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Simple Summary: The circulating cancer biomarkers, known as ‘liquid biopsy’ (LB), represent a
means to profile tumors non-invasively and collect information that can define therapeutic regimens
for precision and personalized medicine. Various approaches have been developed for isolating and
studying the individual circulating cancer biomarkers. This review focuses on LB biomarkers of
circulating tumor DNA (ctDNA) and small Extracellular vesicles (sEVs). We present the most recent
approaches for their isolation and characterization and elaborate on the emerging mathematical
and computational models for studying the roles of these cell-released cancer biomarkers in cancer
progression. We envision that the study of these new models and technologies could significantly
contribute to the field of personalized medicine.

Abstract: During cancer progression, tumors shed different biomarkers into the bloodstream, includ-
ing circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating cell-free DNA (cfDNA),
and circulating tumor DNA (ctDNA). The analysis of these biomarkers in the blood, known as ‘liquid
biopsy’ (LB), is a promising approach for early cancer detection and treatment monitoring, and
more recently, as a means for cancer therapy. Previous reviews have discussed the role of CTCs and
ctDNA in cancer progression; however, ctDNA and EVs are rapidly evolving with technological
advancements and computational analysis and are the subject of enormous recent studies in cancer
biomarkers. In this review, first, we introduce these cell-released cancer biomarkers and briefly
discuss their clinical significance in cancer diagnosis and treatment monitoring. Second, we present
conventional and novel approaches for the isolation, profiling, and characterization of these markers.
We then investigate the mathematical and in silico models that are developed to investigate the
function of ctDNA and EVs in cancer progression. We convey our views on what is needed to
pave the way to translate the emerging technologies and models into the clinic and make the case
that optimized next-generation techniques and models are needed to precisely evaluate the clinical
relevance of these LB markers.

Keywords: circulating tumor DAN; extracellular vesicles; clinical applications; technologies; compu-
tational methods

1. Clinical Significance of Cell-Released Cancer Biomarkers

The tumor microenvironment (TME) comprises a heterogeneous mixture of cellular
and non-cellular components, including cancer cells, fibroblasts, immune cells, blood
vessels, and intercellular signaling factors (Figure 1). It contributes to the maintenance of
cancer stemness, and mounting evidence indicates that it plays a critical role in treatment
resistance, uncontrolled tumor growth, promoting angiogenesis, invasion, and metastasis.
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Figure 1. A tumor microenvironment consists of a heterogeneous mixture of cellular and non-cellu-
lar components alongside cancerous cells. 

Liquid biopsy (LB) biomarkers, including circulating tumor cells (CTCs), tumor-ed-
ucated platelets, extracellular vesicles (EVs), circulating cell-free DNA (cfDNA), and cir-
culating tumor DNA (ctDNA), are released into the blood stream during cancer progres-
sion in TME. In recent years, LB has emerged as a viable alternative to tissue genotyping 
for the assessment of tumor-specific molecular alterations in cancer patients. Among LB 
biomarkers, ctDNA and tumor-derived EVs are the ones that are released from cancerous 
cells. ctDNA is mainly released by apoptotic or necrotic tumor cells [1,2] while cfDNA 
originates both from tumor and non-tumor cells of the TME, as well as cells from other 
parts of the body [3]. Elevated cfDNA fragment concentrations have been observed in the 
blood of cancer patients and in those with metastatic disease compared to non-metastatic 
patients, suggesting that this metric may be useful for diagnosis [4]. cfDNA levels were 
used as a diagnostic tool for colorectal [5,6], endometrial [7,8], ovarian [9], breast [10], 
melanoma [11], oropharyngeal [12], pancreatic [13], prostate [14,15], and non-small-cell 
lung cancers (NSCLC) [16–18]. However, to precisely predict tumor behavior, assess treat-
ment efficacy, and determine mutational load, it is necessary to determine the proportion 
of aberrant vs. wild-type DNA and thoroughly characterize the tumor-derived DNA [19]. 
This was not possible prior to the invention of digital polymerase chain reaction (dPCR) 
[20] and real-time PCR [21], which assisted researchers in accurately quantifying mutant 
genes for applications in diagnosis [19] and prognosis [22]. Figure 2A underlines the most 
important discovery related to cfDNA and ctDNA [3,23–28]. 

Several studies have confirmed that ctDNA carries mutation and methylation pro-
files similar to those of their tumors of origin [29,30]. The FDA has approved a number of 
mutations for cancer screening or cancer assaying, including mutations in the BRCA1 and 
BRCA2 genes for ovarian cancer, ALK rearrangements for NSCLC, and alterations in the 
PIK3CA gene for breast cancer patients [28]. Tissue-specific methylation patterns recov-
ered from ctDNA could also reveal the tumor location and help in cancer screening [31–
33]. For example, SEPT9 is a methylation pattern that has recently received FDA approval 
as the first tumor biomarker to screen metastatic colorectal cancer (mCRC) and may be 
assessed as a staging biomarker [31,34]. The detection of mutations and epigenetic 

Figure 1. A tumor microenvironment consists of a heterogeneous mixture of cellular and non-cellular
components alongside cancerous cells.

Liquid biopsy (LB) biomarkers, including circulating tumor cells (CTCs), tumor-
educated platelets, extracellular vesicles (EVs), circulating cell-free DNA (cfDNA), and
circulating tumor DNA (ctDNA), are released into the blood stream during cancer progres-
sion in TME. In recent years, LB has emerged as a viable alternative to tissue genotyping
for the assessment of tumor-specific molecular alterations in cancer patients. Among LB
biomarkers, ctDNA and tumor-derived EVs are the ones that are released from cancerous
cells. ctDNA is mainly released by apoptotic or necrotic tumor cells [1,2] while cfDNA
originates both from tumor and non-tumor cells of the TME, as well as cells from other
parts of the body [3]. Elevated cfDNA fragment concentrations have been observed in the
blood of cancer patients and in those with metastatic disease compared to non-metastatic
patients, suggesting that this metric may be useful for diagnosis [4]. cfDNA levels were
used as a diagnostic tool for colorectal [5,6], endometrial [7,8], ovarian [9], breast [10],
melanoma [11], oropharyngeal [12], pancreatic [13], prostate [14,15], and non-small-cell
lung cancers (NSCLC) [16–18]. However, to precisely predict tumor behavior, assess
treatment efficacy, and determine mutational load, it is necessary to determine the pro-
portion of aberrant vs. wild-type DNA and thoroughly characterize the tumor-derived
DNA [19]. This was not possible prior to the invention of digital polymerase chain reaction
(dPCR) [20] and real-time PCR [21], which assisted researchers in accurately quantifying
mutant genes for applications in diagnosis [19] and prognosis [22]. Figure 2A underlines
the most important discovery related to cfDNA and ctDNA [3,23–28].

