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Abstract

Background: Diagnosis of soft tissue sarcomas (STS) is challenging. Many remain unclassified (not-otherwise-specified, NOS)
or grouped in controversial categories such as malignant fibrous histiocytoma (MFH), with unclear therapeutic value. We
analyzed several independent microarray datasets, to identify a predictor, use it to classify unclassifiable sarcomas, and
assess oncogenic pathway activation and chemotherapy response.

Methodology/Principal Findings: We analyzed 5 independent datasets (325 tumor arrays). We developed and validated a
predictor, which was used to reclassify MFH and NOS sarcomas. The molecular ‘‘match’’ between MFH and their predicted
subtypes was assessed using genome-wide hierarchical clustering and Subclass-Mapping. Findings were validated in 15
paraffin samples profiled on the DASL platform. Bayesian models of oncogenic pathway activation and chemotherapy
response were applied to individual STS samples. A 170-gene predictor was developed and independently validated (80-85%
accuracy in all datasets). Most MFH and NOS tumors were reclassified as leiomyosarcomas, liposarcomas and fibrosarcomas.
‘‘Molecular match’’ between MFH and their predicted STS subtypes was confirmed both within and across datasets. This
classification revealed previously unrecognized tissue differentiation lines (adipocyte, fibroblastic, smooth-muscle) and was
reproduced in paraffin specimens. Different sarcoma subtypes demonstrated distinct oncogenic pathway activation patterns,
and reclassified MFH tumors shared oncogenic pathway activation patterns with their predicted subtypes. These patterns
were associated with predicted resistance to chemotherapeutic agents commonly used in sarcomas.

Conclusions/Significance: STS profiling can aid in diagnosis through a predictor tracking distinct tissue differentiation in
unclassified tumors, and in therapeutic management via oncogenic pathway activation and chemotherapy response
assessment.
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Introduction

Soft tissue sarcomas (STS) are a heterogeneous group of

mesenchymal tumors traditionally classified according to their

morphological resemblance to presumptive cells of origin such as

fibroblasts, muscle cells, adipocytes or peripheral nerve-sheath

cells [1,2,3]. Given their heterogeneity, sarcomas are ideal

candidates for molecularly targeted therapies [4,5]. However,

the therapeutic value of current histology-based classification

remains unclear. In addition, precise classification is only partially

possible, because current histopathologic classification criteria are

often inconclusive reflecting the overlapping boundaries between

conventional diagnostic groups [6]. This is best exemplified in the

case of malignant fibrous histiocytoma (MFH), the second largest

subtype by conventional criteria (approximately 20% of cases [7]),

a controversial diagnosis which has lately been called in doubt

[2,8]. Furthermore, a significant fraction of STS tumors are

unclassifiable, presently called ‘‘not otherwise specified’’ (NOS)

[8].

Gene expression profiling has been used in the study of STS

[9,10,11]. However, these studies were limited by sample size or

sample selection, thus clinically applicable diagnostic classifica-
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tion models either have not been reported or have not been

independently validated, particularly for the MFH, NOS, and

pleomorphic subtypes [12,13]. Furthermore, the therapeutic

utility of their findings was limited by the inability to predict

activation status of relevant oncogenic pathways in a given

individual tumor specimen, as opposed to presenting average

expression patterns in predefined tumor subgroups. In order to

address these challenges, we integrated five publicly available

microarray datasets originating from different laboratories

around the world, to develop and validate a class predictor,

which we then used to molecularly characterize and reclassify

MFH and uncategorized sarcomas. Further, we validated these

findings in a new group of paraffin derived tumors. Finally, in

order to assess the therapeutic relevance of genomic classifica-

tion, we used computational models to determine the activation

status of oncogenic pathways, for which specific targeted

inhibitors are in clinical development in sarcoma, and studied

the association of pathway activation with histologic subtype and

chemoresponse.

Results

Development of a multi-gene predictor in the training
dataset

We used study cohort 1 (NCI, the largest dataset including all 6

aforementioned subtypes) in order to train a nearest centroid

classifier of the 6 subtypes (LEIO, LIPO, RHAB, MPNST, SYN

and FIBRO) frequently presenting differential diagnosis problems,

(Figure 1). A single step 6-class model could not be developed

because of the significant gene expression overlap between

MPNST and SYN classes. Therefore a two-step classifier was

defined (Figure 2). In the first step, a 138-gene model distinguished

LEIO, LIPO, FIBRO, RHAB and a composite class including

MPNST and SYN. In the second step, the composite class is

separated into MPNST and SYN tumors using a 35-gene model.

Due to a partial gene overlap between the two-step predictors the

combined model included 170 genes.

This optimal predictor was 85% accurate for the 6 classes

(Figure 2 and Table S1). The genelists of the 1st and 2nd step

predictors are shown in Tables S3 and S4. The distinct expression

patterns of the first step and second step classifiers in the NCI

dataset are displayed in Figures 3 and 4 respectively. Detailed

training accuracies for all classes for the nearest centroid predictor

are shown in Tables S1 and S2.

Importantly, the predictor included several genes associated

with distinct differentiation states (i.e. fibroblastic, smooth muscle,

adipocytic and peripheral nerve differentiation) (Figure 3). Ap-

propriately, these genes were overexpressed in the corresponding

subtypes.

