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Name a single-celled eukaryote that boasts a small genome
size, is easily cultivated in haploid form, for which a wide
variety of molecular genetic tools are available, and that
exhibits a simple, polarized secretory apparatus with a
well-defined endoplasmic reticulum and Golgi that can serve
as a model for understanding secretion. Got it? Now name
a cell with all these attributes that contains at least a dozen
distinct and morphologically well-defined intracellular
organelles, including three distinct types of secretory vesicles
and two endosymbiotic organelles. Not so sure anymore?

 

Toxoplasma gondii

 

 is an obligate intracellular protozoan par-
asite that is a leading cause of focal central nervous system
infections in patients with AIDS/HIV (Luft and Reming-
ton, 1992). This parasite is a member of the phylum Api-
complexa, which includes 

 

Plasmodium

 

 (the cause of malaria)
and 

 

�

 

5,000 additional species, most of which are poorly
characterized (Levine, 1988). Among all of the Apicom-
plexa, 

 

T. gondii

 

 is one of the easiest to cultivate and the most
amenable to genetic manipulation (Boothroyd et al., 1994;

 

Roos et al., 1994). The nuclear genome of 

 

T. gondii

 

 is 

 

�

 

80
Mb in size; numerous ESTs are available (Ajioka et al.,
1998), and a genome sequencing project is now underway.
The parasite also harbors two organellar genomes associated
with its mitochondrion and plastid (of which more below)
(Feagin, 1994). The rapidly dividing haploid “tachyzoite”
form of 

 

T. gondii

 

 can be propagated inside of virtually any
mammalian host cell, and classical genetic crosses can be
performed in cats (the parasite sexual cycle has not yet been
established in vitro) (Boothroyd et al., 1994). Available tools
for molecular genetic manipulation include a wide variety of
selectable markers, integrating and episomal vectors, and
high-efficiency transformation systems that permit gene
knockouts, insertional mutagenesis, complementation clon-

 

ing, antisense repression, inducible expression, etc. (Boothroyd

et al., 1994; Roos et al., 1994; Black and Boothroyd, 1998;
Nakaar et al., 1999; Meissner et al., 2001; Striepen et al.,
2002).

A banana-shaped organism 

 

�

 

8-

 

�

 

m-long and 2

 

 �

 

m in di-
ameter, 

 

T. gondii

 

 is substantially smaller than a typical mam-
malian cell (Fig. 1). The parasite’s architecture can be appre-
ciated in a few electron microscopic thin sections, displaying
a single nucleus, a single mitochondrion, a single plastid, a
single interconnected ER network, a single Golgi apparatus,
and an apically clustered complex of secretory organelles
(this apical complex gives the phylum Apicomplexa its
name). Virtually all of these organelles exhibit a distinctive
morphology when labeled with fluorescent protein tags (Fig.
2), permitting quantitative ultrastructural studies and time-
lapse analysis in living cells. In sum, 

 

T. gondii

 

 can be viewed
as optimally situated between the morphologically complex
mammalian cell and smaller organisms with poor ultrastruc-
tural resolution, such as 

 

Saccharomyces cerevisiae

 

 or 

 

Plasmo-
dium

 

 sp. (Hager et al., 1999). Although 

 

T. gondii

 

 parasites
are unable to replicate outside of nucleated host cells, tachy-
zoites remain viable long enough in an extracellular environ-
ment to permit standard analyses of secretory processes, and
a permeabilized cell secretion system has been established
(Chaturvedi et al., 1998). In this mini-review, we describe
insights into both unique and conserved features of the 

 

T.
gondii

 

 secretory apparatus, providing comparisons with sys-
tems more familiar to mainstream cell biologists.