Several studies have confirmed that ctDNA carries mutation and methylation profiles
similar to those of their tumors of origin [29,30]. The FDA has approved a number of
mutations for cancer screening or cancer assaying, including mutations in the BRCA1 and
BRCA2 genes for ovarian cancer, ALK rearrangements for NSCLC, and alterations in the
PIK3CA gene for breast cancer patients [28]. Tissue-specific methylation patterns recovered
from ctDNA could also reveal the tumor location and help in cancer screening [31–33].
For example, SEPT9 is a methylation pattern that has recently received FDA approval
as the first tumor biomarker to screen metastatic colorectal cancer (mCRC) and may be
assessed as a staging biomarker [31,34]. The detection of mutations and epigenetic changes
in ctDNA can thus guide physicians toward efficient therapies that can defeat the drug
resistance of tumors [35]. Moreover, the detection of ctDNA mutations could alert clin-
icians to the presence of minimal disease residues or micro-metastases in patients with
seemingly successful initial treatment, which could result in subsequent cancer relapse
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at distant sites [36]. Although the applications of cfDNA and ctDNA as LB biomarkers
have accelerated over the past decade, especially for screening patients with NSCLC and
CRC, larger clinical studies are still needed to fully discover their roles. Advancements in
technologies to capture and characterize plasma DNA with high sensitivity and selectivity
will aid this endeavor.

EVs are micro/nanoscale structures with a size ranging from 30 to 1000 nm that
are released from the cell, delimited by a lipid bilayer, and cannot replicate, i.e., do not
contain a functional nucleus [37,38]. Exosomes with sizes of less than 200 nm, which were
recently re-named small EVs or sEVs by new international society for extracellular vesicles
guideline [38], have been used in various cancer diagnostic applications, from molecular
monitoring and disease staging to dynamic cancer therapy and progression monitoring.
A critical benefit of sEVs compared to ctDNA is their various cargoes; where ctDNA is
restricted to DNA analyses, sEVs carry an array of cargoes, including RNA, DNA, proteins,
and lipids [39]. Identifying specific molecular targets within sEVs will allow clinicians
to monitor patients non-invasively while also providing highly personalized treatment.
Figure 2B highlights the significant discoveries related to the sEVs, from their biology
to their clinical importance [40–54]. RNA is the most commonly profiled sEV marker
for prognostic and treatment monitoring applications with specific miRNA signatures
being predictive of worse survival in lung [55], liver [56,57], colorectal [58], glioma [59],
and prostate [60] cancers. miRNA abundance and expression have also been found to be
diagnostic compared to healthy controls; lung cancer patients had dramatically higher
miRNA expression [61] and unique signatures [62] compared to healthy populations.
Prognostic signatures of mRNA or other long RNA have been shown to be predictive of
worse survival in several cancers, including NSCLC [63] and hepatocellular carcinoma [64].
Similarly, sEV proteins have been suggested for diagnostic and prognostic assays in many
cancers, including lung [65,66], breast [67], and pancreatic [68] cancers.

In the TME, sEVs are a means of communication between cancerous cells and other
cells and are uniquely biocompatible. Therefore, they can hypothetically target tumor
cells and transfer drugs or other targets to kill them or prohibit their proliferation [69].
Many groups have developed novel sEV engineering solutions to deliver standard anti-
tumor drugs, such as chemotherapies or immunotherapies [70]. For example, sEVs
extracted from NSCLC cells were embedded with doxorubicin (DOX), a well-known
chemotherapy drug, and conjugated with gold nanoparticles. These EV-based conjugates
were used to deliver drugs to lung cancer cell lines and non-tumorigenic lung fibroblasts.
Compared with free DOX delivery, the nanoscale EV–drug complex had higher toxicity
against cancer cells, while the effects of DOX on healthy cells were reduced [71]. EVs have
also been recently used to deliver novel therapeutics, including siRNA and CRISPR/Cas-9,
to specifically induce cell death in vivo and in vitro, respectively [72,73].

To improve cancer detection and treatment, the molecular profiles gathered from
ctDNA can be complemented with those obtained from tumor-derived sEVs that contain
DNA and RNA. Thus, it is important to isolate and characterize these cell-released LB
biomarkers with high sensitivity. In this review, we discuss recent advances in device
engineering and computational analysis that enable ctDNA and sEV characterization.
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traction (SPE) that utilizes silica beads/membrane as the binding site to DNA molecules 
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Figure 2. Timeline of significant discoveries related to (A) ctDNA [2,3,19–28] and (B) small EVs’
(exosomes’) [40–55] biology, to their clinical significance, and to technologies that have advanced
their clinical utility.

2. Recent Technology Advances for Studying Cell-Released Biomarkers

The massive use of LBs as biomarkers for personalized cancer diagnosis and screening
has led to the rapid development of novel technologies for their isolation and characteriza-
tion. Technologies related to cfDNA/ctDNA and sEV capture have been reviewed [74–79];
for this reason, below, we only highlight the most advanced approaches (in the past two
years) while introducing the conventional and gold standard techniques. Specifically, we
categorize these advances into two groups: extraction and isolation technologies versus
advancements in characterization.

