorder_Uniformity’] 

RFE LR 0.59; 0.63; 
0.54 

0.68; 0.68; 
0.68  

6 [’firstorder_InterquartileRange’, ’firstorder_TotalEnergy’, 
’gldm_SmallDependenceLowGrayLevelEmphasis’, ’glszm_LargeAreaHighGrayLevelEmphasis’, 
’glszm_HighGrayLevelZoneEmphasis’, ’shape_Sphericity’]  

Table 3 
The Area under the curve (AUC), sensitivity (SE), specificity (SP), and selected features using the three best radiomics model selected for TNBC.  

Three best FS 
Algorithms 

Classifier Train dataset 
AUC, SE, SP 

Test dataset 
AUC, SE, SP 

Number of 
features 

Features 

SFS LDA 0.94; 0.80; 
0.95 

0.89; 0.60; 
0.80  

7 [’firstorder_10Percentile’, ’firstorder_Skewness’, ’glcm_ClusterShade’, 
’glrlm_ShortRunLowGrayLevelEmphasis’, ’glcm_MCC’, 
’glrlm_LongRunLowGrayLevelEmphasis’, ’shape_Elongation’] 

LASSO LDA 0.93; 0.70; 
0.95 

0.85; 0.60; 
0.80  

5 [’firstorder_Minimum’, ’firstorder_Skewness’, ’glcm_ClusterShade’, 
’glrlm_ShortRunLowGrayLevelEmphasis’, ’gldm_LowGrayLevelEmphasis’] 

RFE LDA 0.94; 0.80; 
0.95 

0.85; 0.47; 
0.80  

9 [’firstorder_Minimum’, ’firstorder_10Percentile’, ’firstorder_Skewness’, ’glcm_ClusterShade’, 
’glcm_MCC’, ’glrlm_LowGrayLevelRunEmphasis’, ’gldm_LowGrayLevelEmphasis’, 
’glcm_DifferenceVariance’, ’glrlm_LongRunLowGrayLevelEmphasis’]  

Table 4 
The percentage of radiomics features (all, shape, first order and texture) with ICC above 0.9 for HER2 + breast cancer.  

Features Dilation 1 Dilation 2 Erosion 1 Erosion 2 Ellipsoid Randomization 1 Randomization 2 Smoothing 1 Smoothing 2 

All  95%  44%  93%  30%  11%  95%  91%  100%  67% 
Shape  100%  86%  100%  71%  43%  100%  100%  100%  79% 
First order  83%  33%  100%  39%  11%  83%  61%  100%  72% 
Texture  97%  39%  89%  20%  5%  97%  96%  100%  64%  

Table 5 
The percentage of radiomics features (all, shape, first order and texture) with ICC above 0.9 for TNBC.  

Features Dilation 1 Dilation 2 Erosion 1 Erosion 2 Ellipsoid Randomization 1 Randomization 2 Smoothing 1 Smoothing 2 

All  93%  61%  88%  54%  13%  93%  80%  100%  98% 
Shape  100%  86%  100%  93%  50%  100%  100%  100%  93% 
First order  89%  67%  83%  78%  33%  89%  83%  100%  100% 
Texture  92%  55%  87%  41%  1%  92%  76%  100%  99%  
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quantify the change in performance, measured by the AUC score, we 
define ΔAUC = AUC2 − AUC1

AUC1
× 100, where AUC2 is the score after a given 

VOI modification and AUC1 is the score obtained with the original 
manual VOIs. 

As shown in Tables 5 and 6, for both breast cancer subtypes, the VOI 
modifications erosion 1 and both smoothing 1 and 2 resulted in the 
lowest test ΔAUC meaning these delineations affected the prediction re-
sults in the test dataset the least and performed most similar to the 
original manual VOIs compared to other modifications. In contrast, the 
highest difference in prediction results compared to the original manual 
VOIs was achieved using ellipse fitting and dilation 2 operators in both 
cancer subtypes. 

