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Abstract 

Neuroinflammation and the activation of microglial cells are among the earliest events in 

Alzheimer’s disease (AD). However, direct observation of microglia in living people is not 

currently possible. Here, we indexed the heritable propensity for neuroinflammation with 

polygenic risk scores (PRS), using results from a recent genome-wide analysis of a validated 

post-mortem measure of morphological microglial activation. We sought to determine whether a 

PRS for microglial activation (PRSmic) could augment the predictive performance of existing AD 

PRSs for late-life cognitive impairment. First, PRSmic were calculated and optimized in a 

calibration cohort (Alzheimer’s Disease Neuroimaging Initiative (ADNI), n=450), with 

resampling. Second, predictive performance of optimal PRSmic was assessed in two independent, 

population-based cohorts (total n=212,237). Our PRSmic showed no significant improvement in 

predictive power for either AD diagnosis or cognitive performance. Finally, we explored 

associations of PRSmic with a comprehensive set of imaging and fluid AD biomarkers in ADNI. 

This revealed some nominal associations, but with inconsistent effect directions. While genetic 

scores capable of indexing risk for neuroinflammatory processes in aging are highly desirable, 

more well-powered genome-wide studies of microglial activation are required. Further, biobank-

scale studies would benefit from phenotyping of proximal neuroinflammatory processes to 

improve the PRS development phase. 
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Introduction 

Neuroinflammation is an important process in the pathogenesis of Alzheimer’s disease (AD)1–5 . 

Efforts to identify inflammatory biomarkers for early diagnosis or improved prognosis of AD 

have largely been focused on measuring signaling proteins in blood and cerebrospinal fluid 

(CSF).6,7 In the central nervous system, the activation of microglia - the brain’s resident immune 

cells - is an important mediator of inflammation in AD. The process of activating microglia from 

their “resting”, or sentinel, state is closely tied to immune signaling, and enables the removal of 

potentially toxic protein aggregates (such as Aβ) via phagocytosis.8 Dysregulated immune 

signaling, such as in the case of chronic neuroinflammation, may lead to further microglial 

activation, which has been shown to form a feedback loop with amyloid deposition, with both 

processes exacerbating the other.3  

Determining the activation states of microglia in humans is an active field. Recent work 

from our group has established a post-mortem morphological phenotype, termed the proportion 

of activated microglia (PAM), which is strongly associated with AD neuropathology, rates of 

cognitive decline in aging, and neuroimmune gene expression signatures from isolated human 

microglia.9,10 While this measure can proxy for microglia-mediated neuropathological cascades 

in post-mortem studies of aging and AD, the inaccessibility of human brain tissue in living 

people poses important limitations on the utility of PAM. Given its important etiological role in 

AD, measuring the propensity for microglial activation in living people over the course of aging 

may be a useful way of stratifying at-risk populations. Further, such a stratification would 

provide mechanistic information, and therefore could be useful for implementing precision 

treatment strategies. Unfortunately, existing methods for determining microglial activation states 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.10.23287119doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.10.23287119
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

in vivo require expensive and invasive imaging protocols using positron emission tomography 

(PET).11 

To develop a minimally invasive and inexpensive tool for identifying individuals at risk 

for AD based on their propensity for morphological microglial activation in vivo, we turned to 

genetic markers measurable in saliva or blood. Using genome-wide methods, we previously 

identified risk loci for the PAM phenotype in the inferior temporal (IT) and midfrontal (MF) 

cortices.10 These genetic maps can be used for the calculation of polygenic risk scores (PRS), 

which are commonly used to bridge the gap between genetic research and clinical utility by 

summarizing an individual’s genetic susceptibility for disease based on genotype 

information.12,13 PRSs have been deployed in several diseases, notably in cardiovascular 

diseases,14–16 including Alzheimer’s disease.17–19 Despite the large effect sizes of the single 

nucleotide polymorphisms (SNPs) in the APOE region, inclusion of more SNPs in AD PRSs has 

shown to improve predictive power.20–22 However, most PRSs developed to date use as their 

source case-control studies on AD diagnosis, while biologically-informed PRSs are lacking.  

