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ABSTRACT

Efficient single-cell assignment is essential for
single-cell sequencing data analysis. With the explo-
sive growth of single-cell sequencing data, multiple
single-cell sequencing data sources are available for
the same kind of tissue, which can be integrated to
further improve single-cell assignment; however, an
efficient integration strategy is still lacking due to
the great challenges of data heterogeneity existing
in multiple references. To this end, we present mtSC,
a flexible single-cell assignment framework that inte-
grates multiple references based on multitask deep
metric learning designed specifically for cell type
identification within tissues with multiple single-cell
sequencing data as references. We evaluated mtSC
on a comprehensive set of publicly available bench-
mark datasets and demonstrated its state-of-the-art
effectiveness for integrative single-cell assignment
with multiple references.

INTRODUCTION

Single-cell transcriptomics is indispensable for identifying
and characterizing the cellular composition of complex tis-
sues and organisms (1–6). In the process of single-cell RNA
sequencing data analysis, cell type identification is the fun-
damental step for downstream analysis. Recently, cell type
assignment strategies without prior marker gene annota-
tions have been presented (7–13). These strategies select one
labeled single-cell sequence dataset as the reference to auto-
matically assign query cells with cell types in the reference
by measuring the transcriptional profile similarity between
the query cell and reference cells, and prior cell type-specific
marker gene information is not necessarily required in this
process. The single-cell assignment strategy has been indi-
cated to be helpful for cell type identification, but it relies
heavily on the quality and quantity of the reference datasets
(14). Most existing methods, however, are designed to apply

one preselected reference dataset for the assignment, lead-
ing to two challenges; i.e. (i) the limited number of cell types
and cells in one reference will substantially influence the as-
signment results, which may result in unassigned or incor-
rect cell assignments and (ii) the reliability of the reference
dataset will also influence the assignment results. Noise or
incorrectly annotated cell types in the reference dataset will
result in incorrect cell assignments (14). These issues are ex-
pected to be addressed by integrating multiple single-cell
reference datasets for the same kind of tissue (7,11,12), and
an efficient integration strategy is required.

Basically, there are three levels of integration strate-
gies: the data level, the algorithm level and the decision
level. Data-level integration involves the integration of
multiple datasets into one dataset by reducing batch ef-
fects. Algorithm-level integration involves the design of ef-
ficient algorithms for model integration, while the different
datasets remain separate. For example, multitask learning
can be considered an algorithm-level integration strategy
(15). Decision-level integration treats the data and mod-
els separately while integrating individual assignment re-
sults by an ensemble strategy. Currently, only a few methods
have been specifically presented for single-cell assignment
with multiple references (7,11,12). These methods mainly
adopt two strategies: (i) data-level integration by integrat-
ing multiple datasets into one reference for single-cell as-
signment (12) and (ii) decision-level integration by per-
forming separate single-cell assignments for individual ref-
erence datasets, where the final cell type identification is
achieved by ensembling the individual assignment results
(7,11). Although both strategies take advantage of mul-
tiple reference datasets, they have limitations: (i) the cur-
rent data-level integration method relies heavily on batch-
effect correction methods. These batch-effect correction
methods commonly face the problem of overcorrection
and often transform the original feature (gene expression)
into a comprehensive variable (12,16–20), which will ad-
versely affect the assignment performance. (ii) The current
decision-level integration method does not consider the re-
lationships among the reference datasets during training;
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therefore, it does not obtain the maximum values of these
references.

In this study, we propose mtSC, which is an efficient in-
tegration strategy for single-cell assignment with multiple
references that takes advantage of both algorithm-level and
decision-level integration. We do not adopt data-level in-
tegration to avoid the overcorrection of the batch effect.
In this way, mtSC provides a flexible and dynamic way to
include related reference datasets of interest. In our pre-
vious study (13), metric learning was proven to be effec-
tive for single-cell assignment. Specifically, mtSC presents a
multitask deep metric learning-based framework for single-
cell assignment with multiple references. It regards each
dataset as an individual task to train a multitask-based deep
neural network for single-cell assignment rather than di-
rectly integrating all datasets into one reference (data-level
integration) or directly combining the individual assign-
ment results (decision-level integration). Intuitively, multi-
task learning for multiple reference datasets can underline
the common information existing in multiple references for
batch-effect correction. The different information available
in multiple references can be complementary to improve
the overall assignment performance. As a result, we eval-
uated mtSC on 27 benchmark datasets for different tissues
and proved its state-of-the-art effectiveness for integrative
single-cell assignment with multiple references.