In a different approach, we let the model select the best features 
based on the radiomics features extracted from each VOI modification 
(Section 2.7). In this case, we observed that for different VOI modifi-
cations different feature selection algorithms performed best and that 

different features were selected (Tables 7 and 8), highlighting the strong 
effects of variations in VOI delineation on the feature selection process. 
We report the percentage of the common features (denoted as fc in Ta-
bles 7, 8) which is calculated by dividing the number of common fea-
tures after applying each operation by the number of selected features 
using original manual VOIs. For both groups no more than 28% of fea-
tures were the same when using different VOI modifications compared 
to original manual VOIs. The common features selected using original 
and modified VOIs are shown in Figs. 9 and 10. We also reported the 
average ICC values over the selected features (Tables 5–8). We observed 
the lowest average ICC value (lowest robustness) for ellipsoid fitting and 
dilation 2, which matches the results showing the highest test-change 
achieved by these operators. In addition, the highest average ICC 
value for smoothing operators and erosion 1 is observed for both groups 
which also matches the lowest test-change achieved for these operators. 
However, a direct relationship between the average ICC values and test- 
change could not be found for other cases. 

Table 6 
The Area under the curve (AUC), sensitivity (SE), specificity (SP), train and test change (%) and average ICC of features related to a selected model using original 
manual VOIs as well as different VOI modifications for HER2 + breast cancer group, d1: dilation 1, d2: dilation 2, e1: erosion 1, e2: erosion 2, l: ellipsoid fitting, r1: 
randomization 1, r2:randomization 2, s1:smoothing 1, s2:smoothing 2. NA: not applicable, Avg: average.  

FS algorithm and classifier Modification Train AUC, SE, SP Test AUC, SE, SP Train ΔAUC Test ΔAUC Avg. ICC of selected features 

LASSO, LDA none 0.82; 0.72; 0.80 0.96; 0.68; 1.00 NA NA NA 
LASSO, LDA d1 0.66; 0.55; 0.76 0.72; 0.60; 0.96 -20.10 -25.00 0.94 
LASSO, LDA d2 0.19; 0.12; 0.53 0.46; 0.36; 0.68 -77.25 -52.50 0.69 
LASSO, LDA e1 0.67; 0.62; 0.66 0.88; 0.76; 0.84 -18.16 -8.33 0.96 
LASSO, LDA e2 0.61; 0.48; 0.56 0.60; 0.64; 0.60 -25.68 -37.50 0.79 
LASSO, LDA l 0.48; 0.20; 0.65 0.39; 0.32; 0.52 -41.00 -59.17 0.22 
LASSO, LDA r1 0.78; 0.67; 0.81 0.74; 0.60; 1.00 -4.66 -23.33 0.95 
LASSO, LDA r2 0.73; 0.62; 0.70 0.69; 0.60; 0.92 -10.55 -28.33 0.91 
LASSO, LDA s1 0.78; 0.77; 0.75 0.93; 0.64; 0.88 -4.66 -3.33 0.99 
LASSO, LDA s2 0.80; 0.67; 0.70 0.80; 0.60; 0.84 -3.04 -16.66 0.91  

Table 7 
The Area under the curve (AUC), sensitivity (SE), specificity (SP), train and test change (%) and average ICC of features related to a selected model as well as different 
VOI modifications for TNBC, d1: dilation 1, d2: dilation 2, e1: erosion 1, e2: erosion 2, l: ellipsoid fitting, r1:randomization 1, r2:randomization 2, s1:smoothing 1, s2: 
smoothing 2, NA: not applicable, Avg: average.  