Our primary goal for this study was to develop and validate a novel PRS for microglial 

activation (PRSmic) and assess the capacity of this PRSmic to augment the predictive performance 

of existing PRS for AD (PRSAD). We hypothesized that models including this PRSmic will 

improve predictive performance over models with PRSAD alone, since existing gold-standard 

PRSAD are based on clinically defined Alzheimer’s dementia and may be missing crucial 

etiological information related to neuroinflammatory mechanisms. Our secondary goal was to 

explore any putative associations PRSmic with specific AD-related neuropathologies in vivo, 

including beta-amyloid, hyperphosphorylated tau, and inflammatory AD-related biomarkers 

(tumor necrosis factor alpha, TNF-α, and neurofilament light chain, NfL) measured in both brain 
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(PET) and periphery (blood and CSF). In order to adhere to the highest standards of rigor and 

transparency in PRS development and reporting, we followed the methodological framework 

described by the Clinical Genome Resource (ClinGen) Complex Disease Working Group and the 

Polygenic Score (PGS) Catalog Polygenic Risk Score Reporting Standards (PRS-RS).23 

Materials and methods 

Study datasets and outcomes 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Data used in the preparation of this 

article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. For up-to-date information, see www.adni-

info.org. The ADNI is a longitudinal study consisting of four study phases (ADNI-1, ADNI-GO, 

ADNI-2, and ADNI-3). Participants are enrolled in a case-control design (cognitively normal 

(CN), significant memory concern (SMC), early mild cognitive impairment (EMCI), late mild 

cognitive impairment (LMCI) and clinical Alzheimer’s disease (AD)) and clinical, imaging, fluid 

biomarker, and genetic data are collected at baseline and follow-up (6- and 12-month).24 In total, 

we analyzed up to n=973 participants (50.8% with an AD diagnosis) for PRS calculation and 

hyperparameter tuning, and n=1,404 participants for exploratory analyses with multiple AD 

biomarkers and neuropathologies. Informed written consent was obtained by the ADNI 

investigators at each participating ADNI site. Descriptive statistics of the variables included in 

this study can be found in Table S1. 
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Our primary outcome used for calibration of PRSmic was tumour necrosis factor alpha 

(TNF-α) measured in plasma using the Luminex xMAP platform by Rules-Based Medicine 

(RBM). Plasma levels of TNF-α have been previously shown to contribute partially to an 

inflammatory factor that predicts decline in executive function in patients with mild Alzheimer’s 

disease.25 A total of n=450 participants had at least one measure of TNF-α available. For 

participants with repeat measures, an average of the measurements was used as the outcome. For 

the calibration of PRSAD, we derived a subset of only participants in the cognitively normal 

(n=479) and Alzheimer’s disease (n=494) categories. For exploratory analyses, we did not 

restrict participants by diagnostic category. Primary outcomes for these analyses include the 

Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog), where a higher score 

indicates greater cognitive impairment. Pathological outcomes were also analyzed, including 

peripheral measures of known AD-related and inflammatory biomarkers such as amyloid, tau, 

phosphorylated tau, and neurofilament light chain (NfL) in CSF. Levels of NfL in plasma were 

also analyzed. Brain-based measures of amyloid and tau were derived from standardized uptake 

value ratios (SUVR) of PET tracers 18F-AV-45 and 18F-AV-1451, standardized to the whole 

cerebellum and the inferior cerebellar reference region, respectively. These measures were 

localized to the inferior temporal and midfrontal regions of the brain, averaged across both 

hemispheres. 

Genotype data for participants were obtained at every phase: nADNI-1=757 genotyped 

using the Illumina Human610-Quad BeadChip, nADNI-GO/2=432 genotyped using the Illumina 

HumanOmniExpress BeadChip, and nADNI-3=327 genotyped using the Illumina Global Screening 

Array v2. Standard quality control was applied to each set of genotypes separately before 
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imputation was performed on the TOPMed Imputation Server, resulting in 8,028,924 high-

quality variants in n=1,569 participants. 

