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Abstract: The increased incidence of chronic diseases related to altered metabolism has become a
social and medical concern worldwide. Cancer is a chronic and multifactorial disease for which,
together with genetic factors, environmental factors are crucial. According to the World Health
Organization (WHO), up to one third of cancer-related deaths could be prevented by modifying risk
factors associated with lifestyle, including diet and exercise. Obesity increases the risk of cancer
due to the promotion of low-grade chronic inflammation and systemic metabolic oxidative stress.
The effective control of metabolic parameters, for example, controlling glucose, lipid levels, and blood
pressure, and maintaining a low grade of chronic inflammation and oxidative stress might represent
a specific and mechanistic approach against cancer initiation and progression. Miracle berry (MB)
(Synsepalum dulcificum) is an indigenous fruit whose small, ellipsoid, and bright red berries have been
described to transform a sour taste into a sweet one. MB is rich in terpenoids, phenolic compounds,
and flavonoids, which are responsible for their described antioxidant activities. Moreover, MB has
been reported to ameliorate insulin resistance and inhibit cancer cell proliferation and malignant
transformation in vitro. Herein, we briefly summarize the current knowledge of MB to provide a
scientific basis for its potential use as a supplement in the management of chronic diseases related
to altered metabolism, including obesity and insulin resistance, which are well-known risk factors
in cancer. First, we introduce cancer as a metabolic disease, highlighting the impact of systemic
metabolic alterations, such as obesity and insulin resistance, in cancer initiation and progression.
Next, as oxidative stress is closely associated with metabolic stress, we also evaluate the effect of
phytochemicals in managing oxidative stress and its relationship with cancer. Finally, we summarize
the main biological activities described for MB-derived extracts with a special focus on the ability
of miraculin to transform a sour taste into a sweet one through its interaction with the sweet taste
receptors. The identification of sweet taste receptors at the gastrointestinal level, with effects on
the secretion of enterohormones, may provide an additional tool for managing chronic diseases,
including cancer.
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1. Cancer as a Metabolic Disease

Cancer is the second leading cause of death worldwide (WHO, 2018). In addition to genetic
alterations, additional factors related to lifestyle, such as diet (high intake of saturated fatty acids,
red meat consumption, and high glucose intake), a sedentary lifestyle, and obesity are considered
to be preventable risk factors [1]. During the last few years, the global prevalence of overweight
and obesity has increased alarmingly [2]. Obesity represents a risk factor for many chronic diseases,
such as cardiovascular disease (CDV), dyslipidemia, metabolic syndrome (MetS), type 2 diabetes
mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and cancer [3]. Over the course of obesity,
ectopic fat deposition (known as visceral adiposity) leads to a low grade of chronic inflammation,
insulin resistance, and an altered adipokine profile, which can shape a pro-tumoral microenvironment
supporting malignant transformation and progression [4].

Although the role of obesity in cancer etiopathogenesis is not fully elucidated, the World Cancer
Research Fund and the American Institute for Cancer Research (WCRF/AICR) have found strong
evidence for the association between obesity and the risk of several cancers, including esophageal
cancer, colorectal cancer, liver cancer, pancreatic cancer, postmenopausal breast cancer, and kidney
cancer [5]. Interestingly, epidemiological data support the idea that obesity may be a protective factor
for certain types of cancer with regard to incidence and mortality, such as premenopausal breast cancer
(BC), non-small cell lung cancer (NSCLC), head and neck cancers, renal cell cancer, and metastatic
colorectal cancer (CRC) [6]. Potential explanations for the obesity paradox in cancer patients may be
related to inadequate anthropometric measurements of obesity (body mass index (BMI) versus visceral
adipose tissue) or cofounding factor adjustments (sex, diet, and exercise). In this regard, BMI cannot
differentiate between adipose and lean mass or visceral adipose tissue, resulting in contradictory effects
between obesity and cancer [4].

The main metabolic pathways linking obesity to cancer include oxidative stress, a low-grade
of chronic inflammation, hyperinsulinemia, alterations in the adipocytokine profile, and intestinal
dysbiosis [7].

1.1. Obesity Is Associated with a Low Grade of Chronic Inflammation and Cancer Risk

Obesity-associated low-grade chronic inflammation is an established mediator for cancer initiation
and progression [8]. Adipose tissue is an active endocrine organ, secreting adipokines to control the
whole body’s energy balance. Excessive ectopic fat distribution is associated with increased levels
of leptin, which stimulates the production of proinflammatory mediators such as IL-1, IL-6, IL-8,
TNF-α, and cyclooxygenase 2 (COX2). On the contrary, levels of the anti-inflammatory adiponectin are
reduced [9].

