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Pathogens vary in their antigenic complexity. While some pathogens such as

measles present a few relatively invariant targets to the immune system,

others such as malaria display considerable antigenic diversity. How the

immune response copes in the presence of multiple antigens, and whether a

trade-off exists between the breadth and efficacy of antibody (Ab)-mediated

immune responses, are unsolved problems. We present a theoretical model

of affinity maturation of B-cell receptors (BCRs) during a primary infection

and examine how variation in the number of accessible antigenic sites alters

the Ab repertoire. Naive B cells with randomly generated receptor sequences

initiate the germinal centre (GC) reaction. The binding affinity of a BCR to an

antigen is quantified via a genotype–phenotype map, based on a random

energy landscape, that combines local and distant interactions between resi-

dues. In the presence of numerous antigens or epitopes, B-cell clones with

different specificities compete for stimulation during rounds of mutation

within GCs. We find that the availability of many epitopes reduces the affinity

and relative breadth of the Ab repertoire. Despite the stochasticity of somatic

hypermutation, patterns of immunodominance are strongly shaped by

chance selection of naive B cells with specificities for particular epitopes. Our

model provides a mechanistic basis for the diversity of Ab repertoires and

the evolutionary advantage of antigenically complex pathogens.
1. Introduction
Antibodies are an important form of protection against many pathogens, and

pathogens have evolved diverse strategies to minimize their impact. For example,

influenza and HIV rapidly evolve their immune targets through de novo point

mutations [1,2], hepatitis B virus produces decoy particles to redirect the antibody

(Ab) response [3], and malaria rapidly cycles surface proteins during an infection

[4–8]. The ways in which pathogens compromise the development of effective Ab

responses shape the course of infection, epidemiological patterns and the evo-

lutionary success of different pathogen groups [9,10]. These mechanisms are

relevant to vaccine strategy, as they imply that the number of antigens and the

history of exposure influence Ab evolution.

Although affinity maturation consistently produces high-affinity B-cell clones,

there is no general theory for the observed diversity of Ab repertoires. Naive

hosts, challenged with antigen, form antibodies against a variety of epitopes.

For some antigens, the majority of induced B cells within and across hosts

target the same epitope, indicating consistent patterns of immunodominance

[11]. For other antigens, evolved B-cell populations show adaptation to different

epitopes [12–14]. These differences may arise from variability in the accessibility

of binding sites on the antigen, the genetic diversity of a host’s naive B-cell popu-

lation, stochastic founding events in GCs, genetic predisposition mediated by

helper T cells and chance mutations during affinity maturation. The relative con-

tributions of these factors are unknown.

The primary aim of this study is to evaluate the mechanisms shaping the evo-

lution of Ab repertoires during a single infection with an antigenically complex
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pathogen. The major features of our model are its explicit rep-

resentations of the genetic and phenotypic diversity of B-cell

populations, stochastic evolution of multiple B-cell clones and

multiple scales of competitive dynamics. We examine how the

number of epitopes presented by a pathogen (or other immuno-

gen) affects the adaptation and diversity of B-cell populations,

which ultimately influence protection. The model provides a

parsimonious, mechanistic explanation of how different patterns

of Ab repertoire diversity can arise from a few features. These

simple dynamics also predict conditions under which anti-

genically variable pathogens compromise affinity maturation,

potentially explaining the success of these pathogens. Our sec-

ondary aim is to introduce an open-source computational

model of B-cell repertoire evolution as a tool to test theory.

(a) Dynamics of affinity maturation and memory
The evolution of high-affinity antibodies occurs in germinal

centres (GCs) [15,16]. Several days after an infection starts,

naive B cells migrate to lymph nodes and other sites, where

they aggregate with helper T cells to form GCs. Inside the

GCs, B cells undergo cycles of replication with somatic hyper-

mutation and selection. Somatic hypermutation preferentially

introduces point mutations into the variable region of the

B-cell receptor (BCR), the portion that interacts with antigen.

On average, one mutation is introduced per round of repli-

cation [17]. The mutated B cells then compete for antigen

presented by the follicular dendritic cells (FDCs) and for posi-

tive signals from local helper T cells. Higher affinity B cells in

every round have a higher probability of receiving T cell help

and undergoing replication, leaving lower affinity B cells to

apoptose [16]. The GC reaction often terminates after a few

dozen rounds of somatic hypermutation but may last for sev-

eral weeks [18]. At the end of the GC reaction, average B-cell

affinities have increased by several orders of magnitude [19].