MATERIALS AND METHODS

Multiple reference datasets for benchmarking integrative
single-cell assignment

We evaluated mtSC on 27 single-cell assignment bench-
mark datasets which were curated from four studies in-
cluding three tissues: peripheral blood mononuclear cells
(PBMCs) (21,22), the brain (23,24) and the pancreas
(25–28) (Supplementary Table S1). For all 27 datasets,
cell types with <10 cells were removed because they
do not contain enough information and are unreliable
for subsequent assignment. In the dataset generated by
Segerstolpe et al. (27), cells labeled ‘not applicable’ were
removed. In the dataset generated from Xin et al. (28),
cells labeled ‘alpha.contaminated’, ‘beta.contaminated’,
‘gamma.contaminated’ and ‘delta.contaminated’ were re-
moved because they likely corresponded to cells of lower
quality. In the dataset generated from Tasic et al. (24),
four cell types, ‘L6b’, ‘Pvalb’, ‘Sst’ and ‘Vip’, were retained
to match the names of cell types in the other three brain
datasets (23). For ‘PBMC-Mereu’ (22), 12 datasets were
used (Supplementary Table S1), excluding the Smart-seq2-
based dataset, which was too small.

Data preprocessing

The data preprocessing step of mtSC consists of three parts:
cell quality control, rare cell type filtering and gene ex-
pression profile formatting. mtSC evaluates the cell quality
based on strict criteria following three commonly used con-
siderations, namely, the number of genes detected (default
>500), the number of unique molecular identifiers induced
(default >1500) and the percentage of mitochondrial genes

detected (default <10% among all genes). Only cells satisfy-
ing all three criteria are retained to construct the reference
data. Then, all the datasets were normalized, i.e. scaling to
10 000 and then with log(counts+1). Next, mtSC removes
rare cell types with <10 cells because such cell types do
not contain enough information and are unreliable for sub-
sequent assignment. Finally, all the datasets are processed
into an identical format, i.e. expression profiles with the
union of the genes in all the multiple reference datasets. If
the query dataset does not contain a gene in the gene union
of the reference datasets, the column of the gene will be filled
with zeros.

Model learning of mtSC for integrative single-cell assignment

In the model learning stage, mtSC establishes a multitask
deep metric learning (DML) model trained on multiple ref-
erence datasets simultaneously. For DML, the N-pair loss
(29) is used as the loss function. The DML neural network
that we used contains an input layer, a hidden layer and an
output layer. The input layer has a number of nodes equal
to the genes of the reference. The hidden layer and output
layer have 500 and 20 nodes, respectively.

mtSC extends single-task DML to a multitask learning
framework by sharing the model parameters among tasks.
Given all or part of m related learning tasks, multitask
learning aims to improve the model learning for a single task
by utilizing the knowledge contained among the m tasks
(30). On the basis of the single-task DML, we add the loss
of all the tasks together and update the parameters through
the backpropagation algorithm in each iteration. All the
tasks share model parameters of all the layers during the
training process.

The application of the N-pair loss consists of two parts:
batch construction and calculation. For the batch construc-
tion of the N-pair loss, {(x1, x+

1 ) · · ·, (xN, x+
N)} is defined

as N pairs of cells from N different cell types, in which xi �=xj

∀ i�=j. Then, N tuples denoted by {Si }N
i = 1 are built from the

N pairs, where Si = {xi , x+
1 , x+

2 , · · ·, x+
N}. Here, xi is

the query for Si , x+
i is a positive example, and x+

j ( j �= i )
are the negative examples. xi and x+

i are two cells of the
same cell type, and x+

j are the cells with different cell types
different from xi .

The calculation of the N-pair loss can be formulated as
follows:
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in which f(·; θ ) is an embedding kernel defined by a deep
neural network, fi and f +

i are embedding vectors of two
cells of the same cell type and f +

j are embedding vectors of
cells whose cell types are different from xi .