FS algorithm and classifier Modification Train 
AUC, 
SE, SP 

Test 
AUC, 
SE, SP 

Train ΔAUC Test ΔAUC Avg. ICC 

SFS, LDA none 0.94; 0.80; 0.95 0.89; 0.60; 0.80 NA NA NA 
SFS, LDA d1 0.80; 0.60; 0.80 0.80; 0.40; 0.96 –15.05 –10.44 0.89 
SFS, LDA d2 0.76; 0.60; 0.68 0.35; 0.33; 0.56 –19.47 –61.18 0.68 
SFS, LDA e1 0.84; 0.60; 0.90 0.92; 0.73; 0.80 –10.62 2.99 0.95 
SFS, LDA e2 0.74; 0.50; 0.90 0.97; 0.80; 0.88 –21.23 8.96 0.81 
SFS, LDA l 0.54; 0.30; 0.85 0.35; 0.33; 0.84 –42.48 –61.19 0.31 
SFS, LDA r1 0.86; 0.60; 0.85 0.83; 0.40; 1.00 –8.86 –7.46 0.88 
SFS, LDA r2 0.81; 0.50; 0.85 0.45; 0.33; 0.92 –14.16 -49.25 0.82 
SFS, LDA s1 0.92; 0.70; 0.85 0.93; 0.67; 0.80 –2.65 4.48 0.99 
SFS, LDA s2 0.92; 0.80; 0.85 0.85; 0.73; 0.80 –2.65 –4.48 0.98  

Table 8 
The Area under the curve (AUC), sensitivity (SE), specificity (SP), train and test change (%), number of features, fraction of common features and average ICC of 
features related to selected models when using data from different VOIs modification for HER2 + breast cancer, d1: dilation 1, d2: dilation 2, e1: erosion 1, e2: erosion 
2, l: ellipsoid fitting, r1:randomization 1, r2:randomization 2, s1:smoothing 1, s2:smoothing 2, NA: not applicable, Avg: average.  

Selected 
algorithm 

Operation Selected_ 
train_score SE, SP 

Selected_ 
holdout_score SE, SP 

Train 
ΔAUC 

Test 
ΔAUC 

Number of selected 
features using original 
masks 

Number of common features 
after applying the operation 

f c 
(%) 

Avg. 
ICC 

LASSO none 0.82; 0.72; 0.80 0.96; 0.68; 1.00 NA NA  7 NA NA NA 
RFE d1 0.93; 0.88; 0.80 0.76; 0.84; 0.56 12.70 –20.83  21 2 9.52 0.97 
Gini d2 0.72; 0.42; 0.73 0.53; 0.56; 0.32 –12.28 –45.00  2 1 50.00 0.39 
Gini e1 0.62; 0.57; 0.67 0.81; 0.60; 0.76 –24.67 –15.83  7 2 28.57 0.96 
MI e2 0.86; 0.65; 0.76 0.70; 0.44; 0.68 4.37 –27.50  2 0 0 0.83 
Gini l 0.64; 0.42; 0.75 0.40; 0.16; 0.60 –22.23 –58.33  2 1 50.00 0.29 
Gini r1 0.65; 0.33; 0.71 0.63; 0.44; 0.64 –21.11 –34.16  5 0 0 0.98 
RFE r2 0.81; 0.67; 0.71 0.71; 0.44; 0.80 –1.62 –25.83  9 2 22.22 0.90 
LASSO s1 0.74; 0.55; 0.77 0.78; 0.72; 0.80 –9.64 –19.17  8 4 50.00 0.99 
LASSO s2 0.71; 0.58; 0.71 0.80; 0.60; 0.80 –13.49 –16.67  8 1 12.50 0.90  
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4. Discussion 

This is the first study to comprehensively evaluate the effects of 
different tumor VOI modifications on radiomics analyses in HER2 + -
breast cancer and TNBC. We investigated how the introduction of 

systematic and randomized modifications of tumor delineation affects 
radiomics and radiomics-based predictors to provide references for 
radiomics studies in breast cancer and to aid the development of stan-
dardized radiomics research. 

We developed radiomics-based prediction models of pCR for 

Table 9 
The Area under the curve (AUC), sensitivity (SE), specificity (SP), train and test change (%), number of features, fraction of common features and average ICC of 
features related to selected models when using data from different VOIs modification for TNBC, d1: dilation 1, d2: dilation 2, e1: erosion 1, e2: erosion 2, l: ellipsoid 
fitting, r1:randomization 1, r2:randomization 2, s1:smoothing 1, s2:smoothing 2, NA:not applicable, Avg: average.  