This Darwinian process is known as affinity maturation.

During affinity maturation, some B cells emigrate from

the GC as plasmablasts or memory cells. Emerging plasma-

blasts eventually differentiate into short-lived or long-lived

plasma cells. Most plasma cells are short-lived and secrete

antibodies, the soluble form of the BCR, at a high rate for

only a few weeks [20], whereas long-lived plasma cells

migrate to the bone marrow and secrete antibodies at low

concentrations for years [21,22]. Memory cells may persist

indefinitely, but they do not secrete antibodies [23].

Memory cells help initiate a quick response upon exposure

to similar antigens. The processes regulating the switching

of GC-associated B cells to memory or plasma cells are not

well understood [16], although plasma cells generally have

higher affinities than memory B cells [24].

Until recently, it was thought that affinity maturation

occurred independently in separate GCs, with selection for

increased affinity driven by local competition for antigen

and T cell help [16]. Recent research shows that evolution

may occur in a more coordinated manner across a metapopu-

lation of GCs [25]. Antibodies produced by B cells from the

current and previous infections compete with BCRs for anti-

gen [26]. These antibodies are secreted systemically and may

help drive affinity maturation across GCs [26].

(b) Previous models
Mathematical models have long shed light on the competitive

dynamics of affinity maturation [27–40]. Competition between
B cells was originally thought to be solely for antigen [27,28],

implying that small amounts of antigen should intensify

competition and lead to higher affinity antibodies. Recently,

models and experiments have shown that competition for anti-

gen and support from helper T cells both influence the rate

of affinity maturation [16,36,37]. It has also been proposed

that competition between BCRs and antibodies may be a

stronger driver of affinity maturation than competition be-

tween endogenous B cells for antigen and T cell help [26].

There has been comparatively little investigation of the com-

petitive dynamics of affinity maturation in the presence of

complex antigens. Chaudhury et al. [39] modelled multiple

strains each with multiple epitopes that were conserved to vary-

ing degrees across strains. Cross-reactive antibodies arose to

more conserved epitopes, despite higher immunogenicity of

variable epitopes, supporting the idea that the growth of

B-cell populations is limited by resource (antigen) availability.

Increasing the number of strains and antigenic variation

increased selection for antibodies that cross-reacted with

variable and conserved epitopes. Wang et al. [40] modelled

HIV-like antigens composed of a single epitope containing vari-

able and conserved residues and assumed all epitopes were

equally immunogenic. Under different vaccination strategies,

including simultaneous and sequential exposure to original

and mutated epitopes, affinity maturation was frequently

found to be ‘frustrated’, with B cells unable to evolve high affi-

nity to some epitopes. Broadly cross-reactive antibodies rarely

evolved except under sequential immunization protocols.

Under all vaccination strategies, the antibodies’ breadth and

affinity remained sensitive to the antigen concentration, the

number of presented antigens and epitope masking.

A major uncertainty in models of affinity maturation is the

impact of mutations on B-cell fitness. Fitness is commonly

measured as binding affinity between the BCR and antigen.

Shape-space models [41] use the sizes of B-cell- and antigen-

binding regions, the polarities of their amino acids, and other

physical characteristics of the B cells and antigens to define

the locations and volumes of antigen and Ab in an abstract

space. Typically, affinity maturation in these models entails

incremental changes in these parameters, which move the Ab

closer to or further from the antigen. In a similar vein, other

models use metrics based on the Hamming distance, i.e. the

number of unique sites in two sequences [36,39]. This formu-

lation limits the impact of any single mutation on fitness and

again favours gradual changes in affinity. The shape-space

and distance-based models imply a rosy view of evolution, in

that they allow monotonic increases to maximum affinity

from any starting location.

A contrasting approach is the random energy landscape

[42–49], originally introduced as a spin glass model.