Obesity has a causal relation with insulin resistance (IR), which is also closely associated with
a low grade of chronic inflammation. A recent study by Lee et al. attempted to elucidate the effect
of systemic inflammation on all-cause and cancer-related mortality. It was found that individuals
with elevated HOMA-IR (homeostatic model assessment for insulin resistance) or high sensitivity
C-reactive protein (hsCRP) had increased mortality rates, with the effect of systemic inflammation
in cancer-related mortality being more pronounced [10]. The increased circulating levels of glucose
and free fatty acids during obesity contribute to augmenting the levels of ROS, which may induce
mitochondrial and DNA damage [11].

The excess adipose tissue in cancer shapes the local tumor microenvironment, promoting tumor
dissemination, angiogenesis, and the inhibition of antitumor immune responses [12].

One additional factor to be considered for the association between cancer and obesity is the altered
intestinal microbiome (dysbiosis), which has been observed in obese individuals as compared with
lean individuals. The host organism is a complex system of innate immunity and intestinal epithelial
cells that control invasion through a robust gut barrier. Alterations in the composition and function of
the gut microbiota disrupt the equilibrium with the host and contribute to the promotion of intestinal
inflammation, which is closely associated with inflammatory bowel disease (IBD), diabetes, obesity,
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and cardiovascular diseases (CVDs). The diet and metabolic statuses of individuals are key factors
affecting the diversity and composition of the microbiome [13,14]. In this way, effective management
of the nutritional and metabolic status at the systemic level contribute to promoting a healthy gut
microbiome, thereby diminishing the risk of intestinal inflammatory diseases such as ulcerative colitis,
inflammatory bowel disease, and cancer [15–18]. The microbiota have been demonstrated to influence
body weight control by affecting the extraction and absorption of calories, influencing the secretion
of anorexigenic hormones (GLP-1, PYY, and leptin), and controlling the intestinal gut barrier [19].
Firmicutes and Bacteroidetes are dominant in the gut microbiota, corresponding to 90% of bacteria.
Bacteroidetes have a positive correlation with a reduction in body fat, whereas the relationship between
Firmicutes and obesity is associated with greater energy harvest [20].

Importantly, the gut microbiota can be easily affected, with diet among the main factors influencing
the gut microbiota’s composition. Moreover, the metabolites produced by the microbiota, such as
short-chain fatty acids, can exert different effects on the host’s metabolism. Short-chain fatty acids
influence the metabolism of lipids, glucose, and cholesterol, affecting adipose tissue’s fat storage and
the immune system’s function [21,22].

Although gut microbiota are undeniably related to obesity, and weight loss interventions certainly
lead to changes in the microbiota, our understanding of the role of these bacteria in obesity remains
insufficient for designing specific and personalized nutritional interventions [23] (Figure 1).
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Figure 1. The drivers of metabolic and oxidative stress in cancer, including mutations in oncogenic
pathways and risk factors such as obesity, poor diet, alcohol consumption, smoking, and a sedentary
lifestyle. Precision nutrition aims to shape effective nutritional interventions based on scientific
knowledge of the mechanism of action of bioactive compounds, taking into consideration the genetic
variability and the metabolic and nutritional characteristics of individuals (nutri-metabolic scores),
as well as lifestyle related factors.

1.2. Dual Role of Phytochemicals Modulating Oxidative Stress in Cancer

Several epidemiological observations have shown an inverse relationship between the
consumption of plant-based foods rich in phytochemicals and the incidence of cancer. Phytochemicals,
due to their antioxidant, activity play a key role in cancer chemoprevention by suppressing the DNA
damage induced by excessive oxidative stress.

Oxidative stress can promote tumor initiation and growth by introducing mutations in oncogenes
and tumor suppressors. Therefore, on the one hand, reducing oxidative stress may protect normal
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cells from carcinogenic transformations. On the other hand, cancer cells are characterized by increased
intrinsic oxidative stress. Thus, cancer cells rely on antioxidants for their survival.