The UK Biobank. The UK Biobank is a large-scale biomedical database of over half a million 

participants residing throughout the United Kingdom.26 Volunteers were initially enrolled over a 

four year period beginning in 2006, aged 40 to 69, and will be followed with either repeat visits 

or questionnaire data to track their health outcomes. Linked electronic health records through the 

National Health Service also provided insight into the participants’ health, notably giving access 

to International Classification of Disease (ICD-10) codes from in-patient health records. We 

analyzed up to n=200,924 elderly participants of the UK Biobank aged 60 and over at time of 

recruitment. All participants provided written informed consent to the UK Biobank. Descriptive 

statistics of the variables included in this study can be found in Table S1. 

The primary study outcome measure utilized in the UK Biobank is the presence of an 

International Classification of Disease (ICD-10) G30 code for Alzheimer’s disease. These codes 

were ascertained from any of the following: death register, primary care records, or hospital 

admission data, and binarized into presence or absence of at least one record for each individual 

in our study. Genotype data were derived from blood samples collected at the initial assessment: 

n=487,442 genotyped using the Applied Biosystems UK Biobank Axiom Array. After quality 

control, 670,739 autosomal markers remained.26 Finally, 93,095,623 autosomal variants were 

imputed using the Haplotype Reference Consortium27 and UK10K + 1000 Genomes reference 

panels.28 We used the UK Biobank as one of our external test cohorts. 

The Canadian Longitudinal Study on Aging (CLSA). CLSA is a longitudinal, nation-wide study 

of Canadians aimed at investigating the aging process from mid- through late-life (aged 45 to 85 
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at recruitment), with 20 year follow-up.29 Data were collected on approximately 50,000 

randomly selected Canadians via computer-assisted telephone interviews, including measures of 

cognition, sociodemographics, health equity, amongst others. Additionally, a subset of 

approximately 30,000 participants underwent further examination at select data collection sites 

and provided biospecimen samples for genotyping. We analyzed up to n=11,313 elderly 

participants of the CLSA aged 60 and over at time of recruitment. All participants provided 

informed written consent to the CLSA. Descriptive statistics of the variables included in this 

study can be found in supplementary Table S1. 

Our primary evaluated outcome measure in CLSA was a latent score of overall cognition, 

adjusted for age, sex, and education status. This composite score is constructed from participant 

performance on the following cognitive tests: the Rey Memory Test, the Animal Fluency Test, 

the Mental Alternation Test, the Verbal Fluency Test (FAS Test), and the Stroop Test, 

standardized to a mean of 100 and a standard deviation of 15.30 A higher overall cognition score 

indicates better cognitive performance. Genotyping was performed using the Axiom 2.0 Assay 

Automated Workflow on Affymetrix NIMBUS protocol.31 Samples were also hybridized to UK 

Biobank arrays and 794,409 genetic variants survived quality control. Imputation was conducted 

with TOPmed reference panels, resulting in genotypes for approximately 308 million genetic 

variants.31  We used CLSA as our second external test cohort. 

GWAS summary statistics for PRS calculation 

To develop our PRSmic, we accessed summary statistics from our published genome-wide 

association study (GWAS) of the proportion of active microglia (PAM) phenotype measured in 

post-mortem brain samples from the Religious Orders Study and Rush Memory and Aging 
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Project (ROS/MAP) cohorts.10,32 The PAM phenotype provides an index of microglial activation, 

measured by HLA staining and manual counting of morphologically activated microglia, relative 

to basal levels of total microglia (including “inactive”, or sentinel microglia) within a brain 

region.10,33 Specifically, we retrieved genome-wide summary statistics from two GWAS of PAM 

quantified in two different brain regions: 1) inferior temporal (IT) cortex and 2) midfrontal (MF) 

cortex. These regions were chosen as they were the only regions linked to Alzheimer’s disease 

neuropathology and cognition in previous work.10 For the calculation of our baseline PRSAD, we 

used summary statistics from the largest and most recent GWAS on late-onset AD and related 

dementias.34 

PRS calculation 

The clumping & thresholding (C+T) method35 implemented in PRSice-236 was used to calculate 

all PRSs in our study. This method requires the selection of three hyperparameters: 1) linkage 

disequilibrium (LD) clumping squared correlation (r2) threshold, 2) LD clumping window size, 

and 3) p-value threshold for SNP inclusion. The PRS is then calculated as the effect-weighted 

(with weights equal to beta coefficient from the source GWAS) sum of allelic dosage across 

included SNPs, per individual. Given the strong influence of hyperparameters on the 

performance of downstream C+T PRSs, we performed parameter optimization across a large set 

of values according to published guidelines37: 

● LD clumping r2 = {0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95}. 

