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Abstract: Oxidative stress resistance is an important mechanism to sustain the viability of oxygen-
sensitive microaerophilic Campylobacter jejuni. In C. jejuni, gene expression associated with oxidative
stress defense is modulated by PerR (peroxide response regulator) and CosR (Campylobacter oxidative
stress regulator). Iron also plays an important role in the regulation of oxidative stress, as high iron
concentrations reduce the transcription of perR. However, little is known about how iron affects the
transcription of cosR. The level of cosR transcription was increased when the defined media MEMα
(Minimum Essential Medium) was supplemented with ferrous (Fe2+) and ferric (Fe3+) iron and the
Mueller–Hinton (MH) media was treated with an iron chelator, indicating that iron upregulates
cosR transcription. However, other divalent cationic ions, such as Zn2+, Cu2+, Co2+, and Mn2+,
did not affect cosR transcription, suggesting that cosR transcription is regulated specifically by iron.
Interestingly, the level of perR transcription was increased when CosR was overexpressed. The
positive regulation of perR transcription by CosR was observed both in the presence or in the absence
of iron. The results of the electrophoretic mobility shift assay showed that CosR directly binds to the
perR promoter. DNase I footprinting assays revealed that the CosR binding site in the perR promoter
overlaps with the PerR box. In the study, we demonstrated that cosR transcription is increased in
iron-rich conditions, and CosR positively regulates the transcription of PerR, another important
regulator of oxidative stress defense in C. jejuni. These results provide new insight into how C. jejuni
regulates oxidative stress defense by coordinating the transcription of perR and cosR in response
to iron.

Keywords: Campylobacter; oxidative stress; CosR; PerR

1. Introduction

Campylobacter spp. are a leading bacterial cause of gastroenteritis worldwide, ac-
counting for approximately 166 million illnesses and 37,600 deaths per year [1]. Human
infections with Campylobacter jejuni, the major pathogenic species of Campylobacter, may de-
velop severe abdominal cramps, watery or bloody diarrhea [2], and, in some cases, induce
Guillain–Barré syndrome, an acute flaccid paralysis [3]. Because C. jejuni is a commensal
bacterium in the gastrointestinal tract of poultry, human campylobacteriosis is caused most
frequently by the consumption of contaminated poultry [4]. C. jejuni requires low oxygen
concentrations, such as 3–15%, for growth, but is sensitive to oxygen concentrations in
normal aerobic conditions. Thus, aerotolerance plays an important role in the survival of
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C. jejuni during zoonotic transmission from poultry to humans [5–7], and oxidative stress
defense is the key mechanism underlying the aerotolerance of C. jejuni [6,8].

Usually, genes encoding enzymes involved in the detoxication of reactive oxygen
species (ROS) are present redundantly in the genomes of bacteria. However, C. jejuni
possesses only a sole copy of genes encoding ROS detoxification enzymes, such as alkyl
hydroperoxide reductase (AhpC), catalase (KatA), and superoxide dismutase (SodB). In
C. jejuni, the expression of genes of oxidative stress defense is regulated mainly by PerR
(peroxide response regulator) and CosR (Campylobacter oxidative stress regulator). OxyR
and SoxRS are common regulators of oxidative stress defense in many Gram-negative
bacteria [9,10]; however, their orthologs are not present in C. jejuni. In Gram-positive
bacteria, PerR is the counterpart of the OxyR of Gram-negative bacteria, which regulates
peroxide stress defense. C. jejuni is one of few Gram-negative bacteria that harbor PerR,
not OxyR [11]. PerR is a repressor of genes encoding peroxide resistance enzymes (e.g.,
AhpC and KatA) by directly binding to their promoters [8,11]; thus, the inactivation of perR
makes C. jejuni hyper-resistant to H2O2 by derepressing the transcription of ahpC and katA,
also increasing aerotolerance in C. jejuni [8,11]. Despite the well-known function of PerR in
peroxide stress defense, we previously demonstrated that C. jejuni PerR regulates the tran-
scription of sodB, the sole gene involved in the detoxification of superoxide resistance [12],
showing that PerR regulates both peroxide and superoxide stress defense in C. jejuni.

