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Abstract

Mercury is a global pollutant that biomagnifies in food webs, placing wildlife at risk of reduced reproductive fitness and
survival. Songbirds are the most diverse branch of the avian evolutionary tree; many are suffering persistent and serious
population declines and we know that songbirds are frequently exposed to mercury pollution. Our objective was to
determine the effects of environmentally relevant doses of mercury on reproductive success of songbirds exposed
throughout their lives or only as adults. The two modes of exposure simulated philopatric species versus dispersive species,
and are particularly relevant because of the heightened mercury-sensitivity of developing nervous systems. We performed a
dosing study with dietary methylmercury in a model songbird species, the zebra finch (Taeniopygia guttata), at doses from
0.3 – 2.4 parts per million. Birds were exposed to mercury either as adults only or throughout their lives. All doses of mercury
reduced reproductive success, with the lowest dose reducing the number of independent offspring produced in one year
by 16% and the highest dose, representing approximately half the lethal dose for this species, causing a 50% reduction.
While mercury did not affect clutch size or survivorship, it had the most consistent effect on the proportion of chicks that
fledged from the nest, regardless of mode of exposure. Among birds exposed as adults, mercury caused a steep increase in
the latency to re-nest after loss of a clutch. Birds exposed for their entire lifetimes, which were necessarily the offspring of
dosed parents, had up to 50% lower reproductive success than adult-exposed birds at low doses of methylmercury, but
increased reproductive success at high doses, suggesting selection for mercury tolerance at the highest level of exposure.
Our results indicate that mercury levels in prey items at contaminated sites pose a significant threat to populations of
songbirds through reduced reproductive success.
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Introduction

Mercury is a naturally occurring and anthropogenically emitted

element that can diminish reproduction and survival in organisms.

Human population growth and global climate change will likely

exacerbate the problems of mercury pollution due to increases in

coal combustion, forest fires, and temperature-dependent biolog-

ical methylation of inorganic mercury [1]. Once mercury is

converted to methylmercury in the environment it readily enters

food webs and can biomagnify to toxic concentrations in predatory

species, including fish-eating and insectivorous birds [2,3]. While

the lethal effects of mercury on birds and other fish-eating

vertebrates have long been known, researchers have more recently

uncovered an array of sublethal effects that may have significant

fitness consequences on both aquatic and terrestrial birds [4-6].

Sublethal mercury accumulation, combined with other stressors

such as habitat loss, has been proposed as a serious threat to

numerous bird species of high conservation concern (e.g., rusty

blackbird, Euphagus carolinus [7]; California black rail, Laterallus

jamaicensis [8]; saltmarsh sparrow, Ammodramus caudacutus [9];

California clapper rail, Rallus longirostris [10]; Bicknell’s thrush,

Catharus bicknelli, [11]).

While mercury has long been a contaminant of concern for fish-

eating birds, recently it has been recognized that terrestrial

songbirds are also at risk for mercury contamination [3]. Average

blood mercury levels as high as 7 parts per million measured on a

wet weight basis (ppm ww) have been found at sites with point

source contamination [3]. However, global increases in circulating

mercury have resulted in elevated mercury levels in some

vulnerable ecosystems which then accumulates in birds living in

these ecosystems. In particular, birds living in bogs, estuaries, and

other wetlands are at elevated risk, and average blood mercury

levels of 0.05 – 0.9 ppm ww have been reported depending on

species and season [7,12,13]. Birds living in temperate and tropical

high elevation forests may have a moderate risk of mercury

accumulation with average blood mercury levels of 0.06 – 0.5 ppm

ww [11,14]. Atmospheric mercury has recently been shown to

accumulate in feathers of songbirds in the remote southern

Appalachian mountain ecosystems to average levels of 0.5 ppm

ww [15]. These studies all report total mercury in blood and
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feathers which are assumed to contain almost entirely methyl-

mercury, however, they do not tell the entire story as some birds

have the ability to demethylate mercury [16,17].