● LD clumping window base size = {25, 50, 100, 200, 500} (In PRSice, the window size is 

then computed as the base size divided by the correlation threshold). 
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● A sequence of 605 SNP inclusion thresholds (100 per order of magnitude, ranging from 

genome-wide significance of 5x10-8 to 0.05), as well as {0.1, 0.2, 0.5, 0.8, 1}. 

Across all combinations of parameters, PRSs composed of less than 10 SNPs and duplicate 

scores were discarded. The most conservative parameters were used to select which of the 

duplicate scores to retain—taking the smallest SNP-inclusion and LD clumping r2 thresholds, and 

the largest clumping window size in that order of priority. Finally, to account for fine population 

structure, the first ten genetic principal components were regressed from each score, yielding 

standardized residuals that were carried forward for analysis. 

Statistical analysis 

Analyses proceeded in three phases: 1. Calibration: we calculated a series of PRSmic in our 

calibration sample (ADNI) and performed optimal clumping and thresholding hyperparameter 

selection using bootstrap resampling. 2. Validation: we assessed the performance of models 

including our optimized PRSmic in elderly participants from two independent, population-based 

cohorts. We also tested differences in performance of models including only established AD PRS 

vs. models including our novel PRSmic + PRSAD. 3. Exploration: following steps 1 and 2, 

designed to meet our first study goal, we relaxed statistical correction thresholds to identify 

putative associations of PRSmic with a set of in vivo AD biomarkers within the deeply-

phenotyped ADNI sample. 

Calibration of microglial PRS (PRSmic) in ADNI. We first calculated two sets of PRSmic in the 

non-Hispanic white ADNI subsample (n=1,414), corresponding to the two source GWAS 

performed for PAM in two brain regions; we refer to these scores as PRSmic[MF] for midfrontal 

cortex, and PRSmic[IT] for inferior temporal cortex. Logistic regression models were fit to test 
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the associations of the PRSmic with levels of plasma tumor necrosis factor alpha (TNF-α) in 

n=450 samples with complete data. In the absence of a comparable morphological microglial 

activation phenotype in any existing datasets outside of the ROS/MAP samples that were used in 

the source PAM GWAS, TNF-α was used as a proxy for microglial activation in ADNI due to 

the known phenomenon of TNF-α-mediated microglia overactivation.38 We searched a parameter 

space of seven clumping correlation thresholds, five clumping window sizes, and 605 SNP-

inclusion thresholds for a total of 21,175 parameter combinations. After ensuring >10 SNPs were 

included in a score and duplicate scores were removed, we were left with a total of 9,685 

PRSmic[IT] and 9,228 PRSmic[MF] scores for optimization. We fit separate linear models for each 

score, covarying for age, sex, and years of education, then performed 1,000 iterations of 

bootstrap resampling on every model. Bootstrapped r2 were obtained for each model and the top 

performing combinations of hyperparameters (according to median bootstrapped r2) were 

selected and used to calculate PRSmic for modelling in CLSA and UK Biobank.  

To calibrate our PRSAD for downstream modelling and comparison, we performed a 

similar procedure but using clinical AD diagnosis at last study visit as the outcome (n=973, 

49.2% cognitively normal control, excluding MCI cases), including the same covariates. For 

each bootstrap sample, a model was trained on 70% of the data (n=681) and AUC calculated 

using the remaining 30% test set (n=292). Optimal construction parameters were selected based 

on median bootstrapped AUC. The bootstrap selection procedure was then repeated without the 

inclusion of covariates in the bootstrapped models, as a point of comparison. 

Testing the predictive performance of PRSmic for AD diagnosis in UK Biobank and cognitive 

performance in CLSA. PRSmic (IT and MF) and PRSAD were calculated using calibrated 

hyperparameters in both UK Biobank and CLSA and tested for predictive performance in models 
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of AD diagnosis and cognitive function, respectively. To determine the improvement in models 

with the addition of PRSmic, we compared 1) baseline clinical covariate-only models, 2) baseline 

models plus an additional PRSAD term, and 3) fully augmented models with both PRSAD and 

PRSmic terms added. We calculated changes in AUC (for binary AD diagnosis) and changes in r2 

(for continuous cognitive scores) resulting from the inclusion of the PRSmic term. Likelihood 

ratio tests (LRT) were performed to assess if fully augmented models represent an improvement 

over baseline models. Biological sex, age, and level of education (using the International 

Standard Classification for Education (ISCED) definitions in the UK Biobank)39 were also 

included as covariates in the predictive models. 