Model parameters of mtSC

The neural network model was implemented in Python with
PyTorch. The Adam optimizer is used as the optimizer. The
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initial learning rate was set to 0.0005, and the other param-
eters of the Adam optimizer were the defaults. The number
of training epochs was set to 300. The L2 regularization rate
was set to 0.05. Additionally, sensitivity analysis was per-
formed for these parameters (Supplementary Figure S1 and
Supplementary Table S2). The results showed that mtSC is
not sensitive to these parameters with a good robustness.

Query cells assignment

After model learning, the trained parameter-shared deep
metric learning network (PS-DMLN) was obtained. Then,
query cell assignment can be performed. First, cell qual-
ity control is optional for users, and the query data were
scaled to 10 000 and normalized with log(counts+1). If the
query dataset does not contain a gene in the gene union of
the reference datasets, the column of the gene will be filled
with zeros. Next, with the trained model, the query cells
were transformed to the same embedding space as the trans-
formed references. Then, the transformed query dataset was
assigned to each transformed reference dataset. Specifically,
for each transformed reference dataset, mtSC carried out a
cell search by measuring the transcriptional similarity be-
tween query cells and the cell cluster centroid of each trans-
formed reference dataset. In our study, the Pearson correla-
tion coefficient was adopted as in our previous study (13).
Finally, the query cells obtained the predicted cell types with
the highest similarity among all the transformed reference
datasets.

Benchmarking existing tools for integrative single-cell assign-
ment

To evaluate the performance of mtSC, three existing tools
for multiple references were compared: scmap-cluster (11),
SingleR (7) and Seurat v3 (12). In all the analysis of
our study, for a fair comparison, ‘threshold = 0’ was set
for scmap-cluster because mtSC does not assign query
cells with an ‘unassigned’ result. For SingleR, ‘fine.tune =
FALSE’ was set because the fine-tuning process of SingleR
is extremely time consuming (14). For Seurat v3, all the
parameters were the default values. For all benchmarks,
scmap-cluster, SingleR and Seurat v3 were trained and
tested with CPU Intel Xeon Platinum 8165 2.3-3.7GHz. As
a deep learning based model, mtSC was trained with GPU
1080Ti and tested with the same CPU as those of the other
methods.

To further prove the superiority of mtSC, we compared
mtSC with a broader selection of other comparable single
reference based methods listed in previous benchmark (14),
including CHETAH (31), scID (32), ACTINN (10), SVM
(33), NMC (33), RF (33), LDA (33) and kNN(k = 9) (33),
in which CHETAH, scID, ACTINN and NMC cannot sup-
port decision level integration and LDA cannot support
data level integration. For CHETAH, ‘thresh = 0’ was set.
For other methods, all the parameters were the default val-
ues.

Evaluation criteria for integrative single-cell assignment

The macro-F1 score was used to evaluate the performance
of the different methods. First, the precision and recall of

each cell type were calculated. Then, the macro-F1 score
was calculated as listed below:

macro − F1 = 1
N

N∑
i = 1

2 ∗ Precisioni ∗ Recalli

Precisioni + Recalli

in which N denotes the number of cell types in a dataset and
Precisioni and Recalli are the precision and recall of the
i-th cell type in the dataset.

Multiple reference databases built into mtSC

To facilitate the broad application of mtSC for single-cell
assignment with multiple reference datasets, we provide not
only the mtSC Python package but also the pretrained mod-
els for the 27 datasets tested in our study for direct utiliza-
tion (Supplementary Table S1).

These multiple reference datasets covered three tissues:
the brain, pancreas and PBMCs. They can be directly and
successfully applied to the related single-cell assignment
task. The Python package and the pretrained assignment
models can be downloaded from GitHub (https://github.
com/bm2-lab/mtSC).

RESULTS

Overview of mtSC

mtSC is a multitask deep metric learning-based framework
for single-cell assignment with multiple reference datasets.
Generally, the information contained in each reference
dataset can be divided into two parts: batch-effect noise
and underlying real biological information (Figure 1). We
assumed that the common information of each reference
dataset is the underlying real biological information, since
although batch effects generated from different experiments
exist, the underlying real biological information should re-
main the same across the different datasets generated from
the same tissues. By applying multitask deep metric learn-
ing, mtSC is able to obtain the underlying real biological
information of each reference dataset. Specifically, mtSC
comprises two main steps: model learning and cell assign-
ment (Figure 1 and see Materials and Methods section).