 

The 

 

T. gondii

 

 secretory pathway is highly polarized

 

Considered from the standpoint of an experimental system
for secretion, one of the most appealing aspects of 

 

T. gondii

 

is the polarized organization of its secretory organelles
(Hager et al., 1999)—a consequence of the parasite’s mecha-
nism of replication, in which two daughter cells are assem-
bled within the mother (Hu et al., 2001). The nucleus is
centrally located, essentially bisecting the organism (Figs. 1
and 2). The endoplasmic reticulum, although distributed
throughout the cell, is concentrated posterior to the nucleus,
and is so reduced that the nuclear envelope itself provides a
substantial fraction of the ER volume. Thinly coated vesicles
bud from the anterior end of the nucleus/ER, destined for
the closely juxtaposed Golgi stack, which consists of a lim-
ited number of cisternae (typically three to five). Reporters
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containing the COOH-terminal ER retention signal of 

 

T.
gondii

 

 BiP (HDEL) localize most prominently to a cup-like
region anterior to the apical end of the nucleus, just below
the Golgi (Figs. 1 and 2). The use of the nuclear envelope as
an obligatory intermediate between the ER and Golgi is
comparable to other small eukaryotic cells, such as 

 

Pichia
pastoris

 

 (Rossanese et al., 1999) but contrasts with mamma-
lian systems, where transitional ER elements are dispersed
throughout the cell.

Forward transport from the ER to Golgi takes advantage
of acidic/hydrophobic/acidic motifs in the cytoplasmic tails

of secretory proteins, along with upstream tyrosines, likely
by recruiting COPII coats as observed in mammalian cells
and yeast (Hoppe and Joiner, 2000). Both COPII and
COPI coat components (including Arf1 and Sar1) are
present in 

 

T. gondii

 

 genome and EST databases (Ajioka et
al., 1998), and COPI retrieval motifs have been shown to
operate in the parasite (Liendo et al., 2001). Protein trans-
port through the Golgi is inhibited by low temperature
treatment, brefeldin A, and microtubule inhibitors (Stokker-
mans et al., 1996; Soldati et al., 1998). Clathrin-coated vesi-
cles are observed at the lateral margins of the trans-most

Figure 1. Intracellular parasitophorous vacuole containing two T. gondii parasites within a human host cell. The ER is distributed throughout 
the cell, but predominantly in the basal region. The Golgi apparatus is invariably found adjacent to the apical end of the nucleus. Rhoptries 
and micronemes are found at the apical end of the parasite (terminating in the conoid region), whereas dense granules are distributed 
throughout the cell. The inner membrane complex is comprised of a series of closed sacs of uncertain origin, underlying the plasma membrane. 
The micropore (not visible in this micrograph) is the only stable structure bridging the parasite plasma membrane and inner membrane complex. 
Clathrin-coated vesicles are often observed at the micropore (Nichols et al., 1994), suggesting that endocytosis may occur at this site. Bar, 2 �m. 
Ap, Apicoplast; Co, conoid; DG, dense granule; ER, endoplasmic reticulum; Go, Golgi; IMC, inner membrane complex; Mn, microneme; Mt, 
mitochondrion; Nu, nucleus; PM, plasma membrane; PV, parasitophorous vacuole; PVM, parasitophorous vacuole membrane; Rh, rhoptry; 
HC, host cell cytoplasm; HC-ER, host cell endoplasmic reticulum; HC-Mt; host cell mitochondrion.
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Golgi stacks (Liendo et al., 2001). The target for these vesi-
cles is likely to be one or more of the multitude of unusual
secretory organelles found in 

 

T. gondii

 

 and other Apicom-
plexans, as discussed below. In contrast, proteins destined
for the parasite surface are delivered via an alternative route
(Karsten et al., 1998). Many 

 

T. gondii

 

 surface antigens are
GPI anchored, and the parasite may use the GPI anchor it-
self as a targeting motif.

 

Apicomplexan parasites have three secretory 
organelles: micronemes, rhoptries, and dense granules

 

The tachyzoite form of 

 

T. gondii

 

 contains at least three mor-
phologically distinct secretory organelles: micronemes, rhop-
tries, and dense granules (Figs. 1 and 2). The former two or-
ganelles are located in the anterior portion of the cell,
whereas dense granules are more broadly distributed. Mor-
phologically, dense granules are essentially indistinguishable
from the mature secretory granules found in endocrine, neu-
roendocrine, or exocrine cells (Table I and Fig. 1). At the
other end of the spectrum, rhoptries bear little morphologi-
cal resemblance to subcellular organelles in any other cell
type. These three organelles discharge sequentially: micron-
eme exocytosis occurs upon host cell binding, rhoptry secre-
tion coincides with invasion, and dense granule secretion is
most prominent after parasite entry into the host cell (Car-
ruthers and Sibley, 1997). Micronemes and rhoptries are
thought to be critical for host cell invasion, a process that is

 

completed within 15–20 s. Dense granule proteins are
thought to be required for intracellular replication, includ-
ing establishment of the parasitophorous vacuole within
which parasites reside and divide until lysis of the host cell.
The requirements for precise temporal regulation of differ-
ential organelle secretion are stringent, distinguishing 

 

T.
gondii

 

 parasites from most secretory cells.