Exploration of PRSmic associations with in vivo AD biomarkers in ADNI. Following the 

calibration and validation of PRSmic in UK Biobank and CLSA, we returned to the ADNI 

calibration sample to map exploratory associations between PRSmic and several pathological and 

cognitive variables in vivo. Multiple testing correction was performed using the Bonferroni 

method across the number of tested phenotypes and both PRSmic derivations (i.e. IT and MF; 

critical p=0.05/11/2=0.0023), but no correction was performed within PRS across construction 

parameters. Given the exploratory aim of this part of the analyses, we deemed this more liberal 

correction approach suitable. Models included biological sex, age, and education level as 

covariates. 

Results 

Calibration of PRSmic against plasma TNF-α in ADNI 
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Results from the bootstrap model selection procedure showed variability in model performance 

according to hyperparameter combinations regardless of covariate inclusion (Figure S1) or 

exclusion (Figure S2) in the calibration process. The optimal combination of hyperparameters 

for each PRS are shown in Table 1.  In ADNI, these optimized PRSmic were significantly 

associated with levels of TNF-α (PRSmic[IT]: β=0.101, p=0.026; PRSmic[MF]: β=-0.126, 

p=5.25x10-3) and the PRSAD was strongly predictive of AD diagnosis (β=0.592, p=4.68x10-15). 

Importantly, these models are not unbiased indicators of performance, as they are overfit due to 

sample overlap. Also, we observed that the effect for the midfrontal score was inconsistent with 

the other scores, suggesting that genetically-determined greater propensity for morphological 

microglial activation in midfrontal cortex might be associated with lower levels of circulating 

TNF-α. 

Testing of PRSmic in UK Biobank and CLSA 

First, we tested the predictive performance of each optimized PRS individually on AD diagnosis 

(UK Biobank) and cognitive performance (CLSA), with and without the addition of covariates 

(results are summarized in Table 2). For modelling of AD diagnosis in UK Biobank, the addition 

of PRSAD significantly improved baseline covariates-only models (p=1.2x10-237; ΔAUC=0.07), 

as expected (Table 3). Testing the addition of PRSmic into baseline covariates-only models, 

however, did not result in any significant improvements (IT: p=0.77; MF: p=0.45). Similarly, for 

modelling of cognitive performance in CLSA, the addition of PRSAD improved baseline 

covariates-only models (Δr2=5.97x10-4, p=0.01), while PRSmic did not (IT: p=0.96; MF: p=0.82) 

(Table 3). These results suggest that, on their own, the PRSmic do not hold significant predictive 

power for AD diagnosis or cognitive performance in the general mid-late life population. 
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We then tested the ability of PRSmic to improve models of AD diagnosis and cognitive 

performance over and above models including PRSAD. Augmenting models of cognition that also 

include PRSAD terms with PRSmic did not significantly improve them in either UK Biobank or 

CLSA (Figure 1). We also tested whether hyperparameters optimized using covariate-inclusive 

or -exclusive models altered performance in any important ways. Results were largely 

unchanged when analyses were repeated with scores calibrated controlling for age, sex, and 

education levels (Figure S3). One minor observation was that PRSAD scores calibrated without 

covariates included showed less significant improvement of covariate-only models of cognitive 

performance in CLSA (Δr2=3.08x10-4, p=0.06). 