Selected 
algorithm 

Operation Selected 
_train_score SE, SP 

Selected 
_holdout_score SE, SP 

Train 
ΔAUC 

Test 
ΔAUC 

Number of selected 
features using original 
masks 

Number of common features 
after applying the operation 

f c 
(%) 

Avg. 
ICC 

SFS none 0.94; 0.80; 0.95 0.89; 0.60; 0.80 NA NA  7 NA NA NA 
RFE d1 0.91; 0.70; 0.90 0.87; 0.40; 1.00 -3.55 –2.98  5 2 40.00 0.93 
LASSO d2 0.86; 0.50; 0.80 0.61; 0.27; 0.84 -8.86 –31.34  4 2 50.00 0.77 
LASSO e1 0.97; 0.60; 0.95 0.87; 0.53; 0.80 2.65 –2.98  4 3 75.00 0.94 
GA e2 0.94; 0.70; 0.95 0.79; 0.60; 0.80 0 –11.93  5 2 40.00 0.87 
SBS l 0.87; 0.50; 0.95 0.63; 0.33; 0.88 -7.96 –29.84  3 0 0 0.74 
SFS r1 0.88; 0.70; 0.90 0.67; 0.40; 1.00 -6.20 –25.36  15 6 40.00 0.92 
GA r2 0.88; 0.70; 0.85 0.64; 0.33; 1.00 -6.20 –28.35  5 0 0 0.78 
GA s1 0.97; 0.70; 0.95 0.89; 0.53; 0.92 3.54 0  5 1 20.00 0.99 
GA s2 1.00; 0.80; 0.95 0.81; 0.40; 0.80 6.19 –8.95  7 2 28.57 0.96  

Fig. 9. The common features selected by data using original manual and modified VOIs for HER2 + breast cancer, d1: dilation 1, d2: dilation 2, e1: erosion 1, e2: 
erosion 2, l: ellipsoid fitting, r1: randomization 1, r2: randomization 2, s1: smoothing 1, s2: smoothing 2. 
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HER2 + breast cancer and TNBC based on pre-treatment breast MRI. In 
contrast to many other radiomics studies, we evaluated different feature 
selection methods and classifiers and achieved an AUC of 0.96 for 
HER2 + breast cancer and 0.89 for TNBC on held out test sets. These 
results are comparable to previously published work [51–53]. Our 
models, however, are based on radiomics of one MRI sequence only and 
reach AUC values comparable to prediction models combining clinical 
data and radiomics [51] or radiomics from multiple MRI sequences [52]. 
We identified LASSO and SFS as the best feature selection methods and 
LDA as the best classifier for the original manual VOIs of the ISPY1 data 
set. 

All scans were normalized using the same preprocessing setup to 
enable proper comparisons of data, since these MRI preprocessing steps 
can influence the extracted radiomics features which would conse-
quently influence feature selection and prediction steps. For example, z- 
score normalization can influence mainly first-order radiomics features, 
as it manipulates the values and range of intensity. Higher-order features 
remain mostly unchanged and shape-based features are completely 
unaffected. Spatial normalization, in terms of resampling, has a small 
effect on all types of radiomics features. Other non-linear intensity 
normalization techniques (including N4 Bias correction) have a much 
higher influence on first- and higher-order features, since they change 
the relative differences between intensity values. Shape-based features 
are again not influenced. 

We performed standard and more advanced modifications of those 
VOIs that are comparable to VOIs outlined by different radiologists, such 
as randomization, smoothing, dilation and erosion [21,23,24]. 
Randomization introduces stochastic components into the delineation of 
VOIs, mimicking realistic errors made when different radiologists 
delineate the tumours. The latter two can mimic more generous inclu-
sion of background (dilation) or very stringent omission of background 
(erosion) by the person segmenting the tumors. Smoothing is compa-
rable to an observer outlining the VOI with less attention to detail. Other 
modifications, such as ellipse fitting are an example of very simple and 
time efficient outlining of cancer as could be performed also by less 
well-trained readers. 