CosR is another important regulator of oxidative stress defense in C. jejuni. CosR is an
OmpR-type response regulator, and its homologs are found predominantly in the bacteria
of ε-Proteobacteria, such as Campylobacter, Helicobacter, and Wolinella [13]. In thermotolerant
Campylobacter spp., such as C. jejuni, Campylobacter coli, and Campylobacter lari, CosR is an
orphan response regulator because no potential sensor kinase is available in the vicinity
of cosR; however, the sensor kinase CosS is present in non-thermotolerant Campylobacter
spp., such as Campylobacter fetus, Campylobacter concisus, and Campylobacter hominis [14].
Because the function of CosR is essential for the viability of C. jejuni, a knockout mutation
of cosR leads to cell death, and its knockout mutant cannot be constructed [13,15,16]. Using
antisense-mediated gene knockdown, in our previous studies, we identified the regulon of
CosR and characterized its function in the regulation of oxidative stress defense [13,17],
discovering that CosR regulates the expression of a number of genes involved in oxidative
stress defense, such as ahpC, katA, and sodB [13,17].

Several studies have reported that iron is a metal cofactor repressing perR in C. jejuni [11,18,19].
Increased iron levels derepress PerR-regulated genes of oxidative stress defense, enabling
C. jejuni to respond to oxidative stress. Despite the important roles played by CosR in
the regulation of oxidative stress defense in C. jejuni, little has been studied about the
association of CosR with iron and PerR to modulate the regulation of oxidative stress
defense in C. jejuni. Aiming to fill this knowledge gap, in this study, we investigated how
iron affects cosR transcription and how CosR is related to perR transcription.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

C. jejuni NCTC 11168 and its derivatives were grown at 42 ◦C in Mueller–Hinton (MH)
media (Difco) or MEMα (Minimum Essential Medium; Gibco, Catalog no. 41061) under
microaerobic conditions (5% O2, 10% CO2, and 85% N2). MEMα is a defined medium
that is commonly used to control iron concentrations in culture media for C. jejuni [20–22].
Iron levels were controlled by growing C. jejuni in MEMα supplemented with iron or by
treating MH media with deferoxamine mesylate (DFMS), an iron chelator [23,24]. For the
broth culture, an overnight culture on MH agar was resuspended in 3 mL of MH broth or
MEMα to an OD600 of 0.08, and the bacterial suspension was microaerobically grown with
shaking at 200 rpm. Kanamycin (50 µg mL−1) was occasionally added to the culture media
to maintain pMW10 [25] and the PcosR::lacZ and PperR::lacZ promoter fusion constructs.
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2.2. CosR Knockdown and Overexpression

Since cosR is essential for the viability of C. jejuni [13,15,16], instead of using gene
knockout, the intracellular level of CosR was reduced using gene knockdown with anti-
sense peptide nucleic acids (PNA), as described in our previous studies [13,17]. Briefly,
CosR-specific PNA (CATTTGTTCTATCCTT), which binds reverse complementarily to the
leader sequence spanning the ribosomal binding site and the start codon of cosR [13,17],
was commercially synthesized by PNA Bio (Thousand Oaks, CA, USA). To improve cell
permeability, the PNA was conjugated to the permeabilization oligonucleotide (KFFKF-
FKFFK), as reported previously [13,17]. Overnight cultures of C. jejuni grown on MH
agar plates were resuspended in culture media to an optical density at 600 nm (OD600)
of 0.07, and CosR-specific PNA was added to the suspension to a final concentration of
1.5 µM at the beginning of culture. The intracellular level of CosR was increased using a
CosR-overexpression strain that was constructed in our previous study by integrating an
extra copy of cosR into the chromosome of C. jejuni [17].