The 170-gene predictor accurately classifies STS subtypes
in four independent datasets

We mapped the 170-gene set across the different platforms of

the 4 datasets in study cohort 2, and despite the many technical

differences among them we were able to reproduce its perfor-

mance. Specifically, its accuracy was 86%, 78%, 79%, and 84% in

the MSKCC, Stanford, Japan and UK datasets, respectively by

leave one out cross validation (permutation p,0.001 in all cases)

(Figure 2, Table S1). Detailed accuracy, sensitivity and specificity

for each class in the training and validation datasets are shown in

Tables S1 and S2. Due to platform differences, a more direct

validation of the predictor accuracy was only possible among the 3

U 133 datasets, after allowing for gene content mismatch

compared with the NCI cDNA original predictor. Thus, training

the (modified) predictor on each of the U 133 datasets and

applying it to the other U 133 datasets, we obtained 70–75%

accuracy.

Reclassification of MFH and NOS samples using the
170-gene STS predictor

We used the 170-gene predictor in study cohort 3, to reclassify

76 MFH and 10 NOS samples. As noted, the MFH and NOS

samples were not used in the development or validation of the

predictor.

The majority (68 out of 76) MFH tumors were predicted as

liposarcomas (46%-35 samples), fibrosarcomas (29%-22 samples)

and leiomyosarcomas (14%-11 samples), while 7 out of 10 NOS

tumors (in the NCI dataset) were also predicted as liposarcomas

(3), leiomyosarcomas (3) and fibrosarcomas (1). The remaining

MFH and NOS tumors (11 samples) were predicted as malignant

peripheral nerve sheath tumors (4 samples), synovial sarcomas (6

samples) and rhabdomyosarcoma (1 sample).

‘Molecular match’ between reclassified MFH and NOS
samples and their corresponding STS subtypes

We reasoned that if our proposed MFH reclassification using

the 170-gene predictor is valid, it should reflect the overall

molecular similarity between reclassified MFH and their corre-

sponding subtypes, above and beyond the prediction by the 170-

gene predictor. We addressed this question both within each as

well as across datasets.

a. Molecular match by clustering within each dataset
We performed unsupervised hierarchical clustering and

assessed whether the MFH samples preferentially grouped with

samples from their predicted subtype using the top-33% variant

genes, i.e. 4200, 7428, 922 probe-sets in the NCI, Japan and

MSKCC, and Stanford datasets, respectively. Indeed, 58 out of

the 76 reclassified MFH samples (76%) clustered together with

samples from their predicted STS subtypes suggesting that the

170-gene predictor reflects an overall ‘molecular match’ between

them. Figure 5 and Figure S2 show hierarchical clustering of the

four datasets, where MFH samples reclassified as LIPO, LEIO,

FIBRO and SYN, clustered with conventional LIPO, LEIO,

FIBRO and SYN samples respectively. The specific clustering

results for the classification of MFH samples are presented in

Table S7.

Furthermore, MFH-samples predicted as LIPO (MFH-LIPO)

did not cluster exclusively with myxoid or with non-myxoid

liposarcomas; rather certain MFH-LIPO clustered with myxoid

while other MFH-LIPO clustered with non-myxoid liposarcomas

suggesting that our predictor is capturing information associated

with adipocyte differentiation irrespective of the myxoid or non-

myxoid subclassification (Figure S1).

The same analysis was performed for the NOS sample

predictions in the NCI dataset, and 6 out of the 10 NOS samples

clustered with their predicted subtypes (Figure 5).

b. Molecular match by Subclass Mapping across different
datasets

To strengthen the molecular relevance of the MFH reclassifi-

cation we investigated whether MFH samples were molecularly

similar with samples from their predicted STS subtype across

different datasets. To achieve this, we used the Subclass Mapping

(SubMap) methodology, specifically developed to assess the

commonality of subtypes/subclasses in independent and disparate

datasets (a candidate subclass is included in the analysis only if it

Sarcoma Genomic Classification
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contains at least 10% of all the samples of a dataset [14]). As

shown in Figure 6 (upper panel), MFH samples from the NCI and

Stanford datasets matched their predicted subtypes from the

MSKCC and Japan datasets despite their many technical

differences. Because of small sample size, this analysis could not

be performed for NOS tumors.

Figure 1. Consort Diagram (Study Design). A multi-class gene expression predictor for 6 major histologic subtypes* was developed in the
training dataset (study cohort 1) and validated in 4 independent datasets (study cohort 2). The predictor was used to reclassify MFH (Malignant
Fibrous Histiocytoma) and NOS (Not Otherwise Specified) tumors (study cohort 3) into known subtypes. The predictor’s performance
and capacity to classify unknown type sarcomas were also validated in paraffin STS samples (study cohort 4). * Liposarcoma (LIPO),
Leiomyosarcoma (LEIO), Fibrosarcoma (FBR), Malignant Peripheral Nerve Sheath Tumor (MPNST), Synovial Sarcoma (SYN), Rhabdomyosarcoma
(RHAB).
doi:10.1371/journal.pone.0009747.g001

Sarcoma Genomic Classification
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Reclassified MFH tumors appropriately overexpress
genes associated with distinct differentiation lines

To further demonstrate the molecular basis of reclassifying

MFH, we examined whether MFH samples overexpressed genes

associated with their predicted differentiation lines. Indeed, MFH

tumors predicted as liposarcomas (MFH-LIPO) overexpressed

genes associated with adipocyte differentiation compared to the

rest of the MFH tumors. Similarly, MFH tumors predicted as

leiomyosarcomas (MFH-LEIO) overexpressed genes associated

with smooth muscle differentiation and MFH sarcomas predicted

as fibrosarcomas (MFH-FIBRO) overexpressed genes associated

with fibroblast differentiation (Figure 6). We could not reliably

assess specific marker expression for MFH-MPNST, and MFH-

SYN given the small number of tumors predicted as these

categories. Figure S3 displays the fold upregulation of selected

genes associated with smooth muscle, adipocyte and fibroblast

differentiation in MFH tumors predicted as leio-, lipo- and

fibrosarcomas.