We observed a relatively large reduction in prediction performance 
when randomization masks were used, confirming the high sensitivity of 
the radiomics models to random tumor delineation errors introduced by 
different radiologists. Furthermore, we found that the modifications of 
the original manual VOIs affect radiomics feature values, selection of 
features, and prediction performance. Even slight smoothing of VOIs 
affected which feature selection methods achieved the predictions with 
the highest AUC and which features were selected for the best prediction 
results. This is consistent with previously reported findings where tumor 
delineation also determined which features were selected [21,23]. The 
reason is likely that VOI modifications, even though small, change 
radiomics feature values and thus result in a different order of features 
when ranked according to predictive power. 

In TNBC, the predictive performance was more robust to VOI mod-
ifications than in HER2 + breast cancer because lower percentage 
changes in AUC observed for both train and test sets for TNBC regardless 
of whether only features selected based on the original manual VOIs 
were used or the feature selection process was repeated with each VOI 
modification. 

The lowest robustness and predictive performance were found when 
using ellipsoid fitting and dilation 2, potentially due to relatively large 
amounts of normal breast tissue that is included in these ROIs. In 
contrast to a study on melanoma, where the inclusion of normal 
appearing skin surrounding the cancer contributed significantly to 
higher AUC of predictions [22], in the case of breast cancer the sur-
rounding normal breast tissue apparently contributes little to the pre-
dictions. In contrast, higher robustness predictive performance was 
observed with smoothing and erosion 1. However, no similar relation-
ship between robustness and prediction performance was found for 
other VOI modifications. This is also consistent with previous studies in 
other diseases where feature robustness and predictive performance 
were not necessarily intertwined when segmentations were modified 
[21,23,24]. Therefore, the joint analysis of both feature robustness and 
the final predictive performance of radiomics models need to be per-
formed for a comprehensive evaluation of VOI differences and their 
effect on the development of prediction models [21,54]. We considered 
the class imbalance in our datasets mainly by incorporating class 
weights (inversely proportional to the prevalence cf. Table 1) for the loss 
function in model training. We also ensure proportionate class distri-
butions by splitting the train and test dataset in a stratified manner. We 
observed that the AUC for the training set is lower than the AUC for the 
testing set for HER2 + breast cancer. The reason for this pattern can be 
the small number of cases in the test dataset (10 cases). This means a 
single misclassified case can lead to a discrepancy of about 10% or more 
in the reported results, leading to the pattern as seen in Table 2. 

Stable and high predictive performance in VOIs with smoothing 1, 
smoothing 2, and erosion 1 for both cancer groups/types confirm the 
tolerance of the corresponding differences in radiomics models. This 
suggests that radiologists can smoothly outline the lesions with 1 mm or 
2 mm or outline the tumour with 1 mm shrinkage. One of the limitations 
of this study is that no VOIs obtained from multiple readers were 
compared. However, the comparison of VOIs from different radiologists 
was beyond the scope of this study and can be found in the existing 
radiomics literature. This study set out to compare VOI modifications 
that were applied in a standardized way rather than observer-introduced 
variations. Furthermore, this study is limited to the evaluation of VOI 
modifications in breast cancer. In future studies, more types of cancer 
and different imaging modalities should be analyzed in order to extend 
the generalizability of the results. 

5. Conclusion 

Based on only one MRI sequence, we developed radiomics-based 
predictors of pCR in breast cancer. Our predictive performance with 
these limited data was similar to studies combining clinical and imaging 
data or radiomics from different MRI sequences. Our systematic 

Fig. 10. The common features selected by data using original manual and 
modified VOIs for TNBC, d1: dilation 1, d2: dilation 2, e1: erosion 1, e2: erosion 
2, l: ellipsoid fitting, r1: randomization 1, r2: randomization 2, s1: smoothing 1, 
s2: smoothing 2. 
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evaluation showed that different VOI modifications can lead to signifi-
cant differences in radiomics feature values, feature selection and pre-
diction performance. Determining a predefined standard for tumor 
delineation can help develop reliable and robust radiomics models. The 
results of this study can serve as a reference for future radiomics 
research. 
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Fig. 1. ICC values related to each radiomics feature for all VOI modifications for HER2 + breast cancer.  
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Fig. 2. ICC values related to each radiomics feature for all VOI modifications for TNBC.  