Random energy landscapes assume a stochastic mapping

of genotype to phenotype. These landscapes are ‘tunably

rugged’, as varying a single parameter changes the probability

that a random mutation has a large or small effect. This vari-

ation in the impact of a mutation is the hallmark of epistasis,

which occurs when a mutation in one genetic background

has a different effect in another. Evolution thus proceeds

in these landscapes not only through gradual changes in

phenotype (e.g. gradual increases in affinity) but also through

sudden jumps. When ruggedness is high, adaptation can lead

populations to a local fitness maximum and then stop unless

multiple, simultaneous mutations allow populations to tra-

verse local fitness minima. Because epistasis and constrained
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Figure 1. Schematic of a GC reaction. Affinity maturation of B cells occurs in the GC. Naive (or memory) B cells enter the GC and proliferate with mutation. Following
proliferation, they migrate to a region containing FDCs, which present antigen. If the B cells successfully compete for antigen on the FDCs and receive positive signals
from helper T cells, they either undergo additional rounds of proliferation or leave the GC as memory or plasma cells. Cells that cannot successfully compete for
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antigen, through the masking of epitopes.
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adaptation appear fundamental features of protein evolution

[50], we use this model to represent the molecular evolution

of affinity maturation.
2. Material and methods
We modify a classic random energy model [42–45], the NK-type

model of affinity maturation introduced by Kauffman & Weinberger

[46] in 1989 and extended by Deem and co-workers [47–49]. Our

model incorporates aspects of the GC reaction, namely epitope

masking by antibodies and cycles of proliferation and selection,

hypothesized to affect dynamics [26,29]. In contrast to previous

models [39,40,51], ours simulates stochastic evolution on a

rugged fitness landscape, affinity to more than one epitope, and

simultaneous evolution in multiple GCs. Our affinity function

is uncomplicated, ignoring potential modular substructures

[46–48]. We use this landscape to investigate the evolutionary

dynamics of multiple competing B-cell lineages with potentially

divergent specificities (figure 1).

(a) Antigens and affinities
An antigen is described by a set of q epitopes, and B cells are

defined by a sequence of length L, a proxy for the length of the

Ab variable region [52]. B cells include naive cells, GC-associated

cells, memory cells and plasma cells, the last of which secrete

antibodies with identical affinity to the BCR. A B-cell sequence

x maps to a vector F of affinities, one for each epitope of a

given antigen. The affinity Fj of a B cell for each epitope j is cal-

culated from the epitope’s random energy landscape. This

landscape is a unique property of each epitope and maps a

B-cell sequence x to an energy Uj(x), which is the normalized

sum of individual energies at each site i:

Uj(x) ¼ 1ffiffiffi
L
p
XL

i¼1

Uij(ni(x)) (2:1)

and

ni(x) ¼ {xi, xni1 , . . . , xniK }, (2:2)
where ni(x) is a vector of amino acids that includes the sequence

position i, the amino acids of x at site i along with the amino

acids at the K neighbours of site i, fni1,. . .,niKg. The energy at site

i is an independent normal random variate for each unique

vector of amino acids n: Uij(n) � N (0, 1), and the factor 1=
ffiffiffi
L
p

nor-

malizes the variance of the energies with respect to the sequence

length L. The epitope’s energy landscape thus consists of a differ-

ent random energy at each site, for each unique combination of

amino acids at the site along with its epistatically interacting sites.

To facilitate comparison with data, we rescale the energies to

affinities with Fj ¼ ea2bUj [48]. As described in §3(a), parameters a
and b are chosen to yield mean binding affinities of approx-

imately 104–105 in the naive pool and approximately 107–108

after 30 rounds of affinity maturation [19]. The ruggedness of

the energy landscape is controlled by the B-cell sequence

length L, the number of interaction partners for each site K and

the alphabet size A from which sequences are generated. The

value of K, which indirectly measures the degree of epistasis, is

not well known [50]. We chose an alphabet size of 5, which

has been repeatedly identified to efficiently maximize prediction

of protein folding with reduced alphabets [53–56], and which

has been used in similar NK models [49,57].

(b) Creation of the naive B-cell repertoire and initiation
of the germinal centre response

At the start of an exposure, NG,0 GCs are each seeded with NB,0

naive B cells, referred to as B-cell founders [58]. To select founders,

a random epitope is chosen, and a cell is randomly generated with

an epitope-specific affinity in the top fraction f of all possible

sequences. This method assumes a fraction f of naive B cells bind

an antigen above some threshold affinity [59]. Affinity maturation

occurs in discrete rounds. The B-cell population increases by a

factor of four each round (two divisions per cell) until reaching

the maximum GC population size, NB [60]. Cells in each new

round d are generated by copying cells from the previous round

with mutation rate m per site, allowing multiple mutations in a

single replication event. Each cell in the GC can produce up to

four cells in the next round. Actual growth is regulated by relative

affinity as described in §2(c).