In the model learning stage (Figure 1A), mtSC estab-
lishes a multitask deep metric learning model trained on
multiple reference datasets simultaneously. First, deep met-
ric learning (DML) is applied to learn an optimal mea-
surement fitting the relationship among cells in individual
datasets, and the N-pair loss (29) is used as the loss function
for model training (Figure 1A and see Materials and Meth-
ods section). By applying DML, an optimal measurement is
learned based on the prior sample similarity and dissimilar-
ity information, making cells with the same label more sim-
ilar and cells with different labels more dissimilar (Figure
2A, B, D and E and Supplementary Figure S2). Then, mtSC
extends DML to a multitask learning framework by sharing
model parameters between tasks to construct a parameter-
shared deep metric learning network (PS-DMLN) (Figure
1A and see Materials and Methods section), which is able to
utilize the complementary information from different refer-
ence datasets to boost the cell assignment performance. Fi-
nally, mtSC obtains individual transformed references un-

https://github.com/bm2-lab/mtSC
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Figure 1. The mtSC workflow. (A) The model learning process of mtSC. Each dataset is considered a single task, and a corresponding loss is calculated.
All the losses are added together and utilized to update the model parameters through a backpropagation algorithm. (B) The cell assignment process of
mtSC. The trained PS-DMLN is utilized to transform the query cells. Then, the transformed query cells are compared against transformed reference cells,
and the predicted cell type with the highest similarity among all the transformed reference datasets is obtained.

der the multitask learning framework, where the real bio-
logical information is uncovered and the batch effect be-
tween different reference datasets is reduced. These trans-
formed references will be used in the following cell assign-
ment process.

In the cell assignment stage (Figure 1 and see Materials
and Methods section), by applying the model trained in the
previous stage, the query dataset is first transformed to the
same embedding space as that of the transformed reference
datasets. Then, the transformed query dataset is assigned
to proper cell types by comparing their transcriptional pro-
files with individual transformed reference datasets. Specif-
ically, for each transformed reference dataset, mtSC carries
out a cell search by measuring the transcriptional similar-
ity between the transformed query cells and the cell cluster
centroid of each transformed reference dataset. Finally, the
query cells are assigned to the proper cell type with the high-
est similarity among all the transformed reference datasets,
which is a kind of decision-level integration strategy based
on the individual assignment results.

Validation of the rationale of mtSC

We first present an intuitive validation of the rationale of
mtSC for single-cell assignment with multiple references. To
this end, we collected 27 datasets (Supplementary Table S1)
from four studies of three tissues: two studies on periph-

eral blood mononuclear cells (PBMCs) (21,22), one study
on the brain and one study on the pancreas. For PBMCs,
the first study (22) involved 12 datasets from 12 different se-
quencing platforms (‘PBMC-Mereu’), and the second study
(21) involved 7 datasets from 7 different sequencing plat-
forms (‘PBMC-Ding’). For brain tissue, the study involved
four brain datasets (23,24) with different sources. For pan-
creas tissue, the study involved four commonly used pan-
creas datasets (25–28).

For illustration purposes, we first used ‘PBMC-Mereu’
as an example to demonstrate the rationale of mtSC. The
multiple datasets contained in ‘PBMC-Mereu’ were used
as multiple references to train the model, and then the
transformed reference datasets were obtained. To intuitively
show why and how mtSC works, we compared the clus-
tering results of the reference datasets transformed after
principal component analysis (PCA), deep metric learning
(DML) and multitask deep metric learning (mtSC) by uni-
form manifold approximation and projection (UMAP) re-
spectively (Figure 2A–F and Supplementary Figure S2).
For illustration purposes, we used the ‘Pbmc chromium2’
dataset in ‘PBMC-Mereu’ as an example plot (Figure 2A–
F and Supplementary Table S1). As we can see in Figure 2A
and B, compared to PCA, DML is able to make cells within
the same cell type become more similar, while cells among
different cell types become more dissimilar, as shown in our
previous work on scLearn (13). However, several specific
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Figure 2. Comparison of the transformations of PCA, DML and mtSC. (A) Visualization of the clustering results with UMAP after PCA transformation
on the ‘Pbmc chromium2’ dataset. (B) Visualization of clustering results with UMAP after DML transformation on the ‘Pbmc chromium2’ dataset. (C)
Visualization of the clustering results with UMAP after mtSC transformation on the Pbmc chromium2 dataset. (D) Similarity heatmap calculated with the
Pearson correlation coefficient after PCA transformation on the ‘Pbmc chromium2’ dataset. (E) Similarity heatmap calculated with the Pearson correlation
coefficient after DML transformation on the ‘Pbmc chromium2’ dataset. (F) Similarity heatmap calculated with the Pearson correlation coefficient after
mtSC transformation on the ‘Pbmc chromium2’ dataset. (G) The comparison of the SD of similarity between any two cell types within ‘PBMC-Mereu’
transformed by DML and mtSC. The white diamond represents the mean value. SD stands for standard deviation. (H) The comparison of the SD of
similarity between any two cell types within ‘PBMC-Ding’ transformed by DML and mtSC. (I) The comparison of SD of similarity between any two cell
types within the brain transformed by DML and mtSC. (J) The comparison of SD of similarity between any two cell types within the pancreas transformed
by DML and mtSC.