. 

References 

[1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer 
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 
cancers in 185 countries. CA: A Cancer J Clin 2018;68:394–424. https://doi.org/ 
10.3322/caac.21492. 

[2] Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Houssami N. Overview of 
radiomics in breast cancer diagnosis and prognostication. Breast 2020;49:74–80. 
https://doi.org/10.1016/j.breast.2019.10.018. 

[3] Ye D-M, Wang H-T, Yu T. The application of radiomics in breast MRI: a review. 
153303382091619 Technol Cancer Res Treat 2020;19. https://doi.org/10.1177/ 
1533033820916191. 

[4] Chitalia R, Pati S, Bhalerao M, Thakur SP, Jahani N, Belenky V, et al. Expert tumor 
annotations and radiomics for locally advanced breast cancer in DCE-MRI for 
ACRIN 6657/I-SPY1. Sci Data 2022;9:440. https://doi.org/10.1038/s41597-022- 
01555-4. 

[5] Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, et al. How 
radiomics can improve breast cancer diagnosis and treatment. JCM 2023;12:1372. 
https://doi.org/10.3390/jcm12041372. 

[6] Steenbruggen TG, Van Ramshorst MS, Kok M, Linn SC, Smorenburg CH, Sonke GS. 
Neoadjuvant therapy for breast cancer: established concepts and emerging 
strategies. Drugs 2017;77:1313–36. https://doi.org/10.1007/s40265-017-0774-5. 

[7] Houssein EH, Emam MM, Ali AA, Suganthan PN. Deep and machine learning 
techniques for medical imaging-based breast cancer: a comprehensive review. 
Expert Syst Appl 2021;167:114161. https://doi.org/10.1016/j.eswa.2020.114161. 

[8] Hatamikia S, Nougaret S, Panico C, Avesani G, Nero C, Boldrini L, et al. Integration 
of AI and -omics biomarkers in ovarian cancer: beyond imaging. Eur Radio Exp 
2023 (in press). 

[9] Din NMU, Dar RA, Rasool M, Assad A. Breast cancer detection using deep learning: 
datasets, methods, and challenges ahead. Comput Biol Med 2022;149:106073. 
https://doi.org/10.1016/j.compbiomed.2022.106073. 

[10] Lundervold AS, Lundervold A. An overview of deep learning in medical imaging 
focusing on MRI. Z Für Med Phys 2019;29:102–27. https://doi.org/10.1016/j. 
zemedi.2018.11.002. 

[11] Gillies RJ, Schabath MB. Radiomics improves cancer screening and early detection. 
Cancer Epidemiol, Biomark Prev 2020;29:2556–67. https://doi.org/10.1158/ 
1055-9965.EPI-20-0075. 

[12] Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self- 
configuring method for deep learning-based biomedical image segmentation. Nat 
Methods 2021;18:203–11. https://doi.org/10.1038/s41592-020-01008-z. 

[13] Lambin P, Leijenaar RTH, Deist TM, Peerlings J, De Jong EEC, Van Timmeren J, 
et al. Radiomics: the bridge between medical imaging and personalized medicine. 
Nat Rev Clin Oncol 2017;14:749–62. https://doi.org/10.1038/ 
nrclinonc.2017.141. 

[14] Massafra R, Bove S, Lorusso V, Biafora A, Comes MC, Didonna V, et al. Radiomic 
feature reduction approach to predict breast cancer by contrast-enhanced spectral 
mammography images. Diagnostics 2021;11:684. https://doi.org/10.3390/ 
diagnostics11040684. 

[15] Granzier RWY, Van Nijnatten TJA, Woodruff HC, Smidt ML, Lobbes MBI. Exploring 
breast cancer response prediction to neoadjuvant systemic therapy using MRI- 
based radiomics: a systematic review. Eur J Radiol 2019;121:108736. https://doi. 
org/10.1016/j.ejrad.2019.108736. 