2.3. Construction of a PcosR::lacZ Promoter Fusion and β-Galactosidase Assay

The cosR-lacZ promoter fusion was constructed using pMW10, a promoterless lacZ
shuttle vector [25]. The cosR promoter and its partial coding region were amplified with the
primer pairs of CosR_PF_F(XbaI): CCCTTGAAGAGTCTAGAGACTTTGTAAGCTT and
CosR_PF_R(XbaI): CAAGCATCTAGACATACGCAGTCTTTTGTAA). The PCR product
was cloned into pMW10 after digestion with XbaI, and the final construct was confirmed
with sequencing. The constructed plasmid was introduced to C. jejuni NCTC 11168 by
conjugation [25]. The perR-lacZ promoter fusion was constructed in our previous study [18].
β-Galactosidase assays were performed, as described previously, with some modifica-
tions [18,25,26]. Briefly, 80 µL of bacterial culture and 120 µL of the β-galactosidase assay
mix, consisting of 60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 36 mM
β-mercaptoethanol, 1.1 mg/mL ONPG, and 6.7% PopCulture reagent (MilliporeSigma,
St. Louis, MI, USA) were mixed and transferred into a 96-well plate to measure OD420
and OD600. After reading the OD600, the plate was incubated at 35 °C with shaking, and
OD420 was measured every 10 min for 1 h in a plate reader (Varioskan, ThermoFisher,
Waltham, MA, USA). Occasionally, the defined culture medium MEMαwas supplemented
with different concentrations of FeSO4, CoCl2, CuCl2, MnCl2, and ZnCl2, which were
purchased from MilliporeSigma (St. Louis), to examine the effects of metal ions on the
transcription of cosR.

2.4. Electrophoretic Mobility Shift Assay

An electrophoretic mobility shift assay (EMSA) using recombinant CosR (rCosR)
was performed, as described previously [13,17]. Briefly, Escherichia coli BL21 (DE3) carry-
ing plasmid pET15b::cosR was grown to an OD600 of approximately 1.0. After induction
with 0.5 mM IPTG for 3 h, rCosR was purified under native conditions using Ni2+ affin-
ity chromatography. The DNA fragments containing the promoter region of perR were
PCR-amplified with the primer pairs of perR_F: AGACAAATTTATTGAACATGGAAAAA-
CAAG and perR_R: AGAGATTGAAGGGTATTCTTTTTTAATTTC, purified from agarose
gel using a gel extraction kit (Qiagen, Hilden, Germany), and labeled with [γ-32P] ATP
(GE Healthcare, Chicago, IL, USA). After elimination of the unincorporated radioisotope
with a MicroSpinTMG-25 column (GE Healthcare), the 0.2 nM of 32P-labeled DNA probe
was incubated with the purified rCosR protein at different concentrations (0, 0.8, 1.6, 2.4,
and 3.2 nM) at 37 ◦C for 15 min in 10 µL of the gel-shift assay buffer (20 mM HEPES
(pH7.6), 1 mM EDTA, 10 mM (NH4)2SO4, 5 mM DTT, 0.2% Tween 20, 30 mM KCl, 0.1 µg
poly (dI-dC)). Unlabeled PCR amplicon of the perR promoter, which was prepared with
the same method as above without [γ-32P] ATP, was used as a competitor. The reaction
mixtures were resolved in a 6% polyacrylamide gel, and the radiolabeled DNA fragments
were visualized using the BAS2500 system (Fuji Film, Kyoto, Japan).
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2.5. DNase I Footprinting Assay

A DNase I footprinting assay was performed following a method described previ-
ously [13,18]. DNA fragments containing the perR promoter region were PCR amplified
using a 32P-labeled primer perR_FP_F: AGCCTTGCAAGAAATGAATAATAATGC and an
unlabeled primer perR_FP_R: ATTCATCAATATTAGGATGCTCATGTC, and were purified
from the agarose gel with Wizard SV Gel and the PCR Clean-Up System (Promega). Bind-
ing of rCosR to the 32P-labeled perR promoter was performed at 37 ◦C for 10 min in 40 µL of
the gel-shift assay buffer (20 mM HEPES (pH7.6), 1 mM EDTA, 10 mM (NH4)2SO4, 5 mM
DTT, 0.2% Tween 20, 30 mM KCl, 0.1 µg poly (dI-dC)) containing 10 mM of MgCl2. After
treatment of the reaction mixture with or without 0.1 U DNase I (Takara), the reactions were
stopped by the addition of 200 µL of ice-cold stop solution (0.4 M NaOAc, 2.5 mM EDTA),
and the DNA products were purified by phenol extraction and ethanol precipitation. The
digested DNA fragments were separated by electrophoresis in 6% polyacrylamide-8 M
urea gels alongside sequencing ladders that were generated with the same 32P-labeled
primer used to amplify DNA fragments for DNase I digestion.