cell types, such as CD4+ T cells and CD8+ T cells, can-
not be separated properly by DML due to inherent noise.
Nevertheless, with the help of other datasets in ‘PBMC-
Mereu’, mtSC, which is a multitask learning-based DML
framework, was able to further distinguish CD4+ T cells
and CD8+ T cells properly (Figure 2D–F).

To further show the generalizability of mtSC, all four
studies were used in the following tests. Intuitively, we as-
sume that if the reference datasets transformed by multitask
learning indeed obtained the common information among
all the datasets, the similarity between any two cell types
within each reference dataset transformed by mtSC should
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be more consistent among all the reference datasets than
those transformed by DML. The comparison results are
shown in Figure 2G and H. As expected, mtSC obtained
more consistent results than DML in all four studies, fur-
ther validating the superiority and generalizability of mtSC.
More detailed information on these comparisons is shown
in Supplementary Figure S3 and Supplementary Tables S3–
S6.

Benchmarking mtSC with available integrative single-cell as-
signment strategies for multiple references

Current methods for single-cell assignment with multiple
references mainly adopt two strategies: (i) Data-level inte-
gration first integrates multiple reference datasets into one
reference dataset by reducing the batch effects (12), and then
single-cell assignment can be performed on this integrated
reference by any reported method. (ii) Decision-level inte-
gration performs single-cell assignment for individual ref-
erence datasets separately, and the final cell type identifica-
tion is achieved by ensembling individual assignment results
(7,11). To further prove the superiority of mtSC, mtSC was
compared against traditional data-level and decision-level
integration strategies.

In this test, ‘PBMC-Mereu’, ‘PBMC-Ding’, ‘Brain’ and
‘Pancreas’ were used as the benchmark studies to evalu-
ate the performance of different integration strategies for
single-cell assignment with multiple reference datasets (Fig-
ure 3A and Supplementary Table S7). For data-level inte-
gration, each dataset among the multiple datasets was used
as the query, and the others were integrated into one dataset
as the reference. Seurat v3 (12) was used to integrate the
multiple reference datasets. Then, DML was used to train
the integrated reference dataset and predict the cell types
(DML+data-level integration). For the decision-level inte-
gration strategy, each dataset among the multiple datasets
was used as the query, and the other datasets were taken as
the multiple reference datasets. Then, DML was performed
to predict cell types with the highest similarity of cell types
among all the reference datasets (DML+decision-level in-
tegration). In addition, for both integration strategies, we
also used only one reference for single-cell assignment as
the baseline, and DML was also performed for consistent
comparisons. Specifically, in this case, each of the multi-
ple datasets was used as a query dataset, and each of the
remaining datasets was taken as an individual reference.
Then, DML was used to train the model to predict the
cell types. For each query dataset, the average macro-F1
score for all the remaining individual references was calcu-
lated as its final result (DML+single reference). It should
be noted that in our study, the integration of multiple ref-
erence datasets can help to address the issue that the spe-
cific cell types of query datasets don’t exist in one reference
when multiple references are available, therefore, for a fair-
ness comparison purpose, the benchmark scenario is set as
all the query cell types are included in the reference datasets,
and the macro-F1 score was used as the evaluation metric.