Mercury may impact avian reproduction through disruption of

the endocrine system [18,19], alteration of pairing or parenting

behavior [4,20,21], and/or direct embryo toxicity [22]. Several

field studies have demonstrated reproductive effects of mercury in

birds. A study of tree swallows (Tachycineta bicolor), a model

songbird species for field ecotoxicology studies, found a 20%

reduction in the number of offspring produced in a free-living

population where the average parental blood mercury was

3.0360.15 ppm ww [23]. Another insectivorous songbird, the

Carolina wren (Thryothorus ludovicianus), experienced a 20% decline

in probability of a successful nest with each 1.0 ppm increase in

blood mercury from 0.0 – 4.0 ppm ww [24]. Several studies in

common loons (Gavia immer) have indicated a benchmark of

reproductive suppression at approximately 2.5 ppm ww in the

blood and total reproductive failure at approximately 5 ppm ww

[25]. These field studies establish a correlation between mercury

and reproductive suppression in birds, but do not establish

causation. Therefore, lab based dosing studies are also necessary.

A series of dosing studies on captive mallards (Anas platyrhynchos),

combined with direct injection of mercury into the eggs of

numerous avian species, has established that there is considerable

inter- and intra-specific variation in sensitivity of reproduction to

mercury [22]. Mallards are one of the least sensitive species

known, with minimum dietary doses of 0.5 – 4 ppm required to

depress offspring viability in different studies of this species [26]. A

captive dosing study has also found reproductive effects of

methylmercury in American kestrels (Falco sparverius) at a dietary

dose of 0.7 ppm [27]. However, no dosing study has yet

investigated the reproductive effects of mercury in songbirds

though we know songbirds are often exposed to mercury

contamination [3].

While dosing captive birds is a powerful tool for detecting small

effects and establishing causation, meaningful application of the

results of dosing studies requires an appreciation of comparable

data from the field [28]. The proximate determinant of mercury

levels in birds is the mercury concentration in prey items, and the

doses used for the present study were designed to span the relevant

environmental range for insectivorous terrestrial songbirds. The

0.3 ppm (0.35 ppm measured on a dry weight basis (dw)) dose

approximates the upper end of the range for forest-dwelling

spiders sampled in remote mountains of the northeastern U.S.A.

influenced only by atmospheric deposition (mean value 0.17 ppm

dw, [29]), or grassland-dwelling spiders in an industrialized

watershed in China (mean value 0.13 ppm dw, [30]), or the

average concentration for grasshoppers (0.3 ppm dw) and

caterpillars (0.4 ppm dw) in riparian forests and grasslands

downstream of a heavily contaminated industrial point source in

Virginia, U.S.A. [3]. The 0.6 ppm (0.7 ppm dw) dose is equivalent

to the highest concentration found in adult black flies emerging

from relatively pristine soft-water streams near Algonquin Park in

Canada (range 0.15 – 0.75 ppm dw, [31]) or the average for

spiders collected at the forest breeding wetlands of rusty blackbirds

in the northeastern U.S.A. and Maritime Canada (,0.6 ppm dw,

[32]). The 1.2 ppm (1.4 ppm dw) dose is similar to the average

value for spiders collected in forests and grasslands downstream of

a heavily contaminated industrial site in Virginia, U.S.A (1.2 ppm

dw, [3]), and is close to samples of terrestrial and aquatic-emergent

flying insects eaten by swallows downstream of the same site

(0.97 ppm dw, [33]). The highest dose, (2.4 ppm dw) was intended

to be slightly beyond the range expected for any but the most

extreme wildlife exposures, such as that experienced by predators

of large fish.

Because mercury has a long half-life in biological organisms (e.g.

116 days in young loons [34]), and birds are highly mobile,

exposure may occur during a variety of life stages. Female birds

deposit accumulated mercury into their eggs [35–37], so the

developing nervous system may be exposed in ovo and as a nestling.