Reactive oxygen species (ROS) are highly reactive metabolic by-products that cause both deleterious
and beneficial effects. Although cellular ROS are mediators of the cell signaling pathways required
for normal physiological functions such as differentiation and development [24], the overproduction
of ROS may be detrimental, as ROS can disrupt cell integrity and promote cell damage [25]. In this
way, on the one hand, excessive ROS may contribute to the initiation of the carcinogenic process or the
appearance of resistance to therapeutic treatments. On the other hand, excessive accumulation of ROS
might induce cancer cell death. Many studies have shown that cancer cells have increased levels of
ROS as compared with normal cells due to their high metabolic rates or mitochondrial dysfunctions.
In this way, agents augmenting oxidative stress in cancer may result in the promotion of specific cancer
cell death [26]. In this scenario, increasing oxidative stress using agents with the capacity to promote
ROS [27] and the abrogation of key antioxidant systems [28,29] may make cancer cells vulnerable to
cell death.

Phytochemicals have been shown to exhibit both antioxidant and pro-oxidant effects in cancer
depending on different factors, including the implicated oncogenic and tumor suppressors, the stage
of the carcinogenic process, the heterogeneity of tumors, and the associated tumor microenvironment.
In addition, the antioxidant and pro-oxidant properties of phytochemicals may also depend on their
concentration [26,30].

In this regard, by acting as pro-oxidant agents, several natural dietary bioactive compounds,
including polyphenols, flavonoids, and stilbenes may promote, in a specific manner, cancer cell
death [26]. While most dietary bioactive compounds possess antioxidant capacities at low doses,
high doses induce pro-oxidant activity that leads to cancer cell death. Although the specific mechanisms
in the process are not fully elucidated, pro-oxidant agents mainly influence mitochondrial functions by
altering mitochondrial enzymes and oxidative phosphorylation [31,32].

2. Miracle Berry

Synsepalum dulcificum (Richardella dulcifica) is an indigenous fruit from tropical West Africa.
The edible pulp of the small, ellipsoid, and bright red berry of this plant converts a sour taste into a
sweet taste; for this reason, the fruit is also known as the “miracle berry” (MB) [33].

MB is rich in terpenoids. The fruit’s pulp contains phenolic compounds (15.8%) and flavonoids
(11.9%), while its skin contains higher amounts of phenolic compounds (36.7%) and flavonoids
(51.9%). There is a direct correlation between phenolic and flavonoid content and the antioxidant
activity; therefore, the skin has higher antioxidant activity (22.6%) as compared with that of the pulp
(18.9%) [34,35].

MB, which is mainly associated with its antioxidant activity, has been demonstrated to reduce
malignant cell proliferation in vitro [35,36]. Moreover, miraculin present in the fruit has the ability to
transform a sour taste into a sweet one [37–39]. The taste-modifying effect of MB is effective under
acidic conditions and lasts approximately 30 min after being ingested. The sour modifying effects of
this fruit were assayed in 13 subjects, where MB was shown to increase the sweetness of a low-calorie
dessert without promoting subsequent energy compensation [40]. In addition, in another study,
MB ameliorated insulin resistance in a preclinical model of diabetes induced by a chow diet enriched in
fructose in rats. In a study where diabetes was induced using streptozocin (STZ), the glucose-lowering
effects of miracle fruit administration was higher than that achieved by metformin treatment [41].

2.1. Antioxidant Activities of Miracle Berry Extracts

Most of the studies used to determine the composition of bioactive products from MB have focused
on quantifying the total amount of polyphenols, including phenolic acids, flavonoids, and tannins,
using the berry’s flesh as the starting raw material after extraction with polar solvents. Additionally,



Antioxidants 2020, 9, 1282 5 of 15

extracts from the seeds have also been evaluated, but berry flesh extracts contain higher amounts of
phenols (up to five times) and flavonoids (up to three times) as compared with seed extracts.

Several studies have shown a positive correlation between the antioxidant activity, total phenolic
content, and flavonoids.

In a study conducted by Inglett et al., 50% ethanolic extracts from skin, pulp, and seeds were
compared with regard to their content of polyphenols and antioxidant activity. In this study, it was
found that the higher antioxidant activities from skin- and pulp-derived extracts as compared with
seed extracts were associated with the total content of polyphenols [35].