In Figure 3A and Supplementary Table S7, it can
be clearly seen that for all four strategies, the multiple
reference-based integration strategies generally achieved a
better performance than the single reference-based strate-

gies, while among all the multiple reference-based integra-
tion strategies, mtSC obtained the best performance, prov-
ing its superior generalizability for single-cell assignment
with multiple references.

Benchmarking mtSC with existing tools for single-cell assign-
ment with multiple references

Although mtSC has been proven to be more effective than
other traditional integration strategies, it was further com-
pared to existing tools for single-cell assignment with mul-
tiple references. These tools include scmap-cluster (11),
SingleR (7) and Seurat v3 (12). scmap-cluster and Sin-
gleR adopt a decision-level integration strategy, and Seu-
rat v3 adopts a data-level integration strategy for single-
cell assignment with multiple references. Since, theoreti-
cally, scmap-cluster and SingleR can also adopt the data-
level integration strategy, for a comprehensive comparison,
in the evaluation of the data-level integration strategy, Seu-
rat v3, scmap-cluster and SingleR were all tested.

Specifically, each dataset in each study (‘PBMC-Mereu’,
‘PBMC-Ding’, ‘Brain’ and ‘Pancreas’) was considered a
query dataset, and the other datasets were taken as the mul-
tiple reference datasets. In the evaluation of decision-level
integration, scmap-cluster and SingleR were tested with
their own designed processes for multiple reference assign-
ment; i.e. the model was trained on each reference, and the
cell type was identified with the highest similarity among
all the multiple references. In the evaluation of the data-
level integration strategy, the reference datasets were first
integrated into one integrative dataset with Seurat v3; then,
Seurat v3, scmap-cluster and SingleR were all implemented
on this integrative reference for single-cell assignment.

From Figure 3B and Supplementary Table S8, it is
clear that the data-level integration-based tools generally
performed better than the decision-level integration-based
tools, while mtSC achieved the best performance for all
four studies, further proving its superiority. Additionally,
a broader comparison between mtSC and other compara-
ble single reference based methods (10,14,31–33) was per-
formed and further proved the superiority of mtSC (Sup-
plementary Figure S4 and Supplementary Table S9 and see
Materials and Methods section). To further investigate in
which cell types mtSC achieved the greatest improvement
upon other competing methods, we compared the macro-
F1 for each cell type on ‘PBMC-Mereu’ and ‘PBMC-Ding’
studies, since the two studies shared several of the com-
mon cell types. As shown in Figure 3C and Supplemen-
tary Table S10, in the common cell types of the two stud-
ies, mtSC obtained greater improvement for CD14+ Mono-
cytes and CD4+ T cells. CD14+ Monocytes are very simi-
lar to CD16+ Monocytes and FCGR3A+ Monocytes and
CD4+ T cells are very similar to CD8+ T cells, so they are
difficult to be distinguished in the original feature space (see
Figure 2A–F and Supplementary Figure S2). With multi-
task deep metric learning, mtSC can integrate the shared
information of each dataset to facilitate the correct assign-
ment of similar cell types. This result is consistent with
our prior validation of the rationale of mtSC. It should be
noted that data-level integration method, such as Seurat v3,
rather than decision-level integration, is limited with over-
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Figure 3. Evaluating the performance of mtSC with different multiple references based single-cell assignment strategies and methods. (A) The macro-
F1 scores of the different single-cell assignment strategies for ‘PBMC-Mereu’, ‘PBMC-Ding’, ‘Brain’ and ‘Pancreas’, respectively. The white diamond
represents the mean value. (B) The macro-F1 scores of the different existing tools with different integration strategies for ‘PBMC-Mereu’, ‘PBMC-Ding’,
‘Brain’ and ‘Pancreas’, respectively. (C) The Macro-F1 of each cell type for different methods on ‘PBMC-Mereu’ and ‘PBMC-Ding’ studies. The red frames
and bold text are cell types with greater improvement on both studies. (D) The macro-F1 of single cell assignment for Seurat v3 and mtSC, where specific
cell types only exist in one of the multiple references for ‘Brain’ datasets. (E) Single CPU (SingleR, scmap-cluster and Seurat v3) and single GPU (mtSC)
execution time to train a model based on the references for existing tools. Solid lines are loess regression fitting (span = 2), implemented with R function
geom smooth(). (F) Single CPU (SingleR, scmap-cluster, Seurat v3 and mtSC) execution time to test query cells for existing tools. Solid lines are loess
regression fitting (span = 2), implemented with R function geom smooth().