2.1. Strategies for cfDNA/ctDNA Isolation and Characterization
2.1.1. Conventional Methods for cfDNA/ctDNA Extraction

cfDNA is typically extracted using commercially available kits, which are either based
on organic compounds that facilitate ion exchange binding [75] or solid-phase extraction
(SPE) that utilizes silica beads/membrane as the binding site to DNA molecules in the
presence of specific conditions such as high chaotropic salts concentrations and low pH
solutions [80]. The cfDNA level is an important indicator of cancer progression and can
be measured using real-time PCR [81]. While nucleic acid extraction from plasma using
the conventional methods appears to be a straightforward procedure, there are challenges
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regarding the extraction of cfDNA without loss of its important subset: ctDNA. In fact,
ctDNA molecules are shorter than non-tumor-derived cfDNA (150 to 200 base pairs (bps)
compared to up to 10,000 bps for cfDNA), which along with their lower quantities, makes
their isolation more difficult [82,83].

2.1.2. Novel Strategies for cfDNA/ctDNA Extraction

In order to resolve concerns regarding loss of ctDNA, microfluidic-based techniques
have been implemented for cfDNA isolation, in which the incorporation of microstruc-
tures, such as microbeads [84], micropillars [82], and microwells [85,86], enhances the
cfDNA/ctDNA extraction performance and consequently shortens the processing time
(Figure 3A,B). The integration of operations in the microfluidic chips has resulted in higher
extraction performance. This was especially of great importance in the case of short
strands of cfDNA as the conventional methods were able to separate only 40% of DNA
molecules [87] while the microchips were able to recover up to 70% [82]. These novel
technologies were investigated both for their higher capture rate and their feasibility and
accessibility in point-of-care applications.

One major drawback of conventional SPE methods is their requirement for bulky
associated instruments, such as vacuum pumps. To tackle this challenge, a microfluidic
device that automates and facilitates delivery of the sample, which uses immiscible liquids
such as mineral oil to improve liquid movements through silica membrane pores and
enhances the DNA isolation process, is reported. The results showed that the recovery rate
of DNA using this technique increased by about 5% (Figure 3C) [88].

Magnetic force in microfluidic chips could be adjusted to manipulate microparticles
and maximize their provided surface area. In this endeavor, a microfluidic chamber was
recently designed that produces a dispersed arrangement of microparticles with the aid
of magnetic force and enhances the capture rate. This method was used as an extraction
step in line with droplet dPCR (ddPCR) for the downstream analysis and showed high
preservation of rare genetic data in the subsequent studies. This microfluidic device was
able to capture up to 80% of cfDNA, which is better than the conventional isolation kits
(Figure 3D) [89].

Other physical principles are under investigation to extract cfDNA from blood, and di-
electrophoresis is the most pioneering one. In a study, a simple microfluidic chip consisting
of only two channels was built to separate cfDNA by electrophoresis for optical quan-
tification [90]. Dielectrophoretic forces were also used to extract cfDNA for downstream
analysis [91]. Advancements in dielectrophoretic-based devices led to the manipulation
and capture of DNA in nanoscale compartments in a microfluidic chip [92].

2.1.3. Conventional Methods for ctDNA Characterization

Unfortunately, ctDNA has a similar structure to other cfDNA subtypes, making its
isolation and detection difficult. Thus, instead of separating ctDNA from other types of
nucleic acids, the whole genetic data in blood, i.e., cfDNA, is interrogated to find and
quantify sequences that could be attributed to a tumor origin such as mutations. The ratio
of the level of strands with a tumor signature to the other strands, the absolute quantity of
the tumor-derived strands, and the type of mutations that these strands convey are consid-
ered as the criteria for clinicians in deciding the best approaches to treat patients. For this
purpose, known genetic data of a specific cancer are tracked in plasma. The rare genetic
events cannot be detected by conventional real-time PCR techniques and require more
precise devices with single-molecule resolutions. In the last two decades, two methods
(modified PCR methods—particularly digital PCR—and whole-genome sequencing) have
become successful in detection of rare events in blood and boosted the significance of LB
considerably [93–95]. The amplification refractory mutation system [96,97], bidirectional
pyrophosphorolysis-activated polymerization [98], BEAMing [99], dPCR [36], and DNA
sequencing [100] (all amplification-based methods) are routinely used for this purpose;
however, they are tedious, expensive, and require specialized instrumentation. Another lim-
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itation to conventional targeted ctDNA profiling techniques is their cost (estimated at $1750
per patient, including the cost of sequencing a single tumor region, synthesis of a patient-
specific panel, and profiling of plasma samples) [101]. Novel strategies can purposefully
identify a point mutation instead of sequencing the whole genome, saving money and time.
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with permission from [86]. Copyright 2020 American Chemical Society. (C) Conventional solid-
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Figure 3. Novel Technologies to extract cfDNA/ctDNA. (A) The high surface area of micropillars
in this plastic chip improves extraction yield of cfDNA. The Inner side surface of this low-cost chip
is activated by UV/O3 and has been able to capture >90% of medium-size cfDNA (100–700 bps)
and >50% of short cfDNA (50 bps) micropillars. Reproduced with permission from [82]. (B) In a
novel microfluidic chip that contains helix-shaped microchambers to avoid forming bubbles, bis-
(sulfosuccinimidyl)suberate reagent is used in lieu of chaotropic and pH modifier reagents to capture
cfDNA while this device is capable of enriching pathogens in blood at the same time. Reproduced with
permission from [86]. Copyright 2020 American Chemical Society. (C) Conventional solid-phase
extraction requires vacuum or centrifugation instruments, whereas in this work, an immiscible fluid
was applied by an automated microfluidic chip (PIBEX) to push plasma through the columns of
extraction [88]. Reproduced from an open source. (D) Magnetic Beads that can bind to DNA strands
are immobilized by an external magnet while serum that contains cfDNA is flowing: as a result of the
good dispersion of beads in the chamber and the effective collision of DNA molecules with the beads,
extraction is enhanced. Reproduced with permission from [89]. Copyright 2019 Elsevier.