 

Dense granules are functionally analogous 
to constitutive secretory vesicles

 

Soluble recombinant proteins (from various sources) are de-
livered to dense matrix granules by the bulk flow pathway.
Dense granules are quantitatively secreted in a constitu-
tive, calcium-independent fashion (Chaturvedi et al., 1998;
Karsten et al., 1998); although there is also likely to be a
triggered component to the release process (Dubremetz et
al., 1993; Carruthers and Sibley, 1997; Coppens et al.,
1999). Even 

 

T. gondii

 

 proteins from which specific signals
for targeting to other organelles have been deleted are routed
through the dense granules as soluble proteins (Striepen et
al., 1998, 2001; Reiss et al., 2001). It is therefore difficult to
invoke the notion that aggregation or retention in dense
granules requires specific protein sequence motifs, a low pH/
high Ca

 

�

 

2

 

 environment, lipid rafts, or other distinguishing
characteristics, in contrast to observations in mammalian
secretory cells (Arvan and Castle, 1998; Tooze et al., 2001)
(Table I). On balance, dense granules appear to be most

Figure 2. Fluorescent protein labeling of subcellular organelles in T. gondii. Fusions between endogenous parasite proteins and GFP, YFP, 
or other reporters have been expressed in transgenic T. gondii, and localization has been determined by fluorescence microscopy. The central 
cartoon, showing subcellular structures (also see Fig. 1), illustrates proper targeting of GFP chimeras. Labeling of the conoid and subpellicular 
microtubules was achieved using a YFP–�-tubulin construct (Striepen et al., 2000; Hu et al., 2002; Swedlow et al., 2002), micronemes using 
MIC3-GFP (Striepen et al., 2001), Golgi using MIC3[68–137]-GFP (Striepen et al., 2001), mitochondria using HSP60-GFP (Hu et al., 2001), 
plasma membrane using P30-GFP-GPI (Striepen et al., 2000); rhoptries using ROP1-GFP (Striepen et al., 1998), dense granules using P30-GFP 
(Striepen et al., 1998), nucleus using PCNA-GFP (Radke et al., 2001), ER using P30-GFP-HDEL (Hager et al., 1999), and inner membrane 
complex using IMC1-YFP (Hu et al., 2001).
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similar to the post-Golgi vesicles involved in constitutive se-
cretion (Table I).

 

Rhoptries are associated with both the endocytic 
and secretory pathways

 

The name “rhoptry” is derived from the Greek word
meaning “club,” reflecting the bulbous shape of this or-
ganelle (Fig. 1), thought to contain vesicular/membranous
material that is secreted via the long, slender neck. Label-
ing with DAMP (3-[2,4-dinitroanilin]-3

 

�

 

amino-

 

N

 

-meth-
yldipropylamine) suggests that rhoptries are the only acid-
ified organelles in 

 

T. gondii

 

; the parasite contains no
morphological equivalent of secondary lysosomes (Shaw
et al., 1998). Unusual organelles designated acidocalcio-
somes have been reported (Moreno and Zhong, 1996),
but these function in the storage of calcium and pyro-
phosphate (and possibly other materials as well), and do
not appear to be directly related to either exocytic or en-
docytic trafficking. Like multivesicular bodies and late en-
dosomes (Bishop and Woodman, 2000), rhoptries are
enriched in cholesterol, but their cholesterol/phospholipid
ratio of 

 

�

 

1.5:1 (Foussard et al., 1991) is too high for lipid
bilayer stability, suggesting that at least some of this cho-
lesterol may be organized in a crystalline array.