Table 1. Parameter values of the GC model. Description of and values for all parameters used in the model. References are given for values taken from the
literature. Other parameter choices are discussed in the text.

symbol description default value reference

NG,0 initial number of GCs per exposure 100a [60]

f affinity quantile from which to draw GC founders 0.001 [59]

NB,0 founding B-cell population size ( per GC) 5 [58]

NB maximum B-cell population ( per GC) 1000a [60]

m mutation rate of B cells during affinity maturation 0.01/site/round [17]

D maximum number of daughter cells produced per round 4 [16]

m1 fraction of exported cells becoming memory cells in first round 0.9 text

mR fraction of exported cells becoming memory cells in round R 0.1 text

n fraction of GC cells from which to draw plasma cells 0.1 text

C initial Ab concentration from plasma cells 1 text

FT threshold minimum effective affinity for B-cell removal and GC dissolution 104.125 SI

e duration of round of affinity maturation 0.5 days [16]

R maximum possible number of rounds of affinity maturation 30 [18]

q number of epitopes per antigen 1 varies

L B-cell sequence length 100 [52]

K number of interaction neighbours 5 text

A size of sequence alphabet 5 [57]

a tuning parameter for energy-affinity mapping 7.0 text

b tuning parameter for energy-affinity mapping 2.0 text

a competition constant for masking Ab and BCR 0.5 text
aBecause the differences in affinity were not dramatic between 10 GCs � 100 cells/GC and 100 GCs � 1000 cells/GC, we use 10 GCs � 100 cells/GC.
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(c) Affinity maturation within germinal centres
At the start of every round in a GC, the effective affinity Ej of

each B cell to an epitope j is adjusted for potential epitope mask-

ing by antibodies. Although many antibodies could compete

with B cells, we use an approximation:

Ej ¼ Fje
�a(FAbj

=Fj): (2:3)

Here, Fj is the intrinsic affinity of the B cell to epitope j, FAbj is the

affinity of the masking Ab, and a is a constant governing the

strength of competition between the masking Ab and the BCRs

(electronic supplementary material, figure S1). The masking Ab

is the Ab with the maximum effective concentration to epitope j,

max
i

CiFAbi,jP
k FAbi,k

 !
, (2:4)

determined by Ci, the concentration of each Ab population i
(described in §2d) proportional to its affinity, FAbj , to epitope j
compared with all of the k epitopes. The use of the maximum

affinity across epitopes is an approximation made for model sim-

plicity. It can be justified biologically by the assumption that each

Ab encounters all epitopes and binds to the one with the highest

affinity. We assume that the antigen is presented at a constant

rate throughout the GC reaction and is not consumed by B

cells or antibodies.

At the end of each round, B cells proliferate proportionally to

their maximum effective affinity across all epitopes, Ej/
P

iEi,

where Ej is the maximum effective affinity of a single B cell, andP
iEi is the sum of the maximum effective affinities of all B cells

in the GC. As before, we implicitly assume that a BCR interacts

with all epitopes, and that the maximum affinity represents the
equilibrium state. B cells with an effective affinity below an abso-

lute threshold FT cannot proliferate, and cells without daughter

cells are discarded, simulating apoptosis [16,61]. Affinity matur-

ation in each GC continues for 30 total rounds (R ¼ 30) or until

all effective affinities drop below the absolute threshold, FT [62].

The first stopping condition corresponds to the depletion of

antigen and is assumed to occur roughly 15 days (at 0.5 days/

round) after the initiation of a GC response [63]. The second corres-

ponds to an inability of B cells in the GC to bind antigen that

has been masked by abundant high-affinity antibodies.