2.1.4. Novel Strategies for ctDNA Detection

As ctDNA has a short half-life, the downstream analysis should be performed immedi-
ately after extraction [33], but there are many steps in the conventional methods requiring
the handling of samples that raise the risk of contamination [102]. Hence, automation of this
procedure inside the closed channels of microfluidic chips could minimize the risk of rare
sample loss while reducing labor. Microfluidic devices are introduced for both extraction
and analysis and demonstrate the benefit of integration in reducing operation time and
enhancing the reliability of results. Such microdevices can detect rare mutations, such as
the T790M mutation in EGFR, with a mutation-to-wild-type ratio of ~1% (Figure 4A) [103].
However, they cannot yet outperform the ddPCR systems, which can detect frequencies
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as low as 0.1% [104], and improvements are still needed in terms of sensitivity to detect
rare mutations. It should be noted that such devices follow a procedure for the detection of
mutations that is similar to that of conventional devices but occurs inside a miniaturized
device. Miniaturization has the general benefits of lower reagent usage, increased mobility,
and higher processing speed; however, for the improvement of sensitivity, other radical
methods should be sought.

An approach that has been significantly successful in the reducing of processing time
is the analysis of specific target mutations instead of whole sequencing of the sample, which
may take up to several days. Particularly, Raman spectroscopy [105], surface plasmon reso-
nance (SPR) [106], and electrochemical sensors have been proposed as the next-generation
techniques and focus on the presence of the genetic data of interest taking only a few
minutes to conclude. Direct assessment of DNA molecules for mutations instead of labeling
the target is another distinctive advantage that is introduced alongside the use of Raman
spectroscopy and is successfully applied to detect BRAF mutations in both genome and
plasma DNA samples. In this work, the incorporation of plasmonic nanostructures and
PCR amplification boosted the signal. The direct assessment approach showed the promise
of high selectivity as the technique was capable of discrimination of a single-base variation
in DNA molecules. However, the sensitivity of the device for detection of mutation (limit
of detection = 100 copies of the DNA) was comparable to PCR-based methods and did
not show a significant increase (Figure 4B) [107]. Therefore, these novel technologies have
not been reported to show an increased sensitivity compared to the conventional devices
despite the fact that they have reduced processing time and manual labor.

More interestingly, nanomaterials have been proposed for single-step mutation de-
tection from plasma with a high sensitivity that obviates the need to extract DNA from
samples and amplify the target allele. In this method, iron and gold nanoparticles con-
nected to single-stranded nucleic acid probes were employed to isolate specific target
mutations. Iron nanoparticles accomplished this through their magnetic properties, while
gold nanoparticles detected ctDNA levels through inductively coupled plasma mass spec-
trometry. This method was also able to detect mutation-to-wild-type ratios that were as
low as 0.12% and was found to be comparable to the ddPCR systems; however, the fact that
this method does not require any bulky instruments makes it more facile (Figure 4C) [108].

Electrochemical approaches were among the very first methods applied for the de-
tection of mutational hot spots [25,109–111] and methylation marks [112–114], attracting
attention because of their high sensitivity, multiplexing ability, fast response, low cost,
and simple setup [115]. These devices could be combined with isothermal methods for
DNA amplification while keeping the system simple [116]. An ISFET (ion-sensitive field
effect transistor) sensor that is mainly used for pH measurement as a chemical sensor was
utilized to detect PIK3CA mutations by monitoring hydrogen ion generation during the
loop-mediated isothermal amplification (LAMP) of DNA samples of breast cancer cell lines
(Figure 4D) [117]. In electrochemical methods, electrodes are generally functionalized to
capture and electrochemically report on ctDNA of interest. A challenge in this endeavor
stems from the large panel of alterations that could occur in some genes such as EGFR,
which can contain more than 40 mutations. To overcome this challenge, combinatorial
probes were designed and successfully incorporated in electrodeposited gold nanoelec-
trodes to detect multiple mutations in EGFR using a single device [118,119]. The structures
and materials of electrodes could have a strong effect and are examined in different shapes.
Nanomaterials such as nanostructured gold microelectrodes [25,110,120], graphene-loaded
iron oxide nanoparticles [119], and gold nanorods [106] have higher surface areas and have
been used as modified electrodes to improve detection sensitivity. The results indicated that
the limit of detection of this type of assay was as low as 0.01% for mutation-to-wild-type
ratios, outperforming the competing ddPCR system.
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from plasma first and then characterizes the extracted ctDNA by means of an integrated digital
droplet PCR module. Reproduced with permission from [103]. Copyright 2020 American Chemical
Society. (B) Shifts in surface-enhanced Raman spectroscopy (SERS) signals from DNA molecules
that are entangled with plasmonic nanostructures were shown to be a sensitive and specific tool
to reflect mutations in DNA molecules. Reproduced with permission from [107]. Copyright 2020
American Chemical Society. (C) Coupled Fe and Au nano-particles could effectively isolate ctDNA
and detect the target mutation by means of single-stranded RNA probes with high sensitivity in a
single step. Reproduced with permission from [108]. (D) The ISFET device could be used for the
selective and rapid detection of mutations by monitoring the loop-based isothermal amplification of
ctDNA samples [117]. Reproduced from an open source.

Outlook. Overall, novel methods with high performance and affordable costs can
pave the way for the clinical utility of ctDNA. Integration, direct assessment of point
alterations in sequences, elimination of background wild-type alleles, and electrochemical
measurement could be combined across the field of LB. It will be necessary to continue to
simplify procedures by integrating the steps for sample preparation, ctDNA isolation, and
characterization to eliminate extraneous equipment/steps. Up and coming technologies
for cfDNA isolation are largely microfluidic devices, which provide higher efficiency
and require less external equipment, allowing for the integration of the above steps into
one device. However, these devices are incapable of processing large volumes of blood
(>1 mL) and are sensitive to operational variables such as the external magnetic force or the
perfusion flow rate. Furthermore, a preliminary plasma recovery step is usually required;
therefore, cfDNA extractor devices that enable the processing of whole blood samples will
deliver a significant advantage over conventional commercial kits. Following isolation,
creative characterization methods save precious time by focusing on the detection of
specific genetic data that are relevant to individual cancer types. Limitations include
missing rare mutations in the detection panel and a dependency on instruments that are not
conventional in clinical institutes such as plasma mass spectrometers or RAMAN detectors.
We envision that addressing these challenges and performing rigorous validation and large
cohort clinical trials will allow ctDNA to transform cancer care and study.
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2.2. Strategies for sEV Isolation and Characterization
2.2.1. Conventional Methods for sEV Isolation

The most widely used method is differential ultracentrifugation (UC) [121]; UC is
commonly paired with a density gradient to yield higher purity [122]. Because of sample
loss, sEV disruption, and the time-consuming nature of UC [123], this method has been
optimized and integrated with filtration methods [124,125]. Size exclusion chromatogra-
phy, which is also based on size differences, is used to isolate sEVs. Drawbacks to the
technique, such as long operation time [78] and column variability [126], led researchers to
optimize [126] or integrate it with UC [127] and ultrafiltration [128] methods. Other com-
mon isolation methods include commercial polymer precipitation methods that are used to
precipitate and concentrate the sEVs [129]. Polymer precipitation methods benefit from
relatively short processing times but are limited, however, by their throughput.