Secretion from the rhoptries contributes to the formation
of a distinctive parasitophorous vacuole, defining the com-
partment within the host cell where 

 

T. gondii

 

 parasites re-
side. The majority of lipids making up the parasitophorous
vacuole at the time of invasion are of host cell (rather than
rhoptry) origin (Suss-Toby et al., 1996), but rhoptry pro-
teins are rapidly incorporated into the vacuolar membrane.
The parasitophorous vacuole neither acidifies nor fuses with
organelles of the host cell endomembrane system, highlight-
ing the unusual nature of this structure (Sibley et al., 1985;
Joiner et al., 1990; Mordue et al., 1999). Inhibitors of para-
site actin polymerization (Sibley and Andrews, 2000) pre-
vent host cell invasion but not rhoptry discharge, producing
small vesicular structures in the host cell. These empty
“e-vacuoles” (Håkansson et al., 2001) contain rhoptry mark-
ers and associate with host cell mitochondria and ER (with-

 

out fusing), just as seen for parasite-containing vacuoles in
the same cell (Sinai et al., 1997).

The biogenesis of rhoptries is not well understood. Rhop-
tries of the mother cell disappear as morphologically distinct
entities during the early phases of cell division (endodyog-
eny). Following division of the Golgi apparatus, two distinct
rhoptry antigen-positive punctae appear immediately ante-
rior to Golgi; these structures may be regenerated de novo,
as precursors to the fully formed rhoptries that will ulti-
mately develop in the two daughter cells. Rhoptry protein
processing is thought to occur in these immature rhoptries
(Soldati et al., 1998), which therefore exhibit some func-
tional similarity to immature secretory granules (Table I).

Protein targeting to the rhoptries has long been a matter
of interest, since the evolutionary origin of these unique
secretory structures is unknown. Soluble rhoptry proteins
can harbor multiple independent targeting signals (Brad-
ley and Boothroyd, 2001; Striepen et al., 2001). Members
of the ROP2 family, which contain a putative transmem-
brane domain, display both YXX

 

�

 

 and LL motifs within
the predicted cytoplasmic tail (Hoppe et al., 2000). In
higher eukaryotes, both of these motifs mediate binding
to adaptor subunits and facilitate clathrin-coated vesicle
formation from the trans-Golgi (Bonifacino and Dell-
Angelica, 1999). Deletion or alteration of the YXX

 

�

 

 mo-
tif (Hoppe et al., 2000) or LL motif (unpublished data)
abolishes ROP2 delivery to mature 

 

T. gondii

 

 rhoptries,
providing the first evidence for tyrosine-dependent sort-
ing machinery in protozoan parasites. 

 

T.

 

 

 

gondii

 

 

 

�

 

1 binds
to the cytoplasmic tail of ROP2 family members in a ty-
rosine-dependent fashion and expression of either domi-
nant–negative 

 

T. gondii

 

 

 

�

 

1 or antisense mRNA ablation
of 

 

T. gondii

 

 

 

�

 

1 expression impairs rhoptry targeting (un-
published data). Alteration of rhoptry targeting motifs
leads to protein accumulation in a compartment located
just anterior to (but distinct from) the Golgi (the precur-
sor compartment noted in Table I). Combined with the
observation that rhoptries are acidic (Shaw et al., 1998), it
is tempting to consider the rhoptry a lysosome-like or-
ganelle (Dell’Angelica et al., 2000) (see Table I). A model

 

Table I. 

 

Comparison of organellar protein trafficking and secretion in 

 

Toxoplasma

 

 and “higher” eukaryotes

 

Secretory signal sequence Additional targeting signals Proteolytic processing Secretory trigger

 

Toxoplasma gondii

 

Dense granules Yes No No None known 
(constitutive)

Rhoptries Yes AP adaptin dependent;
lysosomal

In precursor compartment Unknown

Micronemes Yes AP adaptin dependent In precursor compartment; 
extracellular (after secretion)

Ca

 

+2

 

 

Mitochondrion No Amphipathic 

 

�

 

-helix
(at NH

 

2

 

 terminus)
Within the organelle No

Apicoplast Yes Enriched in basic AAs
(after signal sequence)

Within the organelle ???