3. Results
3.1. Regulation of cosR Transcription by Iron

The level of cosR transcription was measured with β-galactosidase assays by sup-
plementing the defined medium MEMαwith different concentrations of iron. To control
iron concentrations in media, we used MEMα, a defined media that have been frequently
used to analyze the effects of iron and other metal ions, such as Zn, on the physiology and
pathogenicity of C. jejuni in many studies [20–22,27] The results of the PcosR-lacZ fusion
assay demonstrated that iron increased the level of cosR transcription in a concentration-
dependent manner (Figure 1). The level of cosR transcription was increased by 27.5%
and 28% at 2 µM Fe3+ and 2 µM Fe2+, respectively, compared to the control without iron
(Figure 1), suggesting that both Fe3+ and Fe2+ affect cosR transcription. The assay was
also conducted with different divalent cationic ions, such as Zn2+, Cu2+, Co2+, and Mn2+,
to examine whether cosR transcription was influenced by other metal ions. However,
the transcriptional level of cosR was not changed by the divalent cationic ions (Figure 2),
suggesting that cosR transcription is regulated specifically by iron.
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Figure 1. Positive regulation of cosR transcription by iron. The PcosR::lacZ fusion assay was conducted by supplementing
MEMα with different concentrations of Fe3+ (a) and Fe2+ (b). The results show the means and standard deviations of three
samples in a single experiment. The experiment was repeated three times, and similar results were obtained in the repeated
experiments. The statistical analysis was performed using Student’s t-test in comparison with the control without iron.
*: p < 0.05, **: p < 0.01.
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Figure 2. Irresponsiveness of cosR transcription to divalent metal ions other than iron. The PcosR::lacZ fusion assay was
conducted with Zn2+ (a), Cu2+ (b), Co2+ (c), and Mn2+ (d). The results show the means and standard deviations of three
samples in a single experiment. The experiment was repeated three times, and similar results were obtained in the repeated
experiments. The statistical analysis was performed using Student’s t-test in comparison with the control without ions.
ns: not significant.

3.2. Iron Regulation of cosR and perR Transcription over the Growth of C. jejuni

The levels of perR and cosR transcription were measured in the presence and absence of
iron over the growth of C. jejuni. Iron levels were controlled by supplementing MEMαwith
Fe3+ or treating the MH media with an iron chelator. Regardless of iron, the transcriptional
levels of both perR and cosR were reduced in the lag phase for the first few hours of culture
MEMα, and increased in the exponential phase (Figure 3a,b). Because the effect of iron on
perR transcription has been reported in several studies [11,18,19], PperR::lacZ was included
as a control to compare the expression patterns with cosR. The increase in the level of
cosR transcription by iron was significant both in the exponential and in the stationary
phases in MEMα (Figure 3a), and similar patterns were observed when the experiment was
performed in MH media using an iron chelator (Figure 3c). After cultivation in iron-rich
conditions for 8 h, the levels of cosR transcription were increased by 21.1% and 40.4% in
MEMα and MH media, respectively (Figure 3a,c), whereas perR transcription was reduced
by 22.2% and 47.9% in MEMα and MH media, respectively (Figure 3b,d).
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Figure 3. Effects of iron on the transcription of cosR and perR over the growth of C. jejuni. The PcosR::lacZ and PperR::lacZ
fusion assays were conducted in the presence and absence of iron in MEMα and MH media: (a) PcosR::lacZ assay in MEMα.
(b) PperR::lacZ in MEMα. (c) PcosR::lacZ assay in MH. (d) PperR::lacZ in MH. Deferoxamine mesylate (DFMS) was used as an
iron chelator in MH media. The growth of C. jejuni is indicated with the optical density at 600 nm (OD600) in each panel.
The experiment was repeated three times, and similar patterns of results were obtained in the experiments. The statistical
analysis was performed using Student’s t-test by comparing the samples with and without iron at the same sampling point.
*: p < 0.05, **: p < 0.01, ***: p < 0.001.
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3.3. CosR Regulation of perR Transcription