Utility of the STS predictor in unclassifiable paraffin
sarcoma specimens

We next evaluated the ability of our STS predictor to reclassify

formalin fixed paraffin embedded NOS samples in order to assess

its broader applicability for clinical practice and future large scale

clinical research. These NOS samples had been previously

evaluated by a sarcoma pathology expert (J.G) using state of the

art current histopathologic methodology and could not possibly be

classified into any of the known STS types.

Before applying our predictor to the unclassified samples, we

verified its accuracy in 10 STS samples with known diagnosis. We

trained the predictor (modified due to partial gene content

mismatch) on the combined U 133 datasets and directly applied it

on the independent DASL paraffin gene expression dataset. The

STS classifier accurately predicted 8 of the 10 samples,

demonstrating accuracy identical to that previously estimated in

the 5 public frozen-tissue based datasets, thus validating its

performance in samples with known diagnosis and in paraffin

tissue. We then directly applied our predictor to the 5

unclassifiable (NOS samples) within the paraffin cohort, and 4 of

them were classified as liposarcomas and 1 as leiomyosarcoma. We

then examined expression of tissue specific genes in the 4 NOS

samples classified as LIPO, and found that they appropriately

overexpressed genes associated with adipocyte differentiation

including adiponectin, insulin-like growth factor 1, and adipocyte

fatty acid binding protein 4 (3.1 fold, 2.4 fold, and 1.5 fold

upregulated (t test p = 0.06, 0.15 and 0.07 respectively), respec-

tively, as compared to the known non-LIPO samples, (3 LEIO, 2

SYN and 2 MPNST). These findings confirm the utility of the

classifier in real time and routinely collected paraffin sarcoma

samples and its capacity to detect previously unrecognized tissue

differentiation lineage in truly unclassified sarcoma tumors.

Figure 2. Predictor development and validation. A two-step 6-class predictor was identified in the NCI dataset and validated in the remaining
four datasets. First step: A 138-gene model classifies LEIO, LIPO, FBR, RHAB and a composite class including MPNST and SS. Second step: The
composite class is separated into MPNST and SYN tumors using a 35-gene model.
doi:10.1371/journal.pone.0009747.g002

Sarcoma Genomic Classification
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Figure 3. Distinct expression patterns of the first step 138-gene predictor in the NCI dataset. Selected predictor genes associated with
distinct differentiation states (smooth muscle, peripheral nerve, fibroblast and adipocyte differentiation) based on Gene Ontology or literature evidence.
doi:10.1371/journal.pone.0009747.g003

Figure 4. Distinct expression patterns of the second step 35-gene classifier in the NCI dataset. Selected genes overexpressed in synovial
and malignant peripheral nerve sheath tumors, are shown on the right, representing potential novel tissue differentiation markers.
doi:10.1371/journal.pone.0009747.g004

Sarcoma Genomic Classification
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Unique patterns of oncogenic pathway activation in STS
subtypes

In order to evaluate whether STS classification bears potential

biologic or therapeutic implications, we estimated the probability

of activation of known oncogenic pathways in individual samples,

using validated gene expression ‘‘read outs’’ previously generated

in vitro as a result of controlled experimental activation of these

pathways. We focused on Src, Ras and PI3K pathways, for which

pharmacologic inhibitors are currently in clinical development in

sarcoma, and we assessed tumors from the 3 Affymetrix

oligonucleotide U133A datasets (Japan, MSKCC and UK

datasets) in our study. Since these gene expression models of

pathway activation were generated using oligonucleotide Affyme-

trix arrays, and most Affymetrix probesets included in these

predictors were not present in the cDNA datasets, we did not

assess pathway activation in tumors from the 2 cDNA datasets as

these predictions would have been less reliable.

The probability of activation of the Src, Ras and PI3K

pathways was statistically significantly different between different

subtypes (Kruskal-Wallis p,0.001, p = 0.002, p = 0.021 respec-

tively). More specifically, FIBRO demonstrated higher probability

of Ras and PI3K pathway activation (Mann-Whitney p = 0.044

and p = 0.013 respectively) and LIPO demonstrated higher

probability of Src pathway activation (p,0.001) and lower

probability of PI3K pathway activation (p = 0.06) compared to

the rest of the samples (Table S8). Conversely, synovial sarcomas

were associated with statistically significantly lower probability of

Src and Ras pathway activation compared to the rest of the

samples (p = 0.005 and p,0.001 respectively). Finally, LEIO

samples did not show any particular pattern of activation of any of

the Src, Ras or PI3K pathways (Table S8).