Exploration of PRS associations with in vivo AD biomarkers in ADNI 

Finally, we explored associations of both the PRSAD and the PRSmic with intermediate AD 

phenotypes in the ADNI sample, which had a wide array of available central and peripheral 

biomarker data available. First, our optimized PRSAD was associated with worse cognitive 

performance on the ADAS-Cog 13-item scale (β=0.22, p=2.08x10-17). Higher levels of tau 

(β=0.26, p=2.42x10-13) and its phosphorylated variant (β=0.28, p=3.52x10-15) measured in CSF 

were also found to be associated with PRSAD. Lower levels of amyloid measured in both CSF 

(β=-0.30, p=8.57x10-15) and with PET tracer 18F-AV-45 in the inferior temporal region (β=-0.14, 

p=8.63x10-4) were associated with PRSAD as well. Similarly, elevated levels of tau measured 

with PET tracer 18F-AV-1451 in both the inferior temporal (β=0.24, p=2.01x10-5) and midfrontal 

(β=0.18, p=1.05x10-3) regions were also associated with our score. We also observed 

associations with elevated neurofilament light chain (β=0.11, p=0.01) and decreased tumor 

necrosis factor alpha (β=-0.10, p=0.03) in plasma, as well as increased CSF neurofilament light 
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chain (β=0.16, p=2.70x10-3). However, these did not survive correction for multiple testing. The 

only AD phenotype not observed to be associated with PRSAD is levels of PET amyloid in the 

midfrontal region (p=0.17). 

No association with any AD phenotype and PRSmic survived correction for multiple 

testing. At uncorrected significance levels, the inferior temporal score, PRSmic[IT], is 

significantly associated with both CSF (β=0.09, p=0.02) and brain (inferior temporal PET: β=-

0.11, p=7.44x10-3; midfrontal PET: β=0.08, p=0.05) amyloid. Significant associations were also 

found with cognition (β=-0.06, p=0.02) and plasma markers TNF-α (β=0.11, p=0.03) and NfL 

(β=0.11, p=0.02). PRSmid[MF] on the other hand, was nominally associated with all markers 

tested except for PET imaging markers for tau (inferior temporal PET: p=0.09; midfrontal PET, 

p=0.12). However, the direction of effect is inconsistent with the associations found with PRSAD 

with the exception of plasma TNF-α (β=-0.13, p=5.12x10-3).  Results for all the phenotypes 

tested, including those that did not pass correction for multiple testing are summarized in Figure 

2 and Table S2. 

Discussion 

We developed and tested a novel PRS for morphological microglial activation as an adjunct to 

existing PRS as predictors of AD and cognitive performance in mid-late life. Such a score would 

contribute to our understanding of the genetics of neuroimmune mechanisms of pathological 

aging and potentially improve the clinical utility of genetic diagnostic and prognostic tools. We 

performed a rigorous resampling procedure using independent data and a proxy phenotype for 

microglial activation to identify optimal PRS hyperparameters, finding significant associations 

between these optimal scores and levels of TNF-α. We then investigated the utility of PRSmic by 
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testing for predictive ability in two external validation cohorts, the UK Biobank and CLSA. We 

observed no significant associations between the PRSmic and either AD diagnosis or cognitive 

performance, nor any significant improvement in PRSAD model performance with the inclusion 

of PRSmic.  

Our largely negative results, especially in the inability of the PRSmic to improve upon 

predictions from existing PRS for AD, point to four possible conclusions: 1) the genetic 

propensity for microglial activation is not related to the pathogenesis of AD, 2) the clumping and 

thresholding PRS methodology was unable to capture the genetic propensity for microglial 

activation, 3) our PRSmic was not portable due to population and phenotypic measurement 

differences between the source GWAS, calibration, and optimization samples, and 4) the source 

GWAS for microglial activation was underpowered and did not produce durable estimates of 

SNP-based effects suitable for polygenic scoring. Here, we will address each of these possible 

conclusions. 

First, microglial activation is a well-studied phenomenon that has been extensively 

characterized at multiple stages of AD pathogenesis and progression. The post-mortem 

morphological phenotype of PAM has also been well characterized at the clinical, cognitive, 

neuropathological, and molecular levels.10 What is less clear is whether or not genetic signals for 

this phenotype represent stable traits and mechanisms which hold predictive value for AD at the 

population level. In support of our endeavor, neuroinflammatory traits have been represented by 

genetic instruments previously with varying results.40,41 

Second, the clumping and threshold method is only one of dozens of PRS methods 

available today. We chose this method due to 1) its optimal performance in the prediction of AD 
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vs. other available methods,37 and 2) its simplicity and ease of interpretation. Also, unlike some 