(d) Export of cells from the germinal centre and
maintenance of the memory population

After each round of affinity maturation, some B cells in each GC

are copied and exported as memory or plasma cells. The fraction

m exported as memory cells decreases linearly with the round

number, from m1 at the outset to mR at round 30, which mirrors

increased rates of plasma cell export in later rounds. Plasma

cells have significantly higher affinities than memory cells after

infection [18], although it is unclear if this difference is due to

high-affinity thresholds for plasma cell production or greater

expansion of high-affinity cells [64]. We assume the former,

exporting a fraction n of B cells in the GC with affinity above

106.5 as plasma cells [24]. These memory and plasma cells then

join their respective global pools.

After leaving the GC, plasma cells immediately begin secret-

ing antibodies that mask epitopes on antigens presented by

FDCs. Because we are interested in the affinity maturation in a

primary infection over only a few weeks, we fix the initial con-

centration of exported antibodies, C, at unity and ignore decay

[23]. Memory B cells do not decay or produce antibodies.
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(e) Software
The model is implemented in Cþþ, with individual B cells and

GCs represented as objects. Detailed output, including sequences,

intrinsic and effective affinities for each epitope, and Ab concen-

trations over time, is written to a SQLite database. Because

multiple cells can have the same sequence, each sequence is rep-

resented once in memory and in the output. For large values of L
and A, generating the full energy landscape is computationally

intractable. Instead, we define a deterministic pseudo-random

mapping for energies at each locus that is independent of the

random number generator used for simulation dynamics. It

depends only on an energy seed sj for the epitope, the sequence

position i and the neighbour sequence ni(x).
3. Results
(a) Parametrization and tuning the evolutionary

landscape
We developed a stochastic model to simulate affinity maturation

to complex antigens. In brief, naive B cells enter GCs and compete

to bind to single or multi-epitope antigens. A B cell’s sequence

and the epitope’s energy landscape determine the binding af-

finity. In each GC, B cells undergo rounds of proliferation,

mutation and selection, leading to the loss of low-affinity B

cells. Some B cells differentiate into memory or plasma cells

and exit the GC. Plasma cells produce antibodies that compete

with B cells for antigen by masking epitopes. Each simulation
models affinity maturation in one primary infection, and for

each set of parameters, we perform 100 replicate simulations.

Empirical estimates exist for many parameters (table 1), but

others we fitted by simulation. Consistent with analyses of

protein fitness landscapes, we assume few interaction partners,

resulting in relatively low ruggedness (K¼ 5) [50]. After

30 rounds of replication, the highest affinity B cells appear at

K , 6 (electronic supplementary material, figure S2), demon-

strating that our landscape permits extensive adaptation. To

determine a and b, which scale energies to affinities by Fj¼

ea2bUj, we compared model output to experimental observations.

Parameter a sets the mean affinity of the energy landscape. The

stringencyof GC founder selection f [59] and a together determine

the affinity in early rounds (electronic supplementary material,

figures S3 and S4), while parameter b controls the sensitivity of

affinity to changes in energy (electronic supplementary material,

figure S3). We fixed the stringency at f ¼ 0.001 and chose a ¼
7.0 and b ¼ 2.0. In our simulations, B-cell founders thus had

affinities between 104 and 106, and over 30 rounds of rep-

lication, the mean affinity increased by several orders of

magnitude (electronic supplementary material, figure S3) [19].

Estimates of the number of GCs and B-cell population sizes

per GC vary considerably [60]. We investigated the relation-

ship between the number of GCs, the maximum B-cell

population per GC and the extent of affinity maturation (elec-

tronic supplementary material, figure S5). Affinity maturation

was more sensitive to the maximum B-cell population per GC

than to the number of GCs, with larger B-cell population sizes
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increasing adaptation. The differences were not dramatic, how-

ever: as few as 10 GCs, each with a maximum of 100 B cells,

gave similar final affinities after 30 rounds as 100 GCs with

1000 cells. Although 2500 B cells per GC yielded even higher

final affinities, GCs this large are not common [60]. By default,

we simulated with NG,0 ¼ 10 GCs and NB ¼ 100 cells.

(b) Two types of competition shape affinity maturation
Increases in B-cell affinities in our model arise from two types of

competition. The first is competition within GCs between evol-

ving lineages. High-affinity B cells have high growth rates,

leading to increases in mean affinity over time (figure 2; elec-

tronic supplementary material, figure S6). When competition

for antigen is removed, so that all B cells have equal fitness,

the mean affinity of B cells in a GC declines to the mean of the

fitness landscape (electronic supplementary material, figure

S7). When few high-affinity naive B cells seed each GC, replicat-

ing B cells experience relaxed selection in early rounds.