Reclassified MFH share similar patterns of oncogenic
pathway activation with their corresponding subtypes

In order to assess whether MFH reclassification using our 170-

gene predictor is tracking specific oncogenic pathway activation

patterns, we evaluated the activation status of Src, Ras and PI3K

pathways in the 30 MFH samples of the U133 datasets using the

aforementioned gene expression ‘‘readouts’’. Similar to their

predicted STS subtypes, MFH sarcomas predicted as fibrosarco-

mas (MFH-FIBRO) had similarly high average probability of

PI3K pathway activation (0.99 vs 0.99 in MFH-FIBRO and

FIBRO respectively) and similarly low average probability of Src

pathway activation (0.01 vs 0.13 respectively). Furthermore, MFH

Figure 5. Assessment of MFH/NOS reclassification within each dataset. Genome-wide hierarchical clustering reveals that MFH samples
predicted as LIPO, LEIO, and SYN, clustered together with conventional LIPO, LEIO and SYN samples respectively. Similarly, NOS samples reclassified
as liposarcomas leiomyosarcomas and fibrosarcomas clustered together with conventional LIPO, LEIO and FBR samples respectively. For Stanford
dataset, the complete dendrogram is presented here. For the remaining datasets, due to size limitations, representative portions of the dendrograms
are shown. Full dendrograms are shown in Figure S2, which also demonstrate that 24% of MFH samples (in total) did not cluster with the predicted
subtypes.
doi:10.1371/journal.pone.0009747.g005
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sarcomas predicted as liposarcomas (MFH-LIPO) had similar

average probability of PI3K pathway activation (0.75 vs 0.73 in

MFH-LIPO and LIPO respectively). Similar to LEIO, MFH-

LEIO did not demonstrate any specific pattern of pathway

activation compared to the rest of the samples. There were only

two MFH samples predicted as synovial, so no firm conclusions

could be reached for this subset.

Distinct patterns of oncogenic pathway activation are
associated with chemotherapy resistance

Given the modest predictive value of histology for chemother-

apy response, we investigated whether patterns of oncogenic

pathway activation are associated with resistance to commonly

used chemotherapy agents in sarcoma. For this purpose, we used

gene expression readouts (previously developed using Affymetrix

arrays from the NCI 60 cancer cell line panel) predicting the

probability of resistance to adriamycin, docetaxel and cyclophos-

phamide, (which was used as a surrogate for ifosfamide, for which

NCI 60 resistance data were not available). The probability of

resistance to each chemotherapy drug was estimated for each

individual sample included in the U133 datasets of our study. As

with pathway activation predictions, we did not assess the

possibility of chemotherapy resistance in tumors from the two

cDNA datasets as these predictions would have been less reliable

(most Affymetrix probesets from these predictors were not present

in the cDNA datasets).

We then performed hierarchical clustering of the samples based

on each sample’s probability of activation of Src, Ras and PI3K

pathways, and observed that samples were classified into seven

clusters with distinct pathway activation patterns. As shown in

Figure 7, different patterns of pathway activation were associated

with resistance to different chemotherapy agents. Cluster 7 (Src,

Ras and PI3K activation) was associated with higher probability of

adriamycin resistance (Mann-Whitney p = 0.002), clusters 4 and 5

(Src with or without PI3K activation) were associated with higher

probability of cyclophosphamide resistance (p = 0.01) and clusters

2 and 3 (Ras or no pathway activation) were associated with higher

probability of docetaxel resistance (p = 0.01) compared to the rest

of the samples. Finally, we examined the distribution of the

different histologies within the pathway clusters and found that it

was random with the exception of liposarcomas being overrepre-

sented (16 out of 58) in cluster 3 and synovial sarcoma being

overrepresented in cluster 1 (19 out of 30). However, these clusters

did not recapitulate any previously reported associations with

chemotherapy response patterns.

Figure 6. Reclassified MFH samples correspond to their respective STS subtypes across different datasets and express the tissue
specific markers of their respective STS subtypes. A) Subclass Association Matrices assessing molecular correspondence of
reclassified MFH samples across different datasets: Left: NCI versus Japan dataset (COM: composite MPNST-SYN group). Center: Stanford
versus MSKCC dataset. Right: Stanford versus Japan dataset. In all cases p* is Bonferroni-corrected. (Color scale: Red and Yellow colors indicate
p,0.05 and 0.05#p,0.1, respectively suggesting strong molecular correspondence between subtypes in different datasets. Other colors indicate
p.0.1 suggesting lack of molecular correspondence). Details are provided in Table S5). B) Expression of tissue specific markers in MFH
samples: Heat map showing upregulation of selected genes associated with smooth muscle, fibroblast and adipocyte differentiation (based on Gene
Ontology or literature) in MFH tumors predicted as leio-, lipo-, or fibrosarcoma, respectively, compared to the rest of MFH tumors (t-test p,0.05).
Color scale (saturated at 5-fold upregulation) indicates average fold change for each predicted MFH subclass compared to the rest of MFH tumors.
Detailed fold changes are provided in Figure S3.
doi:10.1371/journal.pone.0009747.g006
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Gene expression patterns of tumors with activated Ras
pathway are enriched for targets of the let-7 miRNA
family

It has been postulated that expression profiles may partly be

surrogates for microRNA alterations in sarcoma. Previous in vitro

data indicate that Ras is regulated by the let-7 microRNA family

[15]. In this regard, we tested the hypothesis that the gene

expression pattern of clinical samples with predicted activation of

Ras pathway, were enriched for gene targets of the let-7

microRNA family. We performed microRNA target gene set

enrichment analysis in samples with or without predicted

activation of Ras pathway using the functional scoring method.

Indeed, we found that the gene expression pattern of the samples

with predicted Ras pathway activation was enriched for targets of

all microRNAs of the let-7 family (p,0.05 for all miRNAs of the

let-7 family in all 3 datasets – Table S6), suggesting that let-7 may

play a role in Ras activation in human sarcoma tumors.