Immunoaffinity capture EV isolation was also implemented in commercial kits where
EVs are captured on functionalized surfaces with capturing agents [130]. The most common
isolation targets are the tetraspanins CD9, CD63, and CD81 or markers such as EpCAM.
However, these targets result in bulk EV isolation, as they are commonly expressed across
EV subtypes. With a similar approach, immunomagnetic methods use beads conjugated
with capturing-antibodies to isolate EVs based on common surface biomarkers [131–133].

These methods are known to have different compatibility with downstream assays.
For example, UC without a gradient was shown to have lower sEV yield but high purity
when performing protein analyses compared with polymer precipitation methods [134].
Conversely, polymer precipitation kits have been shown to lead to high contamination but
also high yield of small RNA compared to UC [122,134].

2.2.2. New Strategies for EV Isolation

The drawbacks of the conventional strategies include the equipment cost and low
efficiency of UC, the risk of contamination and low purity of ultrafiltration and polymer-
dependent concentrated methods, and the high labor costs. Additionally, conventional
technologies isolate bulk sEVs, while new advances should benefit from the isolation of
specific subpopulations of sEVs, such as TDEVs for different downstream applications.
All in all, these challenges have resulted in a demand for new strategies. Microfluidics is a
great tool to overcome the mentioned challenges because of its ease of processing, simplicity,
and high efficiency. Immunoaffinity-based approaches are the most frequent methods used
in microfluidic devices [135]. The substrate for isolation can be either magnetic beads or
internal surfaces functionalized with antibodies or aptamers targeting EV markers; sEVs
commonly express several proteins, including CD9, CD63, and CD81. Devices target-
ing CD9 [136], EPCAM [136–139], CD63 [135,138–141], CD81 [142], phosphatidylserine
(PS) [143], and other markers [144] have been developed to isolate EVs. Hisey et al. de-
veloped a device using anti-EpCAM and anti-CD9 coated onto herringbone structures to
isolate and release EVs from ovarian cancer [136] (Figure 5A). Their results show a nearly
five-fold higher yield compared to UC. In a recent work, Kang et al. employed Annexin
V (a surface protein) in circular chambers within their newExoChip device to capture PS
positive TDEVs [143] (Figure 5B); PS was shown to be expressed on the outlet leaflet of
cancer-associated EVs [143]. The results showed that the isolation efficiency of TDEVs is
90% for annexin V capture compared to 40% for a device conjugated with anti-tetraspanins.
A second approach for targeting TDEVs aims to identify an antibody cocktail for EVs from
a specific cancer type, i.e., glioblastoma. The EVHB-Chip technology used this method to
achieve a low limit of detection of only 100 sEVs/mL while still allowing for sEV release, a
critical need in applications such as drug delivery [145]. Although the multiplexed isolation
of EVs can be achieved with a combination of antibodies, the process of functionalization
has some limitations. Kang et al. addressed this issue by implementing click chemistry
in their microchip to isolate sEVs [146]. Briefly, after surface modification of the device
with trans-cyclooctene, tetrazine conjugated antibody mixtures were introduced into the
microchannels. The isolation of sEVs was facilitated through the inverse electron demand
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Diels-Alder (IEDDA) interaction between tetrazine and trans-cyclooctene. In addition to
specific markers, specially designed microfluidic devices enable the sensitive detection
and release of sEVs, which is not possible using conventional immunoaffinity kits. As a
workaround to developing release strategies, label-free isolation techniques allow for holis-
tic separation while leaving EVs untouched, making them optimal for functional or drug
delivery studies. These technologies rely on size, density, or other physical properties to
isolate EVs. For example, Yeh et al. developed a microfluidic chip that consists of multiple
zones patterned with carbon nanotubes with different patterning densities to isolate sEVs
of different sizes (Figure 5C) [147]. Similarly, inertial microfluidic technologies can isolate
particles of differing sizes by using secondary Dean flow within wavy channels to focus
larger (300 nm) and smaller (100 nm) vesicles to different channel locations (Figure 5D) [148].
The efficiency and purity of conventional methods are not comparable with the output
of this device, which shows an efficiency of 81% and a purity of 92%. Problematically,
size-based methods suffer from clogging, require a pure input, and thus, can only be used to
separate pure EVs into subpopulations based on size and fail to isolate sEVs from similarly
sized particles, such as protein aggregates.

2.2.3. Conventional Methods for sEV Characterization

sEV-related purity is defined by a series of characterizations, including morphology,
size, and protein composition [149].The most frequent methods to probe sEV morphology
and overall purity are microscopy-based, including atomic force microscopy [150], trans-
mission electron microscopy [151], and field emission scanning electron microscopy [150].
To study the sEV size distribution, optical methods such as dynamic light scattering and
nanoparticle tracking analysis are performed [152]. Protein analysis is frequently achieved
through antibody-based assays such as ELISA and western blotting [152]. However, many
of these methods require sample preparation, prolonged characterization processes, and
specialized training. In addition, some lack sensitivity. Outside of determining the presence
and purity of sEVs in a sample, common downstream applications of sEV characterization
include RNA, DNA, protein, and metabolite profiling. RNA characterization is commonly
performed using reverse transcription-qPCR, microarrays, or RNA sequencing. While stan-
dard protein profiling techniques are commonly used, increased technological capacities
have led to a rise in flow cytometry-based profiling techniques [141]. Other proteomics
strategies such as sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gel electrophoresis
followed by liquid chromatography-tandem mass spectrometry (GeLC–MS/MS) [153], and
matrix-assisted laser desorption ionization time-off-light (MALDI-TOF) [154,155], have
become more prevalent.