other methods, clumping and thresholding requires the selection of hyperparameters that govern 

the handling of LD and the set of included SNPs, which can have dramatic impacts on PRS 

performance37. Calibration of these hyperparameters can be a major challenge, especially in the 

absence of independent datasets. Some very recent advances have been made in this space.42 In 

our case, the lack of direct measures of microglial activation outside of the source GWAS cohort 

created the need for a proxy phenotype in our calibration procedure. TNF-α was selected as it is 

a known peripheral marker of microglial activation,43,44 specifically as measured by morphology 

and measured physiological activity, which is most similar to the PAM phenotype. TNF-α is also 

known to be elevated in both the brains and plasma of AD patients, with post-mortem studies 

indicating proximity to amyloid plaques,45 further supported by studies of human microglial cell 

cultures showing induction of TNF-α release by amyloid plaques.46 Genome wide association 

studies have also consistently linked TNF-α receptor with AD. Associations with peripheral 

blood-based TNF-α, however, have yet to be fully elucidated in humans despite strong evidence 

from pre-clinical models.47–49 As more peripheral or in vivo imaging markers of PAM are 

identified, more accurate polygenic scores for microglial activation can be developed, 

eliminating the need of a proxy phenotype, such as TNF-α. 

Third, portability is a known challenge with PRS development and is not entirely 

unexpected given the sensitivity of the scores to their method of construction.50 Our results serve 

to exemplify the challenges of indexing biological signals that are phenotypically relevant but 

difficult to ascertain, as is the case of neuroinflammation in Alzheimer’s disease. We have shown 

that genetic signals specific to microglial activation are associated with other measures of 

neuroinflammation. However, the effects observed in ADNI may be partially attributed to the 
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similarity to ROS/MAP, the cohort where the proportion of activated microglia was originally 

characterized in. Our external validation cohorts, on the other hand, are community-based 

representative samples with no particular enrichment for late-life or Alzheimer’s disease, making 

establishing the link between neuroinflammation and AD more difficult.  

Finally, the source GWAS that produced the summary statistics that our novel scores 

were based on only included up to 225 participants, which may not provide adequate statistical 

power.51 Nonetheless, our source GWASs identified two genome-wide significant hits, one of 

which was validated in an independent sample of TSPO PET imaging. And while microglial 

activation and proliferation are known to be sensitive to environmental exposures, the genetic 

basis for the PAM phenotype has been shown to genetically overlap with heritable risk for 

multiple traits and disorders, including Alzheimer’s disease and Crohn's disease, further 

motivating investigations of its genetic causes. Another challenge with the source GWAS is that, 

due to the small sample size, formal estimates of SNP-based heritability were not reliable, 

meaning we cannot verify if the trait has a heritability above h2=0.05, which is an oft-used 

heuristic for determining the suitability of a trait for PRS modelling.52 

Following best practices for rigorous polygenic risk score development, we did not find 

evidence to support the hypothesis that a PRS for morphological microglial activation can 

improve models of cognitive performance and AD in late life beyond a benchmark AD-specific 

PRS. While our study suggests that there may be some links between the genetic signals for 

morphological microglial activation and circulating TNF-a, we believe that larger, better-

powered GWAS are required on such immune phenotypes prior to further testing. 
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Tables 

Table 1: Optimal PRS construction parameters selected from the bootstrap selection procedure. 

 Calibration 
Model 

Squared 
correlation 
threshold 

Window 
size 

SNP 
inclusion 
threshold 

# of SNPs in 
PRS 

Maximal 
bootstrapped 
metric* 

Bootstrap 
95% CI 

PRSmic[IT] 

With 
covariates 

0.1 5,000 0.1 47,158 0.048 [0.02,0.09] 

Without 
covariates 

0.1 5,000 0.1 47,158 0.010 [3.05x10-4, 
0.036] 

PRSmic[MF] 

With 
covariates 

0.2 125 2.75x10-5 27 0.054 [0.02,0.10] 

Without 
covariates 

0.2 125 3.02x10-5 29 0.015 [8.26x10-4, 
0.045] 

PRSAD 

With 
covariates 

0.1 250 3.65x10-6 251 0.675 [0.62,0.73] 

Without 
covariates 

0.2 125 1.49x10-6 307 0.621 [0.56,0.68] 

*Area under the ROC curve (AUC) was used for Alzheimer’s disease diagnosis (with a 70/30 
training/testing split) and variance explained (r2) for TNF-α (trained on the entire sample). The upper row 
for each PRS are statistics derived from regression models including covariates (age, sex, and years of 
education), and the lower for scores excluding covariates.  
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Table 2: Estimated effect and significance of PRS terms in linear models of Alzheimer’s disease 

diagnosis and cognitive functioning. 