S. Hatamikia et al.                                                                                                                                                                                                                             

https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/j.breast.2019.10.018
https://doi.org/10.1177/1533033820916191
https://doi.org/10.1177/1533033820916191
https://doi.org/10.1038/s41597-022-01555-4
https://doi.org/10.1038/s41597-022-01555-4
https://doi.org/10.3390/jcm12041372
https://doi.org/10.1007/s40265-017-0774-5
https://doi.org/10.1016/j.eswa.2020.114161
http://refhub.elsevier.com/S2001-0370(23)00432-4/sbref8
http://refhub.elsevier.com/S2001-0370(23)00432-4/sbref8
http://refhub.elsevier.com/S2001-0370(23)00432-4/sbref8
https://doi.org/10.1016/j.compbiomed.2022.106073
https://doi.org/10.1016/j.zemedi.2018.11.002
https://doi.org/10.1016/j.zemedi.2018.11.002
https://doi.org/10.1158/1055-9965.EPI-20-0075
https://doi.org/10.1158/1055-9965.EPI-20-0075
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.3390/diagnostics11040684
https://doi.org/10.3390/diagnostics11040684
https://doi.org/10.1016/j.ejrad.2019.108736
https://doi.org/10.1016/j.ejrad.2019.108736


Computational and Structural Biotechnology Journal 23 (2024) 52–63

63

[16] Lee JY, Lee K, Seo BK, Cho KR, Woo OH, Song SE, et al. Radiomic machine learning 
for predicting prognostic biomarkers and molecular subtypes of breast cancer using 
tumor heterogeneity and angiogenesis properties on MRI. Eur Radio 2022;32: 
650–60. https://doi.org/10.1007/s00330-021-08146-8. 

[17] Liu J, Sun D, Chen L, Fang Z, Song W, Guo D, et al. Radiomics analysis of dynamic 
contrast-enhanced magnetic resonance imaging for the prediction of sentinel 
lymph node metastasis in breast cancer. Front Oncol 2019;9:980. https://doi.org/ 
10.3389/fonc.2019.00980. 

[18] Pesapane F, Agazzi GM, Rotili A, Ferrari F, Cardillo A, Penco S, et al. Prediction of 
the pathological response to neoadjuvant chemotherapy in breast cancer patients 
with MRI-radiomics: a systematic review and meta-analysis. Curr Probl Cancer 
2022;46:100883. https://doi.org/10.1016/j.currproblcancer.2022.100883. 

[19] Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr 
Eng 2014;40:16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024. 

[20] Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine learning 
methods for quantitative radiomic biomarkers. Sci Rep 2015;5:13087. https://doi. 
org/10.1038/srep13087. 

[21] Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, et al. Feature selection: a 
data perspective. ACM Comput Surv 2018;50:1–45. https://doi.org/10.1145/ 
3136625. 

[22] Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach 
Learn Res 2003;3:1157–82. https://doi.org/10.5555/944919.944968. 

[23] Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc: Ser B 
(Methodol) 1996;58:267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080. 
x. 

[24] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. New York, 
NY: Springer New York,; 2009. https://doi.org/10.1007/978-0-387-84858-7. 

[25] Defeudis A, Mazzetti S, Panic J, Micilotta M, Vassallo L, Giannetto G, et al. MRI- 
based radiomics to predict response in locally advanced rectal cancer: comparison 
of manual and automatic segmentation on external validation in a multicentre 
study. Eur Radio Exp 2022;6:19. https://doi.org/10.1186/s41747-022-00272-2. 

[26] Jalalifar SA, Soliman H, Sahgal A, Sadeghi-Naini A. Impact of tumour segmentation 
accuracy on efficacy of quantitative MRI biomarkers of radiotherapy outcome in 
brain metastasis. Cancers 2022;14:5133. https://doi.org/10.3390/ 
cancers14205133. 