Birds acquire mercury primarily through locally foraged prey

items, so young birds on contaminated sites will get additional

exposure until they disperse to establish their own breeding

territory. If an entire region is contaminated and the bird species

in question is non-migratory, exposure will be life-long. Converse-

ly, birds raised on uncontaminated sites may be exposed to

mercury only after they become adults, if they disperse to a

contaminated site. Birds that migrate long distances may spend

part of each year exposed to mercury, creating even more complex

exposure scenarios. The timing of mercury exposure may impact

the type and severity of the response in birds. In this study we

simulated the first two scenarios: lifetime-exposure in which a non-

migratory bird is raised on a contaminated site and continues to be

exposed throughout life, and adult-exposure in which a non-

migratory bird disperses to a contaminated site and spends its

reproductive life exposed to mercury. We performed a dosing

study with dietary methylmercury fed to a model songbird species,

the zebra finch (Taeniopygia guttata), to determine the effects of

environmentally relevant doses of mercury on reproductive success

of birds exposed throughout their lives or only as adults. Because

mercury is thought to have a greater impact during development,

we predicted that the birds exposed throughout their lives would

be more sensitive to mercury exposure and show reproductive

suppression at a lower dose.

Materials and Methods

Study species
Zebra finches are the passerine species most commonly used in

laboratory studies. Their biology has been very well studied [38]

and their genome has recently been sequenced [39] making them

an ideal model system. They are a granivorous bird native to

Australia. They are very easy to keep in captivity and unlike many

other species, will breed continuously when provided adequate

resources. This last trait makes them well suited for reproductive

studies such as this one as they will complete many breeding

attempts in a single year allowing for estimates of lifetime

reproductive success in a relatively short period of time.

Experimental design
All research was conducted at The College of William and

Mary aviary in Virginia, USA, between February 2011 and June

2013. This study was carried out in accordance with the

recommendations in the Guide of the Care and Use of Laboratory

Animals of the National Institutes of Health. All procedures and

protocols were approved and overseen by The College of William

and Mary’s Institutional Animal Care and Use Committee

(IACUC 2012-05-23-7982). The birds used for the adult-exposure

portion of this study were bred from an existing captive population

of zebra finches. All birds were of known parentage, previously

unexposed to mercury, sexually mature, and less than 400 days of

age at the onset of the study. Birds were maintained indoors under

constant environmental conditions (14:10 light:dark photoperiod,

at approximately 22uC), with ad libitum access to food, vitamin-

enriched water (Vitasol), oyster shell grit, and a cuttlefish bone.

Each treatment group was fed a commercial pelletized diet

(Zupreem FruitBlend) dosed with 0.0, 0.3, 0.6, 1.2, or 2.4 ppm ww
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methylmercury cysteine. The lower doses (0.3 and 0.6 ppm) were

chosen to reflect the mercury content of common insectivorous

songbird prey items reported for numerous habitats including the

South River, a contaminated watershed in western Virginia [3].

The higher doses were chosen to represent a worst-case-scenario

diet at a contaminated site (1.2 ppm) or to accentuate effects that

might be present but difficult to detect at lower mercury levels

(2.4 ppm).

Adult-exposure
180 birds (90 males, 90 females) were randomly assigned to one

of the five treatment groups (18 pairs per group). Birds were

initially housed in single sex cages and dosed for 10 weeks, at

which point blood mercury levels had reached a plateau. After 10

weeks, birds were randomly paired, avoiding inbreeding between

any known relatives, and allowed to breed for one year. Birds were

maintained on treatment diets for the entire course of the year. We

housed birds in pairs with a plastic nest box and ad libitum hay for

nesting material. Treatment cages were assorted into four

experimental rooms with each treatment spread between three

rooms and each room containing representatives of at least 3

treatment groups.

Over the course of the year, reproduction was monitored daily.