Discussion

Soft tissue sarcomas are heterogeneous neoplasias, thus

conceptually well-suited for application of targeted therapies

[4,5,16]. Development of such therapies has been limited by the

fact that traditional histopathologic classification has never been

shown to carry substantial therapeutic value. This may be partly

related to the additional challenge that current histomorphologic

classification criteria are frequently inconclusive and do not fully

capture the underlying molecular complexity of these tumors,

leaving a sizable fraction of them unclassified or grouped in

controversial entities, such as MFH [2,6,8,17]. Previous micro-

Figure 7. Association between patterns of oncogenic pathway activation and resistance to chemotherapy drugs. Unsupervised
hierarchical clustering of 161 tumor samples based on individual sample probability of Src, Ras and PI3K pathway activation reveals 7 clusters with
distinct patterns of pathway activation and association with chemotherapy resistance: Cluster 7 is associated with higher probability of adriamycin
resistance (p = 0.002), clusters 4 and 5 are associated with higher probability of cyclophosphamide resistance (p = 0.01), and clusters 2 and 3 are
associated with higher probability of docetaxel resistance (p = 0.01), compared to the rest of the samples. The composition of STS histologies in each
cluster is also presented.
doi:10.1371/journal.pone.0009747.g007
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array studies have analyzed gene expression patterns [12,18,19]

yielding evidence of substantial differences among sarcoma

subtypes. However, most of the findings were not replicated,

and the single previously reported diagnostic predictor was not

independently validated [13], thus being subject to limitations

related to overfitting [20,21] and single-study bias. Furthermore,

despite its theoretical promise, the therapeutic relevance of

proposed genomic classification of sarcomas has been difficult to

assess, (particularly for those types not associated with a targetable

‘‘necessary and sufficient’’ molecular abnormality), partly because

of the inability to predict activation status of multiple relevant

oncogenic pathways in a given individual tumor specimen.

In this study, we integrated 5 publicly available sarcoma

microarray datasets [12,13,18,19,22], with the intent to address

current diagnostic as well as therapeutic challenges in sarcoma

management. We, first, identified a 170-gene classifier of six major

subtypes (Figure 2) that frequently pose differential diagnosis

problems, as they can all present with pleomorphic poorly

differentiated variants. This predictor was validated in four

independent datasets derived from different laboratories in

different parts of the world. Despite the significant inter-laboratory

and platform differences (oligonucleotide versus cDNA arrays), the

classifier demonstrated 78-86% accuracy across all 4 independent

datasets (Figure 2). The classifier included several genes associated

with distinct differentiation states (i.e. fibroblastic, myogenic,

adipocytic and neural differentiation) (Figure 3) suggesting that

assignment of a sample to a specific class reflects its molecular

resemblance to differentiated mesenchymal cells such as fibro-

blasts, muscle cells, adipocytes or peripheral nerve-sheath cells, a

resemblance that is otherwise not appreciated by standard

histopathologic criteria. Several classifier genes are potential drug

development targets, for instance the IGF-1 [23], PPAR gamma

[24], NGF beta [25] and FGF receptor 3 genes [26]. While the

biologic program responsible for the behavior of sarcomas is likely

to encompass a much larger number of gene networks, these

observations suggest that the relatively limited classifier gene set

may still capture therapeutically relevant mechanisms.

A particular challenge for sarcoma classification remains the

elusive nature of ‘‘MFH’’ sarcomas. Microarray studies indicated

that MFH tumors comprise a complex group not forming a

distinct cluster, raising the possibility that MFH does not represent

a unique molecular category [12]. Also, previous morphologic

studies have suggested that MFH tumors share similarity with

pleomorphic variants of other known subtypes [2,17]. While it has

been suggested by the WHO classification, that the terminology

‘‘MFH’’ will be abandoned when criteria for reclassification of

pleomorphic sarcoma can be reproducibly defined [2,8], currently

no such criteria exist, and the similarity between MFH and other

subtypes in these studies was determined by a semi-quantitative

histopathologic stains without regard to genome-wide molecular

resemblance [2,17]. Of note, MFH tumors with myogenic

differentiation behave more aggressively indicating that MFH

reclassification may also be prognostically useful [27].

We showed that our validated multi-gene predictor can

reclassify MFH and other uncharacterized tumors into one of

the major subtypes, the majority predicted as leiomyosarcomas,

liposarcomas and fibrosarcomas. The validity of this reclassifica-

tion was confirmed by sophisticated bioinformatics approaches

(Figures 5, 6) including a recently developed method (SubMap),

uniquely suitable to assess the resemblance of subtypes identified in

multiple, independent, and technically disparate datasets [14].

Furthermore, by examining the expression profiles of the MFH

samples, we identified a number of tissue differentiation genes

above and beyond the 170-gene predictor that were also

appropriately overexpressed according to their predicted histology.

In the absence of another ‘‘gold standard’’ metric, the finding of

tissue specific genes over expressed in previously unclassified

tumors in accordance to their predicted subtype, serves as

confirmation of the classification potential of our predictor. Of

note, for liposarcomas, we were able to show that our predictor is

tracking adipocyte differentiation of MFH irrespective of the

myxoid or non-myxoid sub-classification. Finally, but no less

importantly, we again validated the performance on the predictor

in real life paraffin specimens, including its capacity to reveal tissue

lineage in specimens that are currently impossible to classify with

state-of-the-art histopathologic examination. These findings, taken

together, suggest that our proposed reclassification is not merely a

mathematical model function; rather it is tracking real underlying

molecular sarcoma ‘‘phenotypes’’ based on tissue differentiation

lines. Our analysis supports the concept, proposed originally by

Fletcher [17], that MFH represents the end stage of dedifferen-

tiation of many sarcoma subtypes rather than a distinct entity.