 Calibration 
Model 

PRSmic[IT] PRSmic[MF] PRSAD 

UK Biobank 
(AD diagnosis, 
AUC) 

With 
covariates 

-5.33x10-3 (0.78) 0.011 (0.57) 0.603 (5.66x10-249) 

Without 
covariates 

-8.69x10-3
 (0.65) 8.73x10-3 (0.65) 0.572 (2.63x10-207) 

CLSA 
(cognitive 
score, r2) 

With 
covariates 

2.48x10-3 (0.79) 1.68x10-3 (0.86) -0.021 (0.03) 

Without 
covariates 

5.55x10-3 (0.55) 1.64x10-3 (0.86) -0.014 (0.15) 

The upper rows for each cohort are statistics derived from scores calibrated in ADNI with covariates (age, 
sex, and years of education), and the lower for scores calibrated without covariates. p-values are 
calculated from regression models, with significant terms in bold. 

 
Table 3: Change in model performance with inclusion of different polygenic risk scores. 

 Calibration 
Model 

ΔAUC/Δr2 compared to “covariates-only” models (p-
value) 

ΔAUC/Δr2 compared to “covariates + 
PRSAD” models (p-value) 

 PRSmic[IT] PRSmic[MF] PRSAD PRSmic[IT] PRSmic[MF] 

UK 
Biobank 
(AD 
diagnosis, 
ΔAUC) 

With 
covariates -9.57x10-5 (0.77) 1.02x10-4 (0.45) 6.66x10-2 

(1.24x10-237) 
-4.83x10-5 (0.58) 2.04x10-4 (0.39) 

Without 
covariates -1.53x10-4

 (0.60) -8.14x10-5 (0.52) 
5.59x10-2 
(9.55x10-202) 

1.26x10-4 (0.40) 4.71x10-5 (0.46) 

CLSA 
(cognitive 
score, 
Δr2) 

With 
covariates 2.30x10-7 (0.96) 4.37x10-6 (0.82) 5.97x10-4 (0.01) 5.14x10-7 (0.94) 5.33x10-6 (0.80) 

Without 
covariates 1.53x10-5 (0.67) 4.84x10-6 (0.81) 3.08x10-4 (0.06) 1.60x10-5 (0.67) 5.92x10-6 (0.79) 

The upper rows for each cohort are statistics derived from scores calibrated in ADNI with covariates (age, 
sex, and years of education), and the lower for scores calibrated without covariates. p-values are 
calculated from likelihood-ratio tests, with significant results (in bold) indicating a better statistical fit 
with the inclusion of the extra term tested. 
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Titles and legends to figures 

Figure 1: ROC curves for different models of Alzheimer’s disease diagnosis in the UK Biobank 

with A) the addition of PRSmic and PRSAD to covariates-only models, and B) the addition of 

PRSmic to models including both covariates and PRSAD. Increase to AUC is presented in orange 

in C) with p-values from likelihood ratio tests indicated above each bar. Similarly, increase in 

variance explained for models of cognitive performance in CLSA are presented in D). All scores 

used in these models were calibrated with age, sex, and education levels as covariates. 

 

Figure 2: Associations of microglial-activation specific PRSs (IT, blue; MF, orange) and 

Alzheimer’s disease (AD) specific PRS (green) with AD-related phenotypes. −Log10(p-values), 

weighted by direction of effect, indicate the strength of evidence for association of each AD-

related phenotype with the scores. The red dotted lines indicate corrected statistical significance 

thresholds, and the black dotted lines indicate uncorrected thresholds of p=0.05. All p-values are 

two-sided and calculated from linear regression models. Model covariates included age, sex, and 

education levels. 
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