Based on the role of CosR and PerR in the regulation of oxidative stress defense,
we hypothesized that the two regulators may influence their transcription to coordinate
the transcriptional regulation of oxidative stress defense. To examine this hypothesis,
we measured whether CosR might affect perR transcription. Due to the essentiality of
CosR in the viability of C. jejuni, a knockout mutant of cosR could not be constructed in
multiple studies [13,15,16]. Thus, we measured the level of perR transcription under the
conditions of CosR overexpression and CosR knockdown which were established in our
previous studies [13,17]. Interestingly, the results of the PperR-lacZ fusion assay showed
that the level of perR transcription was increased when CosR was overexpressed (Figure 4).
However, CosR knockdown by antisense PNA did not affect perR transcription significantly
(Figure 4). Although the level of perR transcription was increased by CosR overexpression
in the presence and absence of iron, the overall level of perR transcription was reduced by
iron regardless of the levels of CosR in wild-type, a CosR-overexpression strain, and CosR-
knockdown conditions (Figure 4), suggesting that CosR regulation of perR transcription is
independent of iron.
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Figure 4. Positive regulation of perR transcription by CosR. The PperR::lacZ fusion assays were
conducted under conditions with different levels of CosR, including wild-type, CosR overexpression,
and CosR knockdown using antisense PNA. The experiment was repeated three times, and similar
results were obtained in the experiments. The statistical analysis was performed using Student’s
t-test. **: p < 0.01, ***: p < 0.001.

3.4. CosR Binding to the perR Promoter

Since CosR positively affected perR transcription (Figure 4), we examined whether
CosR regulation of perR transcription is mediated by direct interaction between CosR and
the perR promoter. The binding of CosR to the perR promoter was examined with EMSA,
which showed that CosR was directly bound to the perR promoter (Figure 5a). Previously,
we reported that the transcription of perR is driven by two promoters, and PerR regulates
its transcription by autoregulation [18]. By performing a DNase I footprinting assay, we
identified the CosR binding site in the −10 and −35 region of the two perR promoters
(Figure 5b), and a part of the 5′ region of the CosR binding site that overlapped with the
PerR box to which PerR binds for autoregulation (Figure 5c). These results indicate that
CosR regulates perR transcription by directly binding to the perR promoter.
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Figure 5. CosR binding to the perR promoter (a) The results of EMSA showed that rCosR bound to the perR promoter.
Unlabeled probe (U.P.) is the PCR amplicon of the perR promoter, which was prepared without [γ-32P] ATP and was
used as a competitor. (b) Identification of the CosR binding sites in the perR promoter by DNase I footprinting. The
CosR binding region is indicated with a dotted line, and ATC is the start codon of perR. (c) The CosR binding site in the
two adjacently located perR promoters, which were reported in a previous study [18]. The PerR box is the site for PerR
binding for autoregulation [18]. The perR start codon, the transcriptional start site (+1), and the −10, −16, and −35 elements
are underlined.

4. Discussion

Since C. jejuni is a microaerophilic bacterium sensitive to oxygen levels in normal
atmospheric conditions, oxidative stress defense is important for the survival of C. jejuni
during foodborne transmission to humans through various routes that generally involve
aerobic environments. To achieve a timely response to oxidative stress, oxidative stress
defense should be coordinated efficiently in which CosR, PerR, and iron play key roles. Iron
is an essential micronutrient affecting bacterial growth [28], and the unavailability of iron
significantly reduces the growth of C. jejuni [22,24]. Moreover, iron participates in the gener-
ation of ROS through the Fenton reaction and is also involved in the regulation of oxidative
stress defense [22,24], primarily by repressing the transcription of perR in C. jejuni [11,18].
PerR is a metal-responsive repressor protein [11,29]. Whereas Bacillus subtilis PerR uses
either manganese or iron as a regulatory metal cofactor to detect oxidative stress [30,31], the
transcription of perR in C. jejuni is affected only by iron, not manganese [18]. Similarly, the
level of cosR transcription was increased by iron (Figure 1); however, other divalent cationic
ions, such as Zn2+, Cu2+, Co2+, and Mn2+, did not affect cosR transcription (Figure 2).