In another study, the antioxidant activity of MB flesh and seed-based methanolic extracts
were evaluated via traditional free radical scavenging methods, i.e., ABTS (2,20-azino-bis(3-ethyl
-benzothiazoline-6-sulfonic acid), DPPH (1,1-diphenyl-2-picrylhydrazyl), and FRAP (ferric reducing
antioxidant power). Moreover, a fish oil emulsion model was used to measure the antioxidant activity
of the extracts for avoiding lipid oxidation. In this study, the antioxidant activity of MB extracts
was much higher than that of other well-recognized antioxidant-rich berries, such as blueberries and
blackberries. Although in the ABTS and DPPH assays, the free radical scavenging activity of the MB
flesh extract was similar to that of other antioxidant standards, in the FRAP assay, the activity of the
flesh extract was significantly higher. Furthermore, the MB extract exhibited a greater ability to prevent
lipid oxidation in the fish oil emulsion than gallic acid [42].

Extracts in the presence of 95% ethanol from the skin and pulp also showed positive correlations
between the total phenolic content and the in vitro antioxidant activities [43].

In addition, methanol and chloroform extracts obtained from the complete fruit and pulp,
respectively, showed anti-tyrosinase and antioxidant effects [44].

Few studies have described the identification of specific polyphenols from MB extracts.
Methanolic extracts from the berry flesh [42] and leaves [45] have been partially characterized,
demonstrating the presence of epicatechin, rutin, quercetin, myricetin, kaempferol, gallic, ferulic,
syringic acid, anthocyanins (delphinidin glucoside, cyanidin galactoside, and malvidin galactoside),
tocopherols (a-tocotrienol and a- and c-tocopherol), and lutein.

Water extracts from freeze-dried leaves have been shown to contain high amounts of bioactive
phenolic components, including asp-hydroxybenzoic acid, vanillic acid, syringic acid, trans-p-coumaric
acid, and veratric acid [46].

In this way, MB, by means of its antioxidant activity, may protect normal cells from carcinogenic
transformations by reducing oxidative stress.

2.2. Miracle Berry Targeting Metabolic Risk Factors Associated with Cancer

For many years, plants have been considered to be a primary source of potent antidiabetic
compounds. Many phytochemicals, such as flavonoids, carotenoids, alkaloids, saponins, phenolic acids,
terpenoids, and glycosides have been demonstrated to exert antidiabetic effects through several
mechanisms including insulin secretion, the inhibition of carbohydrate metabolizing enzymes, and the
regeneration of pancreatic beta cells [47].

The effect of MB in ameliorating insulin resistance was first reported by Chen at al. [41] in a
preclinical model of prediabetes in rats. Methanolic extracts obtained from the leaves also demonstrated
antidiabetic effects including insulin synthesis, a reduction in inflammation, and the modulation of
carbohydrate-metabolizing enzymes [48]. Ethanolic extracts from the pulp were shown to increase
the uptake of glucose through the upregulation of the GLUT4 transporter in C2C12 myocytes [43],
reinforcing the idea that MB could control the circulating levels of glucose. More studies are required
to identify the specific bioactive compounds responsible for these effects and to demonstrate the safety
of these compounds in terms of hypoglycemia.

In addition, ethanolic extracts from the seeds have shown potent anti-hypercholesterolemic activity,
with lupeol acetate and β-amyrin-acetate triterpenoids identified as the main bioactive compounds
responsible for this effect [49].
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In another study, MB extracts, including water, butanol, ethyl acetate (EA), and hexane
fractions were shown to reduce uric acid and inhibit xanthine oxidase activity in vitro. In this
study, butanol extracts reduced oxonic acid potassium salt-induced hyperuricemia in ICR mice by
lowering serum uric acid levels and activating hepatic xanthine oxidase [50].

Few studies have been conducted to evaluate the antitumoral activities in cancer cell lines.
Extracts from the stems and the pulp were shown to reduce the proliferation of colorectal cancer
cells, targeting c-fos and c-jun pathways [51]. In another study, extracts from the stems inhibited cell
proliferation of melanoma cell lines [36].

Table 1 summarizes main studies conducted with extracts derived from miracle berry.

Table 1. The main studies conducted with extracts derived from miracle berry.

Start Material Solvent Extract Effects Type of Study Ref.