 

Animals/fungi/plants

 

Endo/exocrine granules Yes AP adaptin dependent;
additional mechanisms

In precursor compartment Ca

 

+2

 

Lysosome-related organelles Yes AP adaptin dependent;
lysosomal

In precursor compartment Ca

 

+2

 

Mitochondrion No Amphipathic 

 

�

 

-helix
(at NH

 

2

 

 terminus)
Within the organelle No

Chloroplast No Enriched in basic AAs
(at NH

 

2

 

 terminus)
Within the organelle No



 

Secretory traffic in 

 

Toxoplasma gondii

 

 |

 

 Joiner and Roos 561

 

for rhoptry biogenesis consistent with the existing data is
provided in Fig. 3.

 

Microneme targeting involves membrane escorts 
for soluble proteins

 

Microneme proteins typically exhibit one or more of a vari-
ety of adhesive domains, and are thought to be involved in
host cell adhesion (Carruthers et al., 2000; Garcia-Reguet et
al., 2000; Brecht et al., 2001). Chimeras containing the cy-

toplasmic tail of a mammalian lysosomal membrane protein
are targeted to micronemes in a tyrosine-dependent fashion
(Hoppe et al., 2000). No endogenous 

 

T. gondii

 

 microneme
proteins bearing a transmembrane domain and YXX

 

�

 

 or LL
motifs in the cytoplasmic tail have yet been identified, how-
ever, and microneme proteins can possess multiple indepen-
dent targeting domains (Striepen et al., 2001). The trans-
membrane protein MIC6 forms a trimeric complex with the
soluble microneme proteins MIC1 and MIC4, and deletion
of MIC6 prevents targeting of these molecules (Reiss et al.,
2001), suggesting that MIC6 functions an escort protein. A
similar escort role has been described for MIC8 in targeting
MIC3 (Meissner et al., 2002), and for rhoptry proteins in 

 

P.
falciparum

 

 (Baldi et al., 2000).
MIC2 is probably the most intensively studied micron-

eme protein in 

 

T. gondii. T. gondii

 

 MIC2 is predicted to
contain a transmembrane domain with cytoplasmic tail tyro-
sine motifs (SYHYY, EIEYE) that play a role in sorting (Di
Cristina et al., 2000), and MIC2 has been shown to associ-
ate with another protein (MIC2AP) during transport to and
storage in micronemes (Rabenau et al., 2001). Genetic dele-
tion of the cytoplasmic domain of the MIC2 orthologue
TRAP in 

 

P. berghei

 

 does not completely abolish microneme
targeting (Kappe et al., 1999), however, suggesting func-
tional redundancy in organellar targeting pathways.

 

The 

 

T. gondii

 

 plastid resides within 
the secretory pathway

 

Perhaps the most unusual subcellular organelle in 

 

T. gondii

 

(and other Apicomplexan parasites) is a relict plastid, ac-
quired by secondary endosymbiosis of a eukaryotic alga and
retention of the algal plastid (Köhler et al., 1997). The Api-
complexan plastid—or “apicoplast”—is essential for parasite
survival (Fichera and Roos, 1997; He et al., 2001). This or-
ganelle is known to play a role in lipid metabolism (Waller
et al., 1998; Jomaa et al., 1999; Jelenska et al., 2001) and
possibly other metabolic functions as well. Although the api-
coplast has a its own genome (Wilson et al., 1996), this 35-
kb circular element encodes only a limited protein reper-
toire; the majority of apicoplast proteins are synthesized
on cytoplasmic ribosomes and posttranslationally imported
(Waller et al., 1998; Roos et al., 1999).

As previously noted in other systems containing complex
plastids, nuclear-encoded proteins destined for the apico-
plast exhibit a bipartite NH

 

2

 

-terminal domain. Molecular
genetic manipulation in 

 

T. gondii

 

 and 

 

P. falciparum

 

 demon-
strates that the extreme NH

 

2

 

 terminus functions as a secre-
tory signal sequence, whereas the subterminal domain (pre-
sumed to be exposed after cleavage of the secretory signal)
functions as a plastid-targeting signal, directing the cargo
protein from the secretory pathway into the apicoplast lu-
men (Roos et al., 1999; DeRocher et al., 2000; Waller et al.,
2000; Yung et al., 2001). Remarkably, this entire process
can be reconstituted from heterologous components. Thus,
the combination of two normally distinct targeting pro-
cesses—cotranslational translocation into the endoplasmic
reticulum and posttranslational translocation into chloro-
plasts—combine to provide an elegant mechanism for tar-
geting across the four membranes that surround the apico-
plast. Based on the characteristics of the apicoplast targeting