2.2.4. New Strategies for sEV Characterization

As with ctDNA, there is great interest in the development of microfluidic-based
platforms for dual sEV detection, quantification, and characterization. Moving sEV char-
acterization from off-chip to on-chip decreases processing time and sample loss while
maintaining high sensitivity. Detection can be accomplished using several methods; re-
cently, approaches based on fluorescent, colorimetric, and electrochemical properties have
been reported. For the profiling of EVs, fluorescent labeling is invaluable and has been
widely implemented [135,142,156,157]. In addition, SPR has been utilized to quantify cap-
tured sEVs [130,158,159]. Notably, a number of microfluidic devices use electrochemical
systems for quantification and detection purposes [140,160,161]. For instance, a detachable
microfluidic device implemented with an electrochemical aptasensor captures EpCAM+

sEVs and generates a signal that translates to sEV quantity, allowing for sEV enumera-
tion on-chip (Figure 6A) [162]. sEV capture on-chip followed by off-chip characterization,
including protein quantification, western blot, and miRNA/mRNA analysis, has been
common in recent years. Kang et al. developed a single platform for dual isolation of
melanoma CTCs and sEVs in conjunction with off-chip RNA profiling. In their device, bean-
shaped micro-posts were functionalized with anti-melanoma antibodies. For the first time,
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this device isolates both melanoma CTCs and EVs from clinical samples simultaneously
and allows for multiplexed gene profiling [163]. More recently, Zhang et al. developed
nanopatterned 3D herringbone structures (nano-HB) within their microdevice, enabling
EV detection with exceptional precision (10 sEVs/µL−1) from both ovarian cancer cell
lines and clinical samples followed by on-chip ELISA protein characterization to identify
sEV phenotypes based on a protein panel (Figure 6B) [142]. This nano-HB structure in-
creases the surface area and alters boundary conditions near the surface, increasing the
likelihood of sEV capture. Following isolation, they performed on-chip ELISA for sEV
characterization. Early diagnosis of the metastases has a great impact on survivability in
patients and an efficient treatment can be selected based on whether it can be detected.
Recently, a microfluidic platform consisting of different modules was proposed to profile
epithelial–mesenchymal transition (EMT)-related sEVs from breast cancer patients, making
the prediction of metastases possible [164]. The sEV profiling from this device evaluates
the EMT index, and it results in high sensitivity and specificity in the early detection of
cancer metastases. Similarly, the previously developed nano-HB device was also employed
to assess the matrix metalloproteinases expression and proteolytic activity within sEVs in
clinical breast cancer samples to clarify these EVs’ role in metastasis and monitor cancer
progression (Figure 6C) [165]. In a recent work, Wu et al. deployed a novel nanomaterial
and microfluidic-based EV characterization technology termed “templated plasmonic for
exosomes (TPEX)” (Figure 6D) [166]. In this method, samples are introduced into the device,
followed by incubation and dual labeling of samples with fluorescent aptamers and gold
nanoparticles. After the development of in situ gold nanoshells, changes in fluorescence in-
tensity and absorbance signal are monitored. For the in situ profiling of exosomal markers,
they spiked exosomes derived from six cancer cell lines into human serum and analyzed
the expression of CD63, CD24, MUC1, and EpCAM. The output from the TPEX compared
to conventional ELISA was shown to be a better match to pure exosomes. Although there
are several exciting developments in the detection, quantification, and characterization of
EVs, there is still a larger scope to improve the technologies used for the identification of
specific TDEVs.

As the scalability and clinical application of these microdevices have been potentiated,
including the fabrication procedures of some complex processes such as the nanopatterning
of colloidal structures, the addition of micro-level features to them faces some limitations.

Outlook. With the advent of a new generation of technologies using micro and
nanofluidics and materials, the isolation of sEVs has become notably more efficient [167–170].
Furthermore, as researchers are exploring the roles of cell type-specific sEVs, the ability to
isolate TDEVs is beginning to transform our understanding of their physiological role in a
disease setting. Future work is needed to identify cancer-specific markers to isolate tumor
cell-specific sEV subpopulations reliably. Following sEV isolation, if robust approaches can
be developed to analyze the small amounts of cargos carried by these membrane-bound
vesicles, sEVs can be a viable alternative to ctDNA due to their ready availability and
stability in circulation. As is the case for ctDNA, continued development of dual on-chip
isolation and profiling will pave the way to move sEV analysis to a clinical setting by
decreasing processing time and sample loss while increasing reliability.
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Figure 5. New strategies to isolate EVs. (A) SEM image of the fabricated herringbone structure and
final devices. Inside of the devices, herringbone grooves enhance the possibility of an encounter
between anti-CD9- and EpCAM-treated surfaces with EVs to isolate them. Reproduced with permis-
sion from [136]. (B) The design of the microfluidic device with circular regions, where Annexin V is
coated to capture phosphatidylserine-positive EVs. To release the captured EVs, EDTA is used as the
Ca2+ chelation agent. Reproduced with permission from [143]. (C) The size exclusion of EVs within
the device with arrays of carbon nanotubes. Zones with different intratubular distances make the
isolation of large and small EVs possible. Reproduced with permission from [147]. Copyright 2020
American Chemical Society. (D) The illustration of the wavy microchannels used to isolate EVs.
Larger vesicles are directed toward the central output. However, the small EVs (100 nm) are not
at the centerline, and they find their way to side outputs. Reproduced with permission from [148].
Copyright 2019 American Chemical Society.
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Figure 6. New strategies for EVs’ monitoring and profiling. (A) The workflow schematic of the
detachable microfluidic device implemented with an electrochemical aptasensor (DeMEA) to quantify
EVs. The device in this work uses a herringbone microvortex-generating structure to enhance the
isolation efficiency of EVs. Upon the aptamer-mediated capturing of EVs against the EpCAM
marker, they can be quantified with the help of a nanocomposite-coated electrode. Reproduced with
permission from [162]. Copyright 2020 Elsevier. (B) Schematic of the 3D nano-HB device used to
detect EVs. With the performance of an on chip ELISA, the heat maps of ovarian cancer EV markers
are compared to the conventional ELISA. Reproduced with permission from [142]. Copyright 2019
Springer Nature. (C) The diagnostic results of the EV-CLUE chip, which profiles the MMPs expression
and activity in EVs from breast cancer clinical samples. From [165]. Reprinted with permission from
AAAS. (D) The image of the device developed by Wu et al. Results from performed TPEX analysis
are compared to conventional ELISA [166]. Reproduced from an open source.
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3. Computational Analysis of ctDNA and sEVs