Every egg was marked with a sequential number in permanent

marker on the day it was laid. When chicks hatched, the natal

down was colored with a non-toxic Crayola� marker to allow for

individual identification. Chicks were banded with a uniquely

numbered aluminum band at 10 days after hatching. When chicks

reached 50 days of age, they were removed from the parental cage

and maintained in flocks on the same diet for use in the second

part of the study (below). This daily monitoring allowed us to

determine the fate of every egg from laying to independence,

producing very accurate and complete measures of reproductive

success for each breeding pair. The first clutch produced by every

pair was removed to determine egg mercury concentration and

standardize conditions for measuring the number of days until a

new nest was initiated (inter-clutch interval). Blood mercury levels

were measured monthly in each bird. A small (approximately

30 mL) blood sample was taken from the brachial vein by

puncturing it with a 30-gauge sterile needle. The blood droplet

was collected in a heparinized microcapillary tube and frozen at

220 uC until mercury analysis (below).

Lifetime-exposure
Birds for the lifetime-exposure portion of the study were the

offspring of the adult-exposed birds, and were also sexually mature

and less than 400 days of age at the onset of reproduction. Because

not all pairs from the adult-exposure portion of the experiment

reproduced successfully, not all pairs were represented by offspring

in the second portion of the study. For those initial pairs that did

produce young, one randomly selected male and female offspring

was chosen from each pair to go into the lifetime-exposure portion

of the study. To bring the number up to 18 pairs per treatment

group, additional siblings were randomly chosen with no more

than 2 males and 2 females from any one pair from the adult-

exposure portion of the study. Males and females were randomly

paired within treatment groups, avoiding any inbreeding between

known relatives. Birds were housed and reproduction monitored

as described above for the adult-exposure portion of the study.

Food Preparation
The food was dosed with an aqueous solution of methylmercury

cysteine, which is thought to be the form of mercury found in a

natural avian diet [40]. Methylmercury cysteine was made by

dissolving methylmercury chloride in 100% ethanol and combin-

ing in a 1:99 ratio with degassed deionized water containing a 2 X

molar excess of cysteine to create a 40 ppm stock solution. Food

was then prepared by diluting the stock solution to the desired

concentration and mixing in with food at a 1:9 ratio by weight.

Food was then homogenized in a rock tumbler for 30 minutes.

Control food was prepared by mixing a solution of water and

cysteine with the food. Each batch of food was tested to confirm

that it fell within 10% of the target concentration.

Mercury analysis
Total mercury concentrations for blood and food were analyzed

using a DMA-80 (Direct Mercury Analyzer, Milestone Scientific).

All samples were run fresh (i.e. not freeze-dried). We followed

standard quality control procedures for all analyses. The DMA-80

was calibrated approximately every two months or as needed

throughout the study. Certified standard reference materials

(National Research Council Canada) and machine and sample

blanks were run with every batch of 20 samples to check for

calibration stability and contamination. The recovery of standard

reference materials over the entire two years of the study was

within acceptable limits (DORM-3: 103.060.1%, n = 1814;

DORM-4: 101.760.4%, n = 255; DOLT-3: 99.760.4%, n = 66;

DOLT-4: 100.760.1%, n = 1954). When reference material was

spiked into bird blood the recovery was 98.860.7%, n = 26.

Duplicate blood samples were included with approximately every

20 blood samples as available and the relative percent difference

was 7.561.4%, n = 45. The average calculated minimum detec-

tion limit was 0.00860.001 ppm.

Statistical methods
We used five measures of reproductive performance: the total

number of independent (50-day old) offspring produced in one

year (independent offspring); median number of eggs in all

clutches produced in one year where a clutch is defined as a group

of eggs laid on sequential days and separated by at least 4 days on

which no egg was laid (clutch size); proportion of eggs laid that

hatched (hatching success); proportion of chicks hatched that

survived to leave the nest box (fledging success); and the number of

days between when the first clutch produced was removed and the

first new egg of the next clutch was laid (latency to re-nest). We

also analyzed adult mortality rates by recording whether both

members of the pair survived the entire year of the study (survival).