Figure 3. Post-Golgi protein targeting in the T. gondii secretory 
pathway. Protein traffic through the ER and Golgi likely depends on 
both COPI- and COPII-coated vesicles, and is regulated by forward 
targeting signals, ER retrieval and retention motifs, and Rab proteins. 
Targeting of soluble proteins from the trans-Golgi network to dense 
granules is signal independent, whereas targeting of membrane 
proteins to these organelles depends on transmembrane domain 
length (unpublished data). T. gondii rab6 mediates retrograde trans-
port from dense granules to the parasite Golgi (unpublished data). 
Rhoptry proteins appear likely to be transported from the Golgi via 
a precursor compartment, possibly part of the endosomal pathway 
(Robibaro et al., 2002). Transmembrane rhoptry proteins are 
targeted in a tyrosine-, dileucine-, and adaptor-dependent fashion. 
Targeting of soluble microneme proteins proceeds by association 
with transmembrane escorters; transmembrane proteins are capable 
of using adaptor- and tyrosine-dependent signals, although typical 
endocytic motifs are not apparent in known microneme proteins. 
Results using dominant–negative adaptors suggest that microneme 
targeting may exploit the same precursor compartment involved in 
rhoptry targeting. Nuclear-encoded proteins destined for the apicoplast 
exhibit a bipartite NH2-terminal domain (Roos et al., 1999; 
DeRocher et al., 2000; Waller et al., 2000; Yung et al., 2001), 
mediating transport first into the secretory pathway using a classical 
secretory signal sequence, and subsequently into the apicoplast 
using a plastid–transit peptide akin to that found in plants. Whether 
all secreted proteins transit this organelle after exit from the Golgi 
remains to be determined, as does the ultimate destination of products 
produced in the apicoplast (dashed black arrows). A, apicoplast; 
DG, dense granule; E, endosome; Mn, micronemes; PC, precursor 
compartment; Rh, rhoptries.
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signal, a large number of candidate apicoplast proteins have
been identified in the 

 

T. gondii

 

 EST and 

 

P. falciparum

 

 ge-
nome databases (Ajioka et al., 1998; Bahl et al., 2002), in-
cluding plastid import machinery of the tic and toc family
(McFadden, G.I., personal communication).

Although the molecular details of protein targeting to the
apicoplast are now clear, precisely how—in morphological
terms—these proteins traffic from the secretory pathway to
the apicoplast remains a mystery, as vesicles are never ob-
served fusing with (or budding from) the organelle (compare
Fig. 1). Moreover, treatment with brefeldin A or appending
an ER retention signal to nuclear-encoded apicoplast pro-
teins fails to inhibit trafficking to the organelle. These obser-
vations raise the possibility that the apicoplast lies at a proxi-
mal position within the secretory pathway—perhaps within
the ER itself—and that all secreted proteins bearing an
NH

 

2

 

-terminal signal sequence wash over the apicoplast! As
noted above, the function of the apicoplast is also uncertain,
but circumstantial evidence suggests that it may play an im-
portant role in establishing the parasitophorous vacuole dur-
ing host cell invasion (Fichera and Roos, 1997).

 

Conclusions

 

Protein targeting in 

 

T.

 

 

 

gondii

 

 and related parasites utilizes a
combination of conserved and unusual motifs and transport
machinery (Ngô et al., 2000). The simplified, polarized, and
morphologically distinctive organization of this cell readily
permits comparison with mammalian cells and yeast, as de-
tailed in Table I. Where mechanisms are conserved, 

 

T. gon-
dii

 

 provides an excellent model for eukaryotes in general.
For example, studies on the use of COPI and COPII coats
in ER–Golgi transport, or the process of Golgi division,
should be fruitful areas for study. Where mechanisms are
different—as in the secretion of rhoptry lipids, the targeting
across four membranes surrounding the apicoplast, and the
trafficking of proteins destined for association with mem-
brane compartments that lie beyond the plasma mem-
brane—studies on these parasites are likely to reveal the di-
versity of eukaryotic evolution and highlight potential
targets for antiparasitic drug development.
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