It should be noted, however, that it is possible that certain MFH/

NOS tumors may be so undifferentiated that they may not harbor

any distinct lineage. In this case, our predictor would result in

‘‘overclassification’’ of these samples, forcing them into one of the

conventional classes. The extent of this error is not possible to know

with certainty. The fraction of MFH samples that did not co-cluster

with their predicted subtype in Figure 5 (24%) may be an estimate

suggesting that the subset of ‘‘overclassified’’ MFH tumors is small.

The second aim of our study was to explore whether genomic

reclassification of sarcomas using our predictor bears biologic and

therapeutic implications. Several oncogenic pathway inhibitors are

currently undergoing clinical trial evaluation in sarcoma including

drugs targeting the PI3K/mTOR (deferolimus and everolimus),

Src (dasatinib and AZD0530), and the Ras/Raf pathway

(sorafenib). However, the activation status of these pathways in

individual sarcoma samples and across different histologic

subtypes has not been possible to determine, making it difficult

to prioritize patients for targeted therapies. For this purpose, we

applied previously validated gene expression ‘‘read outs’’ of

oncogenic pathway activation to individual samples, and discov-

ered that different subtypes demonstrate distinct patterns of

activation of these oncogenic pathways. Interestingly, reclassified

MFH demonstrated similar patterns of oncogenic pathway

activation as their corresponding predicted subtypes, providing

further evidence that the 170-gene predictor reflects the overall

molecular program in sarcomas, with therapeutic implications.

Although we showed an association between different histologies

and patterns of oncogenic pathway activation, it is also well-known

that the association between histology and chemotherapy resistance

is only modest, and in many cases unproven, in soft tissue sarcomas.

Our findings suggest that oncogenic pathway activation patterns,

transcending histologic classes, and assessed by gene expression

‘‘read outs’’, may serve as useful predictors of resistance to

chemotherapy drugs commonly used in sarcoma (Figure 7), perhaps

overriding previously considered modest associations between

histology and chemoresistance. Although proof of an etiologic

association between specific patterns of oncogenic pathway

activation and chemotherapy resistance, or in vitro demonstration

of novel chemoresistance mechanisms were beyond the scope of this

study, our findings reveal interesting therapeutic research strategies

that can be studied in properly designed prospective studies. For

example, prior knowledge of oncogenic pathway activation patterns

in individual sarcoma samples may aid in prioritizing patients for

novel molecularly targeted agents, conventional chemotherapeutic

agents, or combinations thereof. However, our study was limited by

the lack of clinical data (i.e. chemotherapy response or outcome
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data) linked with the public microarray datasets we used, a fact that

prevented us from being able to further test the chemoresistance

patterns identified in our analysis.

Finally, the finding that the gene expression patterns of Ras-

activated tumor samples are enriched for gene targets of the let-7

microRNA family, consistent with compelling experimental

evidence of Ras regulation by let- 7 miRNAs [15], raises the

possibility that microRNA alterations may contribute to oncogenic

pathway activation, and is consistent with the concept that gene

expression patterns may be partly surrogates for microRNA

alterations [28,29,30] in primary sarcoma tumors.

Our study demonstrates the power of integrated analysis of

multiple and diverse microarray datasets, in order to generate and

validate clinically useful models and concepts, in a cost effective

manner. We identified a multi-gene STS predictor, reproduced for

the first time in multiple independent gene expression datasets,

and in routinely collected paraffin tissue, which could serve as an

aid to standard histopathologic methods, especially in the

diagnosis of pleomorphic tumors that are impossible to classify

based on state of the art histopathology. Our findings support the

concept that MFH and unclassified (NOS) sarcomas can be

reclassified into existing sarcoma subtypes, and proposes a tool for

clinical application that reflects previously unrecognized lines of

sarcoma differentiation. Finally, our results support the notion that

genomic classification may carry potential therapeutic implica-

tions, and provide novel therapeutic research hypotheses regard-

ing individualization of targeted therapies and overcoming

chemotherapy resistance in soft tissue sarcomas.

Materials and Methods

Assembly and processing of Gene Expression Datasets
Our study included five public microarray datasets

[12,13,18,19,22] (Table 1, Figures 1 and 2) with 325 tumors of the

six STS subtypes [liposarcomas (LIPO), leiomyosarcomas (LEIO),

rhabdomyosarcomas (RHAB), malignant peripheral nerve sheath

tumors (MPNST), synovial sarcomas SYN and fibrosarcomas

(FIBRO)] that frequently present differential diagnosis problems.

Red/green channel expression data were retrieved from 2 cDNA

datasets (NCI, Stanford) and raw data were retrieved from 3

oligonucleotide Affymetrix U133A datasets, (UK, Japan, MSKCC).

cDNA data were normalized using the median normalization

method and Affymetrix .CEL file data were processed using the

Robust Multi-Array Average (RMA) algorithm [31]. Analyses

described below were performed using the BRB Array Tools

package (Dr Richard Simon, NCI), unless noted otherwise.

RNA Isolation from paraffin specimens and Illumina
Whole Genome DASL array hybridization

Paraffin specimens from 15 soft tissue sarcomas including 5

NOS were cut into 1-3 mm cores at the BIDMC Histology Core

facility. These included 10 paraffin STS samples with known

diagnosis (3 LIPO, 3 LEIO, 2 SYN and 2 MPNST) and 5 paraffin

NOS samples that had been previously evaluated by a sarcoma

pathology expert (J.G) using state of the art current histopathologic

methodology and could not possibly be classified into any of the

known STS types. These samples, all archived between 2003 and

2006 at the Beth Israel Deaconess Medical Center Pathology

Department, were chosen on the basis of tissue availability and

adequate RNA yield for microarray studies. IRB approval for

tissue utilization was obtained as per standard institutional

protocols. Total RNA was isolated using the Qiagen RNeasy

formalin-fixed, paraffin-embedded (FFPE) protocol according to

the manufacturer’s instructions. Whole genome DASL (cDNA-

mediated, Annealing, Selection, and Ligation) arrays (Illumina,

CA), containing 24,000 gene transcripts were used to profile the

paraffin specimens on an Illumina BeadStation. The DASL array

experiments were carried out at the Children’s Hospital (Boston)

Microarray Core facility as per manufacturer’s instructions and as

previously described [32,33].