[27] Zhang X, Zhong L, Zhang B, Zhang L, Du H, Lu L, et al. The effects of volume of 
interest delineation on MRI-based radiomics analysis: evaluation with two disease 
groups. Cancer Imaging 2019;19:89. https://doi.org/10.1186/s40644-019-0276-7. 

[28] Mahbod A, Tschandl P, Langs G, Ecker R, Ellinger I. The effects of skin lesion 
segmentation on the performance of dermatoscopic image classification. Comput 
Methods Prog Biomed 2020;197:105725. https://doi.org/10.1016/j. 
cmpb.2020.105725. 

[29] Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilickesmez O. Influence of segmentation 
margin on machine learning–based high-dimensional quantitative CT texture 
analysis: a reproducibility study on renal clear cell carcinomas. Eur Radio 2019;29: 
4765–75. https://doi.org/10.1007/s00330-019-6003-8. 

[30] Lu H, Yuan Y, Zhou Z, Ma X, Shen F, Xia Y, et al. Assessment of MRI-based 
radiomics in preoperative T staging of rectal cancer: comparison between 
minimum and maximum delineation methods. BioMed Res Int 2021;2021:1–9. 
https://doi.org/10.1155/2021/5566885. 

[31] Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The cancer imaging 
archive (TCIA): maintaining and operating a public information repository. J Digit 
Imaging 2013;26:1045–57. https://doi.org/10.1007/s10278-013-9622-7. 

[32] Hylton NM, Gatsonis CA, Rosen MA, Lehman CD, Newitt DC, Partridge SC, et al. 
Neoadjuvant chemotherapy for breast cancer: functional tumor volume by MR 
imaging predicts recurrence-free survival—results from the ACRIN 6657/CALGB 
150007 I-SPY 1 TRIAL. Radiology 2016;279:44–55. https://doi.org/10.1148/ 
radiol.2015150013. 

[33] Newitt D, Hylton N. Multi-center breast DCE-MRI data and segmentations from 
patients in the I-SPY 1/ACRIN 6657. trials 2016. https://doi.org/10.7937/K9/ 
TCIA.2016.HDHPGJLK. 

[34] Chitalia R., Pati S., Bhalerao M., Thakur S., Jahani N., Belenky J.V., et al. Expert 
tumor annotations and radiomic features for the ISPY1/ACRIN 6657 trial data 
collection 2021. https://doi.org/10.7937/TCIA.XC7A-QT20. 

[35] Saint Martin M-J, Orlhac F, Akl P, Khalid F, Nioche C, Buvat I, et al. A radiomics 
pipeline dedicated to Breast MRI: validation on a multi-scanner phantom study. 
Magn Reson Mater Phy 2021;34:355–66. https://doi.org/10.1007/s10334-020- 
00892-y. 

[36] Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, 
et al. The image biomarker standardization initiative: standardized quantitative 
radiomics for high-throughput image-based phenotyping. Radiology 2020;295: 
328–38. https://doi.org/10.1148/radiol.2020191145. 

[37] Van Griethuysen J., Fedorov A., Aucoin N., Fillion-Robin J.-C., Hosny A., Pieper S., 
et al. Radiomic Features-PyRadiomics Documentation 2022. 〈https://pyradiomics. 
readthedocs.io/en/latest/features.html〉. 

[38] Van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. 
Computational radiomics system to decode the radiographic phenotype. Cancer 
Res 2017;77:e104–7. https://doi.org/10.1158/0008-5472.CAN-17-0339. 

[39] Delzell DAP, Magnuson S, Peter T, Smith M, Smith BJ. Machine learning and 
feature selection methods for disease classification with application to lung cancer 
screening image data. Front Oncol 2019;9:1393. https://doi.org/10.3389/ 
fonc.2019.01393. 

[40] Laajili R, Said M, Tagina M. Application of radiomics features selection and 
classification algorithms for medical imaging decision: MRI radiomics breast 
cancer cases study. Inform Med Unlocked 2021;27:100801. https://doi.org/ 
10.1016/j.imu.2021.100801. 
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