correction issue, to further prove the superiority of mtSC in
terms of overcorrection, an additional comparison between
Seurat v3 and mtSC is performed. In this scenario, tissues
from individual controls might have rare cell types not cap-
tured in other experiments using the same tissue, and over-
correction may occur when integrating these datasets to-
gether. Therefore, we evaluated the assignment performance
of mtSC and Seurat v3 with rare cell types that only ap-
peared in one of the multiple references. Specifically, in the
four ‘Brain’ datasets, there are five cell types which only ap-
pear in two datasets, each of which can be considered as
query dataset, and the other dataset can be combined with
the rest two datasets together as multiple references. Then

the macro-F1 scores of the five cell types are calculated with
Seurat v3 and mtSC. The result is shown in Figure 3D and
Supplementary Table S11. We can see that mtSC obtains
better performance than Seurat v3, proving its superiority
in terms of overcorrection.

The computational efficiency of single-cell assignment
methods is important as cell number increases. The execu-
tion time for single cell assignment consists of training time
and querying time, and saving the querying time is more im-
portant than the training time, since users can use the pre-
trained models to query cells. Our comparison of execution
time (Figure 3E and F and Supplementary Tables S12 and
S13 and see Materials and Methods section) indicated that
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Figure 4. The performance of mtSC as the number of reference datasets increases for ‘PBMC-Ding’. (A) The Macro-F1 scores for ‘PBMC-Ding’. The
white diamond represents the mean value. (B) The Macro-F1 scores for query dataset ‘Pbmc-SW’. (C) The Macro-F1 scores for query dataset ‘Pbmc-CL’.
(D) The Macro-F1 scores for query dataset ‘Pbmc-iD’. (E) The Macro-F1 scores for query dataset ‘Pbmc-DR’. (F) The Macro-F1 scores for query dataset
‘Pbmc-10Xv2’. (G) The Macro-F1 scores for query dataset ‘Pbmc-SM2’. (H) The Macro-F1 scores for query dataset ‘Pbmc-10Xv3’.

mtSC consumes less time than that of Seurat v3 to train a
model. For querying process, mtSC is also very fast (<1 min
for 9000 query cells).

mtSC performs increasingly better as the number of reference
datasets increases

In this study, we further investigated the impact of the num-
ber of references on the performance of mtSC. We used
‘PBMC-Ding’ as an example. mtSC was trained with differ-
ent numbers of reference datasets, and then the correspond-
ing macro-F1 score was calculated to show the trend in the
performance as the number of reference datasets increased.
Specifically, each time, we randomly selected one dataset
from the 7 datasets as the query dataset and selected 2 to 6
datasets without replacement from the remaining datasets
as the multiple reference datasets (see Materials and Meth-
ods section). This process was repeated five times to reduce
randomness.

As shown in Figure 4 and Supplementary Table S14,
mtSC generally performs increasingly better as the num-
ber of reference datasets increases (Figure 4A). More de-
tailed information on each query dataset is shown in Figure
4B–H. It is clearly seen that when the performance is rel-
atively lower in terms of the macro-F1 score in the begin-

ning, the improvement becomes more evident as the num-
ber of reference datasets increases (Figure 4B). Such an im-
provement obtained by increasing the related references is
of great importance in the era of explosive growth of single-
cell datasets. To this end, mtSC can be applied to integrate
a growing number of single-cell datasets to obtain a better
performance for single-cell assignment.

mtSC enables cross-species single-cell assignment

Single-cell assignment depends heavily on the reference se-
quencing datasets. For specific tissues, sequencing datasets
are difficult to collect and rarely available. For example, due
to ethical issues, single-cell sequencing data for the human
brain are rarely available, and it is of great importance to
be able to take advantage of tissue sequencing data from
other model animals, such as monkeys or mice, for human
brain cell annotations. To this end, we investigated the po-
tential utility of mtSC in integrating mouse brain single-
cell sequencing data for improved human brain cell assign-
ment. In this way, one human brain dataset (23) and four
mouse brain datasets (23,24) were collected. We first ran-
domly selected a small portion of the human brain dataset,
together with the other four mouse brain datasets, as mul-
tiple references to mimic the scenario where human brain