Powder seeds 95% Ethanol Cholesterol-lowering agent Preclinical [49]

Air-dried leaves 80% Methanol Antidiabetic Preclinical [45,48]

Air-dried
skin+pulp 95% EtOH Uptake of glucose In vitro (C2C12) [43]

Miracle fruit
powder Water/butanol Antioxidant;

Anti-hyperuricemia In vitro, Preclinical [50]

Leaves, stems,
and berries dried 80% MeOH, 10% EtOH Reduce proliferation of

colorectal cancer cell lines In vitro [51]

Stems MeOH Reduce proliferation in
melanoma cell lines In vitro [36]

Pulp and fruit
MeOH-fruit Anti-tyrosinase and

antioxidation effects
In vitro [44]

CHCl3-pulp

Miracle fruit
powder No extraction Improve insulin resistance Preclinical [41]

In summary, MB has been demonstrated to exert positive effects for controlling of metabolic
risk factors in cancer, including anti-hypercholesterolemia and antidiabetic effects, together with
antiproliferative effects in cancer cell lines.

3. Miraculin

The taste-modifying properties of MB are attributed to the presence of miraculin [37,41,52].
Miraculin sensitizes sweet taste receptors when sour acids are consumed [53], although miraculin itself
does not taste sweet.

The clinical benefits of the taste-modifying effects of miracle fruits have been studied in the
following two fields: (i) in cancer patients to ameliorate dysgeusia after chemotherapy and (ii) in
low-calorie diets to reduce caloric intake in obese individuals [40,54,55].

Miraculin is a homodimeric glycosylated protein composed of 191 amino acid residues [56] with a
maximum value of sweetness 400,000 times greater than that of sucrose on a molar basis [57]. The effect
begins a few seconds after the fruit has been ingested and lasts between thirty minutes and two hours,
after which miraculin dissociates from the taste receptors via the action of salivary amylase [58].

Miraculin interacts with class C sweet receptors, which consist of the heterodimers TAS1R2/TAS1R3.
In the presence of acidic foods, these receptors undergo a conformational change allowing the glycans
associated with miraculin to interact with the active centers of the receptors, and therefore activate
them [59,60]. In this way, miraculin may act as a selective agonist (at acidic pH) or antagonist
(at neutral pH) of TAS1R2/TAS1R3 sweet-taste receptors, depending on the pH value of the food or
drink consumed [61].

Several intervention studies have shown that the degree of the taste-modifying effect differs
according to the types and sources of the fruit or the type of foods to which MB is applied [62].
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Miraculin, unlike other taste-modifying agents, is not sweet by itself but can change the perception of
sourness to sweetness for a long period after consumption [63].

Importantly, miraculin along with thaumatin [64], curculin [65], brazein [66], and mabinlin [67]
can be used as natural low calorie sweeteners with the potential to replace artificial sweeteners.
Miraculin was first isolated by Kurihara and Beidler et al. from MB [53] and Brouwer et al. named it
“miraculin” [68]. Due to the difficulty of growing MB in certain environments, genetic engineering has
allowed the production of recombinant miraculin from other plants such as lettuce and tomato [69,70].

3.1. Mechanism of Action of Miraculin

Sweet taste receptors include G-coupled protein C receptors (GPCR) consisting of heterodimers
of TAS1R2/TAS1R3 with the following three main domains: the transmembrane domain (TMD),
the N-terminal segment Venus flytrap domain (VFD), and the cysteine-rich domain (CRD). Sucrose and
glucose bind to the VFD of both the TAS1R2 and TAS1R3 subunits, whereas other sweeteners, such as
aspartame and stevioside, interact only with the VFD of the TAS1R2 subunit but activate the G-coupled
protein at the intracellular region of the TMD of TAS1R3 [71–73].

The proposed mechanism of action of miraculin starts with its association with the VFD of TAS1R2
as an inactive form at a neutral pH. Extracellular acidification induces partial activation of the sweet
taste receptors through the interaction between extracellularly protonated TAS1R2 and the active
form of miraculin. Complete activation requires weak acidification of the intracellular region [74].
The following intracellular cascade is common for the detection of other tastes such as umami
and bitter. After TASR activation, the Gβγ subunit dissociates from the Gα subunit (α-gustducin)
of the heterotrimeric G protein and activates phospholipase C-β2 (PLC-β2), which produces IP3.
The interaction of IP3 with its receptor (type III IP3 receptor) activates TRPMP5 (transient receptor
potential cation channel subfamily M member 5), releasing Ca2+ from the endoplasmic reticulum (ER).
Then, the ATP channel Pannexin-1 (PX1) opens, releasing ATP to ultimately activate the gustatory
afferent nerves [40,75–77] (Figure 2).
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at the gastrointestinal (GI) level. The intracellular signaling pathways stimulate the taste receptors
downstream under acidic conditions. Miraculin may contribute to the regulation of GI motility and the
secretion of enterohormones (leptin, ghrelin, insulin, GLP-1, and endocannabinoids). The described
SNPs in TAS1R affect taste sensitivity, sugar intake, and their interactions with body mass index (BMI).
(The figure has been created by BioRender.com).
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3.2. Clinical Applications of Miraculin