Consequently, mean affinity can initially decline (figure 2a; elec-

tronic supplementary material, figure S8). Intensifying early

competition by increasing the number of founding cells prevents

this decline (electronic supplementary material, figure S8a).

Reducing B cell growth rates and increasing the maximum

population size per GC extends the period of relaxed selection

and decreases affinities (electronic supplementary material,

figure S8b,c). In most cases, despite strong competition in later

rounds, affinity maturation starts to slow as beneficial mutations

become rare.

Competition between secreted antibodies and B cells for

antigen also influences affinity maturation (figure 2). This com-

petition arises once plasma cells are produced (figure 2) and

selects for cells with different specificity (electronic supplemen-

tary material, figure S9). Although the mean probability that a

daughter cell differs in specificity from its parent peaks early

(e.g. with 10 epitopes, at nearly 5% in the third round) (elec-

tronic supplementary material, figure S9a), and most GCs

contain diverged subpopulations through the first few

rounds (electronic supplementary material, figure S9b), these

subpopulations are not selected until much later (electronic

supplementary material, figure S9c). With few epitopes, epi-

tope masking by antibodies increases the final affinities of

plasma cells (Mann–Whitney test, p ¼ 0.03); with many epi-

topes, masking decreases affinities (figure 3a). The intuition

is that, with many epitopes, B cells not blocked by antibodies
outcompete populations that are, leading to rapid changes in

specificity in each GC.
(c) Complex antigens diversify the repertoire but limit
its relative breadth

The presence of multiple epitopes promotes the evolution of

B cells with different specificities (figure 3b). The specificities

of both plasma (figure 4) and memory B-cell populations

(electronic supplementary material, figure S11) are skewed,

with nearly half of the epitopes of a 20-epitope antigen unrec-

ognized. The bias in specificity occurs even when the number

of GCs exceeds the number of epitopes (figure 3b).

Epitope masking increases the diversity of the plasma and

memory repertoires and the fraction of epitopes that are

recognized (figure 3b). Without epitope masking, high-

affinity plasma cells target, on average, 65% of epitopes in a

10-epitope antigen; with masking, they target nearly 100%.

This occurs as antibodies block epitopes targeted by local B

populations, promoting the growth of B cells with alternative
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specificities. If B cells bind poorly enough to other epitopes, the

GC reaction terminates. GC reactions terminate rarely (less than

2%) before the end of 30 rounds when multiple epitopes are

present (electronic supplementary material, figure S10).

B cells with high affinity to more than one epitope could in

principle arise. Although GC founder cells have relatively

high affinity (for the default value of f), epitopes’ genotype–

phenotype landscapes are independent and uncorrelated.

Thus, cross-reactive plasma and memory cells are rare (approx.

0.1% of cells) (electronic supplementary material, figure S12).

(d) Complex antigens reduce antibody affinities
Increasing the number of epitopes decreases the frequency of

high-affinity plasma cells and memory cells to targeted epi-

topes (figures 3a and 5a). The mean affinity of plasma cells

declines because the presence of fewer GCs per epitope and

fewer B cells per epitope in each GC reduces genetic diversity

and compromises adaptation (figure 5a; electronic supplemen-

tary material, figure S5). Holding the number of epitopes

constant while increasing the number of GCs and the maxi-

mum B-cell population per GC raises plasma cell affinities

(figure 5b). Because memory cells are produced continuously

but at a decreasing rate during the GC reaction, their popu-

lation is larger than the plasma cell population, has lower

affinity, and is less sensitive to the number of epitopes. Increas-

ing the number of GCs and the maximum population of B cells

per GC also raises memory cell affinities, though not to the

same extent as for plasma cells (figure 5b).