Despite substantial efforts being put into experimental research and clinical studies,
there are ambiguities in understanding the fundamental nature of cancer in patients, the
interactions in the TME, and the exact relations among cellular species. The emergence
of LB technologies and biomarker analysis have tried to shed light on the underlying
mechanisms of cancer, and they have improved the diagnosis and prognosis capabilities
of the biomarkers. However, there are still some shortcomings when it comes to real-
world applications and case-by-case patient assessment. The fast-paced advances in the
fields of mathematical modelling and artificial intelligence and their implementation to
the oncology field can be powerful tools to overcome the challenges. In the field of
mathematical oncology, the complexities in signaling pathways and the number of cells and
cytokines in the TME can be scrutinized to fully understand them; especially when studying
the effects of various treatments, the accurate correlations between TME’s compartments
can be comprehended and a delicate balance of treatments can be studied.

3.1. Computational Models for Studying ctDNA

Computational methods are utilized to improve the sensitivity of the digital PCR for
LB using the elimination of background artifacts that can interfere with the detection of
rare ctDNA [171]. They are also vastly used for sequencing [172] but these techniques are
not specific to plasma DNA and are out of the scope of this review. Here, we focus on math-
ematical models that are developed to understand the relationship between tumors and
ctDNA shedding. For instance, stochastic differential equations are utilized to investigate
the correlation between the tumor size and ctDNA levels in the bloodstream. The results
suggest that it takes several years for a tumor seeded from a single cell to become as large
as an olive and detectable by the conventional imaging techniques, while ctDNA could
be detected up to 160 days earlier [173,174]. Kinetics modeling also suggests that ctDNA
levels could distinguish between aggressive and non-aggressive tumors much earlier than
regular imaging methods [175].

In a recent study, the minimum size of a tumor for both early and relapse detection is
determined by modeling the shedding probability of ctDNA into the bloodstream [173].
In this study, available data of lung cancer patients are used to estimate parameters related
to the cell lifecycle. It was first assumed that cells release their nucleic acid content to the
bloodstream only during apoptosis. In turn, a close simple equation was derived that could
predict the concentration of ctDNA in blood:

C = M.d.qd/(ε + r)

In this equation, d, r, qd, M, and ε, respectively, denote the cell death rate, the tumor
net growth rate (birth rate minus death rate of cells), the shedding probability during cells’
apoptosis, the tumor size, and the ctDNA elimination rate. Particularly, qd is a critical
parameter and was calculated to be 1.4 × 10−4 hGE (haploid genome equivalents) per
cell death for cancerous cells. The shedding rate (d.qd) for lung benign cells was also
calculated to be 9.8 × 10−6 hGE per cell per day. According to this research, the shedding
rate is directly proportional to the size of the tumor. The model eventually predicts that
the size limit for the detection of a tumor using ctDNA assays is 2.1 cm, which shows
40% improvement in comparison with the current state-of-the-art technologies that have a
detection size limit of 3.5 cm, provided that the test is carried out on a yearly basis.

There is also evidence that tumors inside a body shed DNA in different rates while
the mechanisms are not yet fully understood. In addition to the tumor size, the molecular
profile [176], degree of resistance against medications [177], and type of the cancer [178]
are reported as the other possible underlying reasons. One study attempted to derive a
model to describe relationship between influential variables. More than 6000 cases were
studied and it was substantiated that the more mortal a cancer, the more likely it is to shed
DNA molecules [178]. However, in this study, multiple tumors (primary and metastatic
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tumors) were not compared, and the results were from different individuals. In case of a
metastatic cancer, multiple tumors could shed into the blood simultaneously, so tumors
may not contribute equally to shed cancerous DNA content in the blood. A mathematical
model was recently introduced to determine the relative contribution of any tissue in the
collected cfDNA sample and was applied to study gastrointestinal cancer patients who
had multiple clusters of tumors spread in their body [179]. The modeling outcomes were
verified with the autopsy results. The results indicated that the progressing tumors were
likely shedding the majority of blood circulating DNA. This claim suggests that mutations
with higher frequency could be a possible novel mechanism of drug resistance because
these tumors have resisted the applied treatment. However, the data relevant to this model
are limited and larger numbers of experiments are yet required.