The harmful effects related to high sugar consumption are a matter of great public and scientific
interest due to their association with the development of obesity and other chronic diseases, such as
T2DM cardiovascular diseases (CVD) and cancer [78–80]. As a result, many alternative sweeteners
have been investigated. However, there is still controversy regarding the harmful effects of consuming
some artificial sweeteners, which may promote the development of glucose intolerance through the
induction of compositional and functional alterations to the intestinal microbiota [81,82]. One health
solution is the replacement of high-caloric sweeteners with alternative natural sweeteners that do
not stimulate the intracellular insulin response [83]. Therefore, there is great interest in the use of
natural substances as alternative sweeteners to prevent increases in body weight, fat mass, and blood
pressure [84].

MB was reported to reduce the caloric intake in obese individuals on low calorie diets [85].
Miraculin enhanced the sweetness intensity of a low sugar dessert, thereby helping to limit the energy
intake as compared with a high-sucrose supplemented dessert [86]. Another study evaluated the
temporal profile of miracle fruit and its sugar substitute power in sour beverages through time intensity
and temporal dominance of sensations tests. Unsweetened lemonade and lemonades with sugar,
sucralose, and previous miracle fruit ingestions were also evaluated. Previous ingestion of miracle fruit
provided high sweetness intensity and persistence and a sensory profile similar to that of sucralose [63].
In this way, the taste modifying effect of miraculin has great potential as an alternative sweetener or a
taste modifier to mask undesirable sour tastes in food products.

Changes in taste perception are especially important in diseases such as cancer, where chemotherapy
may alter taste perception (dysgeusia) [87]. It has been reported that taste alterations might be an early
sign of tumor cell invasion in cancer patients [88]. Dysgeusia can lead to a loss of appetite and even
malnutrition, which can effect patients’ quality of life and may also compromise the functionality of the
immune system and the efficacy of the clinical treatments [89]. Moreover, as chemotherapy suppresses
the immune system, which may augment the risk of infections, it is crucial to avoid malnutrition to
preserve an effective immune system [90]. Two pilot studies (N = 8 and N = 23) were conducted
to evaluate whether MB consumption before meals could ameliorate dysgeusia in cancer patients
during chemotherapy treatment. Although no significant changes were found in the weights of the
participants, MB improved taste perception, increasing food intake for some patients [54]. On the basis
of the findings of the mentioned studies, it can be inferred that the use of MB in one’s diet may increase
food’s palatability and reduce caloric intake at the same time, which makes it more difficult to suggest
using this fruit or its derivatives in the diets of chemotherapy patients [55].

3.3. Miraculin Modulating the Gut–Brain Axis

In addition to the oral cavity, sweet taste receptors have been found in other organs, including the
gastrointestinal tract (GI), the pancreas, adipose tissue, skeletal muscle, the bladder, and the brain [91].

Several studies have investigated the role of TASRs in the regulation of physiological functions
at the GI level, including the regulation of GI motility and the secretion of enterohormones (leptin,
ghrelin, insulin, GLP-1, and endocannabinoids), which regulate energy balance, systemic glucose
levels, and food intake [92,93]. Enterohormones regulate satiety by acting locally in the GI tract or
centrally through the gut–brain axis.

These effects have been proposed as useful therapeutic targets for the management of obesity,
paving the way towards the pharmacological modulation of taste receptors as a promising and novel
therapeutic strategy for the control of food intake in the management of obesity and T2DM [94].

In this sense, miraculin appears promising, by acting as a natural non-caloric sweetener and also
as a TAS1R agonist at the GI level to modulate the release of distinct enterohormones [59].