Classification analysis design
Figure 1 shows our study workflow. We defined 4 ‘‘study

cohorts’’. Study cohort 1 (NCI) was used to optimize a gene

expression predictor. Study cohort 2 (4 datasets – Stanford, UK,

Japan, MSKCC – not used in step 1) was used to independently

validate the predictor. Study cohort 3 (MFH and NOS samples

from all datasets, not used in prior steps) was used to reclassify

previously uncategorized sarcomas based on the predictor. Finally,

this predictor was applied to study cohort 4, which consisted of 15

paraffin STS samples that were profiled using whole-genome

DASL (cDNA-mediated, Annealing, Selection, and Ligation)

arrays. In this step, we used the predictor to classify NOS samples

that were impossible to classify using current, state of the art

histopathologic evaluation and staining.

Development and validation of a multi-gene predictor
Using the Nearest Centroid algorithm [34,35] we developed a

predictor of 6 subtypes on the NCI dataset –the largest and only

one that included all six subtypes. We trained the classifier

selecting genes differentially expressed between classes by F-test.

Classifier accuracy and statistical significance were assessed using

Table 1. Content of the 5 microarray expression datasets.

DATASETS PLATFORM SAMPLES HISTOLOGIES

NCI cDNA 133 SYN (16), LEIO (17), LIPO (33), MPNST (6), FIBRO (7), RHAB (6), MFH (38), NOS
(10)

STANFORD cDNA 31 SYN (8), LEIO (11), LIPO (4), MFH (8)

UK U133A 37 SYN (10), LEIO (8), LIPO (10),
MPNST (4), FIBRO (5)

JAPAN U133A 87 SYN (16), LEIO (6), LIPO (37),
MPNST (3), FIBRO (4), MFH (21)

MSKCC U133A 37 SYN (4), LEIO (6), LIPO (11),
FIBRO (7), MFH (9)

TOTAL PATIENTS 325 SYN (54), LEIO (48), LIPO (95), MPNST (13), FIBRO (23), RHAB (6), MFH (76), NOS
(10)

doi:10.1371/journal.pone.0009747.t001
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leave-one-out cross-validation and a random permutation test to

control for over-fitting. The best-performing training classifier

included 138 genes (F test cut off, p,461027) and demonstrated

an accuracy of 85%. Sensitivity analysis using an F-test threshold

from p,1027 (100 genes) to p,561027 (160 genes) demonstrated

only minimal loss of performance with accuracy of 79–82%. This

classifier was mapped across different platforms using Affymetrix

annotation files and applied to the four independent public

datasets as well as the paraffin based dataset. The overlap of

predictor genes across different platforms was as follows: i) Among

the NCI cDNA platform and the 3 U133 datasets there was

complete overlap of the 1st and 2nd step predictor genes (i.e. 138

genes and 35 genes respectively), ii) Between the NCI cDNA

platform and the DASL Illumina (paraffin) dataset the overlap was

136 genes for the 1st and 34 for the 2nd step predictor) and iii)

Between the NCI cDNA platform and the cDNA (Stanford)

dataset the overlap was 62 genes for the 1st and 19 genes for the

2nd step predictor).

Allowing for partial loss of classifier genes and the technical

disparity between the different platforms, classifier accuracy was

further assessed using leave one out cross validation and a random

permutation test in each of the 4 independent public datasets.

Further, for a more direct validation of accuracy, we also collated

the 3 U133 datasets into one combined dataset after adjusting for

platform effect using empirical Bayes method [36]. Then, we

trained a modified predictor (using the same genes but creating a

different model due to technical platform differences) in the largest

U133 dataset (JAPAN), and directly applied it to the remaining

datasets (UK and MSKCC) and vice versa. Finally, for prediction

of the paraffin samples we collated all 4 datasets (3 U133 and the

DASL paraffin dataset) after adjusting for platform effect using

empirical Bayes method [36]. The final predictor (modified due to

partial gene content mismatch with the U133 platform) was

trained on the 3 combined U 133 datasets and directly applied to

the DASL dataset.

MFH and NOS reclassification using the multi-gene
predictor

We used the predictor to reclassify the 76 MFH and the 10

NOS samples into the 6 subtypes after mapping the predictor

genes across different platforms (from cDNA to Affymetrix U133)

as above. No mapping was necessary for the NOS samples that

were all contained in the NCI dataset.

Validation of MFH and NOS reclassification within each
dataset using genome-wide hierarchical clustering

In order to assess whether our MFH reclassification reflected

true molecular similarity of the reclassified MFH samples with

their corresponding STS subtypes, we performed unsupervised

hierarchical clustering of all tumors (including MFH samples)

within each dataset using the complete linkage method and the

one minus centered correlation as a distance metric [37]. A large

number of genes (top 33% variant) were included in this analysis in

order to overcome the overfitting bias of the optimized 170-gene

predictor. Then, we assessed whether each reclassified MFH

sample clustered together with the samples of its corresponding

STS class (the class it had been reclassified into) and repeated the

same process for the NOS reclassification.