Interestingly, iron affects the transcription of perR and cosR in the opposite pattern;
iron-rich conditions reduce perR transcription but increase cosR transcription. The opposite
patterns in the transcriptional regulation of perR and cosR by iron may facilitate the timely
response of C. jejuni to oxidative stress defense because PerR is a repressor of ROS detoxifi-
cation enzymes, such as AhpC, KatA, and SodB, whereas CosR is a positive regulator of
AhpC and KatA [13,17]. Increased iron levels, which can be accompanied by an increase
in oxidative stress, reduce the level of perR transcription, resulting in the depression of
ahpC, katA, and sodB. (Figure 6). Under iron-rich conditions, however, cosR transcription
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was increased (Figures 1 and 2), which may consequently increase the levels of AhpC
and KatA due to the positive regulation by CosR (Figure 6). In response to increased
iron levels, collectively, C. jejuni can stimulate the transcription of the genes encoding
ROS detoxification enzymes through the negative regulation of perR transcription and
the positive regulation of cosR transcription, leading to the alleviation of oxidative stress
(Figure 6).
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In this study, we discovered that CosR positively regulates perR transcription by di-
rectly binding to the perR promoter (Figures 4 and 5). CosR regulated perR transcription
only when the level of CosR was increased because CosR knockdown using antisense PNA
did not affect perR transcription (Figure 4). Although perR transcription was positively
regulated by CosR without iron, the level of perR transcription was increased by CosR
overexpression more significantly in the presence of iron than the absence of iron (46.5%
increase with iron vs. 14.5% increase without iron) (Figure 4), which can be ascribed to
the positive regulation of cosR transcription by iron. High iron concentrations enhance the
expression of ROS detoxification enzymes by repressing perR transcription and increasing
cosR transcription. However, a regulatory mechanism is needed to coordinate the tran-
scriptional levels of perR and cosR to avoid potential over-stimulation of ROS detoxification
systems where CosR regulation of perR transcription may play a role.

The transcription of perR is driven by two adjacently located promoters, both of which
are repressed by iron and subjected to autoregulation [18]. The CosR binding region that
was identified using a DNase I footprinting assay overlapped with the PerR box to which
PerR binds for autoregulation (Figure 5c). This suggests that PerR and CosR may compete
for binding to the perR promoter under certain circumstances.

In the gastrointestinal tract, relatively high concentrations (ca. 25 mM) of iron are
present theoretically; however, only a small proportion of iron is bioavailable because
of the low water solubility of inorganic iron [32]. The acquisition of iron affects C. jejuni
colonization of the gastrointestinal tracts since the knockout mutation of genes involved in
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iron acquisition results in colonization defects [33–35]. Because oxidative stress defense
is a complicated process involving a number of factors, such as the presence of oxygen,
iron, and antioxidants, it is difficult to speculate how the findings in this study can impact
the regulation of oxidative stress defense, particularly during the colonization of the
gastrointestinal tract, where oxygen levels are extremely low. Presumably, the regulation
of oxidative stress defense involving CosR, PerR, and iron may contribute to the survival
of this microaerophile when exposed to aerobic environments. In our previous study, we
demonstrated that iron stimulates biofilm formation in C. jejuni by increasing oxidative
stress, suggesting that iron utilization in combination with oxidative stress contributes to
the survival of C. jejuni in aerobic environments [20]. At this stage, future studies are still
needed to elucidate how oxidative stress defense is regulated to improve the survival of
this fastidious bacterium under stress conditions during transmission and infection.
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