TAS1R family members have been identified in distinct enteroendocrine cells, indicating biological
and functional effects at the gastrointestinal level [95]. One such study compared insulin levels after the
administration of glucose orally or intravenously. It was found that the levels of insulin were higher
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when glucose was administered orally than intravenously, revealing an effect of insulin secretion
mediated by the effects of glucose at the GI level. In this regard, K and K cells are known to secret
enterohormones such as GLP-1 and GIP, which mediate local and systemic functions [96]. Conversely,
TAS1R2-TAS1R3 inhibition with lactisole reduced the levels of the secretion of the aforementioned
incretins. Obese individuals have been shown to have reduced levels of the sweet taste receptor
TAS1R3 [97], which may be due to the reduced glucose sensing in these individuals. In the same
line, T2DM individuals experience diminished expression levels of sweet taste receptors TAS1R2 and
TAS1R3, as well as their downstream regulator, α-gustducin [98].

Overall, manipulation of the responses mediated by intestinal sweet taste receptors is a promising
field for developing therapeutic approaches against obesity or T2DM.

3.4. Nutrigenetics: Genetic Variability in the Perception of Sweet-Taste Affects Behavior and Nutrient Intake

The discovery of sweet taste receptors at the GI level and the ability of miraculin to interact with
these receptors may have important consequences in the management of obesity or intestinal dysbiosis.
Moreover, distinct polymorphisms in taste receptor genes have been demonstrated to influence food
preferences and the risk of developing diet-related diseases, such as obesity [99,100]. In this way,
sweet taste sensitivity has been recently related to BMI [101,102]. In a study conducted on obese
individuals, reduced sweet taste perceptions was associated with active preferences for very sweet and
fatty foods [103].

Several studies have investigated the associations between single nucleotide polymorphisms
(SNPs) on sweet taste receptors, as well as several outcomes, including taste sensitivity, sugar intake,
and interactions with the nutritional status of an individual, such as BMI. Dias et al. identified a genetic
variant in the TAS1R2 sweet taste receptor gene that was associated with sucrose taste sensitivity
and sugar intake. Importantly, a significant gene–BMI interaction was found for both suprathreshold
taste sensitivity and sugar intake. Individuals with a BMI ≥ 25 and carriers of the G allele of the
rs12033832 SNP in the TAS1R2 gene were less sensitive to sweet taste stimuli, suggesting increased
sugar consumption [104].

Another study explored the association of four SNPs in the sweet taste receptor genes TAS1R2
(rs12033832 and rs35874116) and TAS1R3 (rs307355 and rs35744813) with sweet taste sensitivity and
food intake in volunteers with a normal weight. In this study, the TAS1R2 TT allele at rs35874116
was associated with a lower consumption of sweet foods as compared with C carriers. Conversely,
TAS1R2 AA carriers at rs12033832 consumed less energy from carbohydrates than the CC carriers,
a result that challenged previous reports. Notably, the participants in the current study were all normal
weight, as opposed to those in the work by Dias et al., which may explain the disparate results.

In this scenario, studying the interactions between miraculin and sweet taste receptors,
together with analyses of the associations among several SNPs in sweet taste receptors and sucrose
flavors, sugar intake, and metabolic alterations would help provide complementary tools for the
management of metabolic disorders, including obesity, insulin resistance, and cancer.

4. Conclusions

The effects of MB at the systemic level (antioxidant, antidiabetic, anti-hypertriglyceridemic,
anti-hypercholesterolemic, and anti-hyperuricemia) can help to reduce the metabolic stress associated
with chronic diseases, such as obesity, metabolic syndrome, diabetes, and cancer. In a relevant way,
the ability of miraculin to transform a sour taste into a sweet taste could be used as part of natural
sugar reduction strategies. Preliminary studies also suggest that the positive effects of miraculin
against dysgeusia can improve the perception of taste after chemotherapeutic treatments. Finally,
due to the relevance of the stimulation of taste receptors at the GI level, specifically designed functional
foods incorporating MB extracts (or isolated miraculin) represent an innovative potential strategy
for the control of food intake to help prevent obesity and insulin resistance. Additional challenges
involve investigating the following: (i) new extracts using sustainable technologies to expand the
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panel of bioactive compounds obtained from MB, such as supercritical fluid extraction using CO2;
(ii) the interactions between SNPs in taste receptors, taste sensitivity, and associations with metabolic
alterations; and (iii) for cancer patients, ameliorating dysgeusia and studying the possible synergism
with conventional chemotherapeutic treatments in the clinic.

Figure 3 summarizes the main biological activities of miracle berry that could help alleviate
metabolic stress in chronic diseases.Antioxidants 2020, 9, x FOR PEER REVIEW 10 of 15 
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