PAGE 9 OF 11 Nucleic Acids Research, 2021, Vol. 49, No. 14 e80

Figure 5. The performance of mtSC for cross-species single-cell assignment. mtSC trained with a mixture of multiple references outperformed the methods
trained with only the human brain dataset as the reference. The smaller the proportion of the human brain dataset taken as the reference, the better the
improvement in mtSC is.

single-cell sequencing data are rarely available, while mouse
brain single-cell sequencing data are relatively easy to col-
lect. Then, the single-cell assignment is performed by us-
ing the remaining human brain dataset as the query. In this
test, DML was used as the baseline. It should be noted
that for a fair comparison, decision-level integration is not
adopted by mtSC in this test. Only the reference human
brain dataset was used to assign the remaining human brain
cells, while other mouse brain datasets were included in the
model training under only the multitask learning frame-
work and were not considered at the final decision level.
The rationale behind this test is that due to the heterogene-
ity between different species, the mouse brain datasets can
have advantages during model training, while they should
be avoided when applying directly at the final decision level
for human brain assignment.

From Figure 5 and Supplementary Table S15, it is clear
that mtSC trained with a mixture of multiple references out-
performed the methods trained using only the human brain
dataset as the reference. In addition, such improvement be-
comes more evident when the proportion of human brain
reference datasets decreases, further indicating the effective-
ness of mtSC for cross-species single-cell assignment when
there are rare reference tissue sequencing data available.

DISCUSSION

In this study, we present a novel, flexible and generalized
multitask deep metric learning-based framework, mtSC,
for single-cell assignment based on multiple references.
With the development of single-cell sequencing technolo-
gies, substantial single-cell reference datasets are accumu-

lated, which can be integrated to improve cell annotations.
Previous strategies for single-cell assignment with multiple
references rely on data- or decision-level integration, while
limitations remain. Different from the previous strategies,
mtSC regards each reference dataset as a task, and different
tasks can be complementary to improve single-cell assign-
ment, while the overcorrection of the batch effect can be
avoided. Such a novel integration strategy provides a flexi-
ble and reliable way to integrate related reference datasets.
Our comprehensive validation and benchmark on 27 previ-
ously published datasets indicated that mtSC has achieved
state-of-the-art performance for single-cell assignment with
multiple references.

Two additional advantages of mtSC were proven in this
study: (i) mtSC performs increasingly better as the number
of reference datasets increases and (ii) mtSC enables cross-
species single-cell assignment, especially for specific tissues
with very few sequencing datasets available for a specific
species. These two characteristics of mtSC are of great po-
tential utility when much more sequencing data on different
species have accumulated in the future.

Single-cell assignment is important and challenging with
an increasing number of complex cell atlases becoming
available (34,35). Although many existing single-cell assign-
ment methods have been presented, issues exist. For exam-
ple, for rare cell types (<10 cells), most of the single-cell as-
signment methods, including the current version of scLearn
(13) and mtSC, are not satisfactory. In the current study,
these cell types were excluded because they contain limited
information and are unreliable for subsequent assignment.
Therefore, efficient cell assignment and detection of rare cell
types remain challenging (36,37).
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DATA AVAILABILITY

The 27 single cell assignment benchmark datasets were
curated from four studies including three tissues: Periph-
eral blood mononuclear cells (PBMCs) (21,22), the brain
(23,24) and the pancreas (25–28) (Supplementary Table
S1). The four pancreas datasets (25–28) and one of brain
datasets (24) was collected in previous work of scmap (11)
(https://hemberg-lab.github.io/scRNA.seq.datasets), and
the other three brain datasets and seven datasets in ‘PBMC-
Ding’ (21) were curated from the following benchmark
study (14) (https://doi.org/10.5281/zenodo.3357167). The
12 datasets in ‘PBMC-Mereu’ (22) were from GSE133549,
and the corresponding RData file can be downloaded
in https://www.dropbox.com/s/i8mwmyymchx8mn8/sce.
all classified.technologies.RData?dl=0. All these datasets
were converted into Bioconductor SingleCellExperiment
(http://bioconductor.org/packages/SingleCellExperiment)
class objects. mtSC is developed as python package avail-
able at https://github.com/bm2-lab/mtSC, built in with 27
datasets within 3 tissues and pre-trained models, which
can be utilized directly to facilitate a broad applications of
single cell assignment with multiple references.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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