3.2. Computational Models for Studying sEVs

Several studies performed in silico analysis of sEVs’ role in the TME to understand
cellular communications through different sEV contents, monitor their contribution in
cancer evolution, and finally evaluate cancer treatment methods. A model that consists of
cancer, dendritic, and other killer cells investigates the interplay among cancer and immune
cells [180]. In this framework, simplified non-sEV- and sEV-based interactions among cells
were modeled using nonlinear ordinary differential equations. With comparison of these
two models, the appearance and dynamics of different cancer states were studied. The inclu-
sion of sEV-based interactions between dendritic cells and cancer cells in the model results
in an intermediate level of cancer stage (a moderate cancer load and a high-level immune
response). This stage plays a critical role in assessing the effect of different cancer therapy
regimes. The developed model reveals that radiation therapy, by itself, cannot lead to a low
or intermediate-level cancer state, although it decreases the tumor load. This model has
been adopted to simulate a combined radiation/DC-immunotherapy treatment. With three
sets of consecutive alternating treatments, radiation therapy followed by immunotherapy, a
high-level cancer can be transitioned into an intermediate-level cancer without excessive ra-
diation or immune-boosting doses. Ultimately, different simulation shows that standalone
DC-immunotherapy can be highly effective in inducing an intermediate- to low-level tran-
sition. sEV miRNAs have shown multiple effects in the TME and have diagnostic value
(reviewed thoroughly in [181,182]), and different mathematical models have been produced
in attempts to focus on their effects. One model elucidates the role of sEV miRNAs 21, 205,
and 155 on tumor growth via the Ras-Raf-MEK-ERK and the PI3K-AKT signaling pathways
(Figure 7A) [183]. The obtained results suggest that sEV miRNAs have a significant role
in the expansion of NSCLC cells, and furthermore, the administration of anti-miRNA 21,
205, and 155 drugs can inhibit tumor growth. A more physiologically relevant model was
then developed by including additional cell types, such as CD4+ T helper type 1 (Th1)
cells, regulatory T cells, cytotoxic CD8+ cells, and DCs, to assess the role of EV miRNAs
in pancreatic cancer (Figure 7B) [184]. They employed partial differential equations to
quantify the relationship between cancer-released sEV miRNAs 21 and 203 and tumor
growth. In addition, a model was developed that accurately correlates an increase in the
bulk number of sEVs to tumor volumes in human cancer cases [185]. In this study, after the
embedding of data from preclinical mouse cancer models into the mathematical models,
and the optimization of these data, they successfully predicted the relation between tumor
size and numbers of circulating sEVs and the fold change increase in the number of bulk
sEVs as a function of tumor volume in human cancer cases. Treatment of cancer-stricken
patients with chemotherapeutic drugs may cause resistance to the administered drugs.
The mechanism by which this might occur is of a great interest. The role of sEVs as a
chemoresistance-inducing factor was also studied and [186] hypothesized that one of the
contributing factors to drug resistance is the oncogenic sEVs in the TME, which can act as
mediators of turning sensitive cancer cells into resistant ones. Their results suggest that
presence of sEVs can increase the population of resistant cancer cells when a low dosage
of drug is applied. However, in case of high dosages, the opposite results were observed
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since the number of cancer cell-producing sEVs is reduced; although this is a desired result,
high dosages can have other side effects.

3.3. Machine Learning Approaches for Cancer Screening

With the improvement in oncology-related diagnosis, imaging, and drug discov-
ery technologies and platforms, large data sets are being generated. These data can be
categorized into different genomic, proteomic, and radiomic subcategories. Artificial in-
telligence, including machine learning (ML) and deep learning (DL) methods, have been
implemented for various applications including biomarker discovery, and digital pathology
(review [187–191]). In the case of cancer biomarkers, DL approaches have been utilized
to detect ctDNA markers in cancer cases [192,193]. Additionally, ML algorithms have the
potential of validating EV markers for cancer diagnosis considering various EV-contents
such as long RNAs in pancreatic ductal adenocarcinoma [194], or wide-ranging arrays of
novel proteins other than pan-EV proteins in multiple cancers [195]. The integration of
ML/DL algorithms with microfluidic devices can be leveraged to develop platforms with
higher diagnosis value. The exosome track-etched magnetic nanopore (ExoTENPO) chip
is formed of membranes coated with a magnetic layer, and with nanopores with a size of
600 nm (Figure 7C) [196]. Following the immunomagnetic isolation of pancreatic cancer
sEVs (from KPCY mice) with the ExoTENPO chip, they were lysed on-chip, and qPCR data
of EVs’ mRNA contents were analyzed for an array of eight genes including ARG1, CD63,
CK18, Erbb3, GAPDH, KRAS, and ODC1. Based on an ML algorithm, linear discriminant
analysis (LDA), the data can be used to subcategorize samples into healthy, pancreatic
intra-epithelial neoplasia lesion, and cancer cases. This classification was also verified for
clinical sample. To demonstrate the ability of this device and the classification of their ML
algorithm, the same research group analyzed EV-miRNA signatures to diagnose pancreatic
cancer [197]. In another study, a microdevice was designed to isolate sEVs with different
sizes, namely, exosomes, microvesicles, and apoptotic bodies [198]. The isolation could
occur with the help of a viscoelastic fluid and Newtonian sheath flow within the device
(Figure 7D). With a different approach from previous studies, the authors studied two
markers, HER2 and EpCAM, in sEVs with different sizes to check if different subtypes of
sEVs could have a different diagnostic ability. A similar ML approach was developed to
classify the data from cell lines as well as clinical ones from cohort of stage II breast cancer
patients. The results suggest microvesicles can be a better LB biomarker since they tend to
show better scores for LDA and t-distributed stochastic neighbor embedding analysis.

Outlook. All in all, these mathematical models can be used with patients’ clinical
data to help oncologists narrow their focus and adopt a thoughtful and personalized set
of therapies for their patients. The model developed by Lu et al. [180] has the potential
to personalize cancer therapy; however, the downside of this work is that the interaction
among immune cells and cancer cells has not been fully included, and it can be improved by
implementing more specific intercellular communications. Models containing sEV-miRNAs
provide us with useful clues about the TME; however, there is a need to investigate more
sEV contents, such as long non-coding RNAs and heat shock proteins, to come up with
new therapies. Artificial intelligence’s integration with oncology-related subfields offers
insightful information about patients and the TME, and makes it easier for scientists and
physicians to decide about a therapy selection, drug, and biomarker discovery method in a
more unbiassed manner.
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cellular network model tries to explore the effects of EV miRNAs 21 and 203 in pancreatic cancer.
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Copyright 2017 American Chemical Society. (D) The schematic of the microfluidic device integrated
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4. Conclusions

LB biomarkers represent a means to profile tumors non-invasively and may aid in
early diagnosis and prognosis, as well as the molecular characterization of disease and the
monitoring of treatment efficacy. Compared to the traditional tissue biopsy techniques, LB
testing is rapid and more useful when a tumor’s location makes tissue biopsy unfeasible.
With the help of new advances, the isolation and characterization of LB biomarkers can
be more cost-effective compared to tissue biopsy CTCs, and ctDNA and EVs play comple-
mentary roles in cancer progression; thus, a comprehensive understanding of the disease
complexity requires a multiplexed analysis of these circulating biomarkers. Although many
new technologies and computational models have been developed for the detection and
characterization of ctDNA and EVs, the majority have yet to demonstrate clinical utility. We
envision that rigorous validation and large cohort clinical trials will allow these biomarkers
to transform cancer care.
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