(e) Stochastic selection of naive B cells determines
immunodominant epitopes

Uneven targeting in primary infections could arise from chance

selection of naive B cells, differences in epitopes’ immuno-

genicity, or stochastic mutations. On average, plasma cells

have acquired 14 substitutions from germline, and the mean

number of mutations increases slightly with the number of epi-

topes (electronic supplementary material, figure S13). Epitopes

do not differ significantly in immunogenicity (mean affinity) in

the model, so we examined the correlations between traits of

naive B cells and the mature repertoire to infer the impacts of

initial conditions and chance mutations. There is a moderate cor-

relation (Pearson’s r¼ 0.40, p , 1025) between the fraction of

GC founders with some specificity and the fraction of plasma
cells with the same specificity (figure 6a). The weaker correlation

and high variance between the affinities of GC founders and

plasma cells (Pearson’s r ¼ 0.21, p , 1025) demonstrate that

adaptation is not perfectly commensurate with initial affinity

(figure 6b).
4. Discussion
We developed a model of affinity maturation to understand the

basic evolutionary dynamics of the Ab repertoire to a complex

antigen. We show that two types of competition, competition

between B cells within GCs and competition between secreted

antibodies and GC B cells, greatly affect the diversity and affinity

of the repertoire. Although complex antigens diversify the reper-

toire, the mean affinity declines as the number of epitopes

increases. This decline occurs because the reductions in the num-

bers of B cells and GCs per epitope compromise adaptation;

reductions in population size and structure should slow adap-

tation on rugged landscapes [65]. Epitope masking further

decreases affinities to multi-epitope antigens, but it increases

the probability that the repertoire will target any particular

epitope. Thus, it suggests the immune system negotiates a

trade-off between high adaptation to fewepitopes or lower adap-

tation to many. Favouring breadth over depth may be a useful

strategy when a large fraction of epitopes are non-neutralizing

or variable. Our simple model proposes that the dominant

specificities in the mature repertoire—the immunodominant

clones—are determined mostly by stochastic selection of GC

founders. Taken together, the results suggest a mechanism

favouring the evolution of antigenically complex pathogens:

the repertoires they induce may target fewer epitopes, and the

antibodies will have, on average, reduced affinity. It remains to

be seen how easily the trade-offs identified here arise in practice,

e.g. whether GC B-cell population sizes are highly constrained

during co-infections or chronic infections with diverse strains.

Repertoire dynamics underlie the problem of broadly neu-

tralizing antibodies. Despite their importance for natural

immunity and vaccine design, the conditions under which

broadly cross-reactive neutralizing antibodies [66] evolve are

unclear. Two recent models of the repertoires induced by vac-

cines to malaria [39] and HIV [40] report strikingly different

expectations for the evolution of cross-reactive antibodies.

Cross-reactive antibodies arose to both variable and conserved
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antigens in malaria [39] but to only the variant HIV antigens

after sequential vaccination [40]. Our model, which is analo-

gous to a single vaccination with a complex antigen or a

cocktail of unrelated antigens, did not predict that cross-reactive

antibodies would evolve. Similarly, cross-reactive antibodies to

HIV after immunization with a cocktail of antigens were rare

[40]. The probability of evolving cross-reactive antibodies may

be determined by antigenic similarity between epitopes, and

any trade-off between specificity and evolvability.

Another important but unresolved dynamic of affinity

maturation is selection by T cells. For lack of additional insight,

we did not explicitly include T cells in our model. Although B

cells clearly compete for limited antigen, recent evidence

suggests that signalling from T follicular helper cells is also

important [16]. We implicitly represent T cells through affi-

nity-based selection (assuming that high-affinity B cells

present more antigen to T cells) and through the maximum

GC population size, which depends on the quantity of available

antigen and the amount of T-cell help. Other recent work mod-

elled T-cell-dependent selection based on the relative uptake of

antigen, which was entirely determined by affinity [40]. This

assumption is not inherently different from our own.

The variability between immunodominant and targeted

epitopes from run to run underscores the utility of stochastic

models in investigating repertoire evolution (figure 2). Even

when starting from identical germline sequences, naive B-cell
populations diverge in sequence, affinity and even specificity

during affinity maturation [67]. Our model suggests that a

simple explanation for different patterns of immunodomin-

ance is the stochastic selection of naive B cells to found GCs.

We speculate that these founder effects fade after multiple

infections, allowing repertoires to converge phenotypically.

Although we examined a primary infection with variably com-

plex antigens, the model can accommodate multiple exposures

to pathogens that vary antigenically over time. Statistically

integrating these kinds of models with data may provide

quantitative insight into patterns of antigenic variation and

vaccination strategies [39,40].
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