Validation of MFH reclassification across different
datasets using Subclass Mapping (SubMap)

Hierarchical clustering cannot assess molecular correspon-

dence between phenotypes across different datasets. Thus, we

examined the molecular similarity between reclassified MFH

samples and their predicted corresponding STS subtypes from

different datasets using the Subclass Mapping (SubMap) meth-

odology as previously described [14] (Gene Pattern Software,

Version 3.0, Broad Institute, details in Data S1). This method

relies on the principle of statistically assessed ‘‘enrichment’’ of the

transcription program of one dataset, for marker gene lists

derived from another dataset, as a function of relative differential

ranking rather than absolute expression values, since the latter

are platform and study-specific. ‘‘Mutual enrichment informa-

tion’’ p values are generated to assess the ‘‘molecular match’’

between the different phenotypes and summarized in a Subclass

Association Matrix. High mutual enrichment (low p value)

indicates a strong molecular correspondence between subclasses

in different datasets.

Prediction of probability of oncogenic pathway
activation or chemotherapy resistance in individual
samples

We used publicly available and validated gene expression ‘‘read

outs’’ of oncogenic pathway activation previously generated by

experimentally controlled activation of these pathways in vitro [38].

Furthermore, we retrieved publicly available and validated gene

expression models predicting the probability of resistance to

individual chemotherapeutic agents that were generated using

U133 Affymetrix array and drug response data from the NCI 60

cancer cell line panel [39,40,41]. Bayesian probit regression

models estimating the probability of activation of each pathway or

resistance to specific chemotherapeutics were trained in the

experimental systems used to develop these signatures and applied

on individual samples included in the Affymetrix oligonucleotide

U133 datasets of our study. Gene expression models (‘‘read outs’’)

of oncogenic pathway activation and chemoresistance are

available at http://dig.genome.duke.edu/. Since these models

were generated using oligonucleotide Affymetrix arrays and very

few Affymetrix probesets were present in the cDNA datasets, our

analysis was limited to the 3 Affymetrix oligonucleotide datasets of

our study. Non-biological experimental variation between the in

vitro arrays and the sarcoma datasets was corrected using a

previously described batch effect adjustment algorithm [36]. Each

individual sample was assigned a probability value (from 0 to 1) of

pathway activation or resistance to a specific chemotherapeutic

agent. A probability value higher than 0.5 was used as cut-off for

predicted pathway activation.

Hierarchical clustering of samples based on their predicted

probability values of oncogenic pathway activation was performed

using the complete linkage algorithm with the Euclidean distance

metric [37]. Non-parametric one-way Kruskal-Wallis and Mann-

Whitney tests were applied to test whether the probability of

oncogenic pathway activation and chemoresistance was different

between different subtypes.

MicroRNA gene-target enrichment analysis
To assess whether the gene expression patterns of STS samples

were enriched for targets of microRNAs of interest, we used the

functional class scoring method which tests the null hypothesis that

the list of differentially expressed genes from each microRNA

target set is a random selection from the entire project differ-

entially expressed gene list, implemented in the NCI BRB Array

Tools software, as previously described [42].

Additional details of the statistical methodology and bioinfor-

matics algorithms described above are found in Data S1.
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Supporting Information

Data S1 Revised Supplementary Data File.

Found at: doi:10.1371/journal.pone.0009747.s001 (0.05 MB

DOC)

Figure S1 MFH-samples predicted as LIPO (MFH-LIPOs)

cluster together with both myxoid and non-myxoid liposarcomas.

Found at: doi:10.1371/journal.pone.0009747.s002 (0.27 MB

TIF)

Figure S2 Complete Clustering Results.

Found at: doi:10.1371/journal.pone.0009747.s003 (0.43 MB TIF)

Figure S3 Fold upregulation of selected genes associated with

smooth muscle, fibroblast and adipocyte differentiation in MFH

tumors predicted as leio-, lipo or fibrosarcoma respectively

(compared to the rest of MFH tumors).

Found at: doi:10.1371/journal.pone.0009747.s004 (0.19 MB TIF)

Table S1 Sensitivity and specificity of the 170-gene Nearest

Centroid predictor for each STS class in the NCI, UK and JAPAN

datasets (actual numbers of individual tumor subtypes are shown

in parentheses).

Found at: doi:10.1371/journal.pone.0009747.s005 (0.02 MB

XLS)

Table S2 Sensitivity and specificity of the 170-gene Nearest

Centroid predictor for each STS class in the STANFORD and

MSKCC validation datasets.

Found at: doi:10.1371/journal.pone.0009747.s006 (0.02 MB

XLS)

Table S3 Genes included in 1st step predictor.

Found at: doi:10.1371/journal.pone.0009747.s007 (0.04 MB

XLS)

Table S4 Genes included in 2nd step predictor.

Found at: doi:10.1371/journal.pone.0009747.s008 (0.02 MB

XLS)

Table S5 Assessment of MFH reclassification across different

datasets with the Sub Class Mapping methodology.

Found at: doi:10.1371/journal.pone.0009747.s009 (0.02 MB

XLS)

Table S6 Gene expression pattern of the Ras activated samples

was enriched for targets of microRNAs of the let-7 family.

Found at: doi:10.1371/journal.pone.0009747.s010 (0.02 MB

XLS)

Table S7 Detailed clustering results of the classified MFH

samples.

Found at: doi:10.1371/journal.pone.0009747.s011 (0.02 MB

XLS)

Table S8 Patterns of oncogenic pathway activation in different

STS histologies.

Found at: doi:10.1371/journal.pone.0009747.s012 (0.02 MB

XLS)
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