We consider the number of independent offspring to be a measure

of lifetime reproductive success (or fitness) as it takes into account

all components of reproduction as well as pair survival. Because

captive zebra finches maintained on long day photoperiods

attempt to breed continuously, we interpreted one year of

consecutive breeding as being equivalent to the lifetime reproduc-

tive success of a small songbird breeding over several years.

All statistics were performed using SPSS 19 (IBM). We used

generalized linear mixed models for all analyses of reproductive

measures. For each, treatment level and type of mercury exposure

(adult or lifetime) were used as fixed effects. Room was included as

a random effect with a scaled identity covariance matrix to control

for any differences in environment between rooms. All count

measures (independent offspring, clutch size, and latency to re-

nest) were modeled using a Poisson distribution and a log link

function. Proportion measures (hatching success, fledging success)

were modeled using a binomial distribution and a logit link.

Survival was designated as a binary (1 = both members of the pair

survived for 1 year, 0 = at least one member of the pair died

within the year) and modeled using a binomial distribution and a

logit link. We conducted post hoc comparisons of all treatments to
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the control using a sequential Bonferroni adjustment of the p value

and interpreted two-tailed tests of significance. All means are

presented with standard errors throughout.

Results

Blood mercury levels
Dietary mercury dosing effectively raised blood mercury levels

with each doubling in dietary dose corresponding to an

approximate doubling in blood mercury levels (Fig. 1). On

average the blood mercury level of the birds was 13.260.2 times

the dietary dose. For all doses, the lifetime-exposed birds had

slightly, but not significantly, higher blood mercury concentrations

than the adult-exposed birds (Wald x2 = 0.57, df = 1, P = 0.45;

Fig. 1)

General effects of mercury exposure
Mercury markedly decreased reproductive success as measured

by the number of independent offspring produced in one year

(Fig. 2A; F4,170 = 23.52, P,0.001). On average, pairs produced

approximately seven broods during the year of the study. Post hoc

comparisons revealed that all treatments produced significantly

fewer offspring than the control, such that the 0.3 ppm treatment

level produced a 16% reduction in reproductive success (P = 0.03),

the 0.6 ppm treatment level produced a 31% reduction

(P = 0.001), the 1.2 ppm treatment level produced a 42%

reduction (P,0.001), and the 2.4 ppm treatment level produced

a 50% reduction (P,0.001).

To help understand which components of fitness were affected

by mercury exposure, we further analyzed how mercury

influenced fledging success, latency to re-nest (i.e. an estimate of

inter-clutch interval), hatching success, clutch size, and adult

survival (Table 1). Fledging success was significantly reduced by

mercury (Fig. 2D; F4,150 = 16.63, P,0.001) with all treatment

levels having significantly lower fledging success relative to the

control (P,0.001). Latency to re-nest was also impacted by

mercury (Fig. 2E; F4,155 = 39.45, P,0.001) but only treatment

levels of 0.6 ppm and above required a statistically significantly

greater number of days to re-nest relative to the control (P,0.02,

in all cases). To reiterate, there was no significant difference

between the 0.3 ppm treatment and the control in the number of

days to re-nest (P = 0.55). There was a significant impact of

mercury treatment on hatching success (Fig. 2C; F4,155 = 10.10,

P,0.001). The 0.3 ppm treatment level had slightly higher

hatching success than the control (P = 0.03) while the 2.4 ppm

treatment level had notably lower hatching success than the

control (P = 0.001). Mercury treatment had no detectable effects

on either clutch size (Fig. 2B; F4,158 = 0.38, P = 0.82) or adult

survival (Fig. 2F; F4,170 = 0.82, P = 0.51).

Effects of lifetime vs. adult exposure
The type of mercury exposure (adult vs. lifetime) had an impact

on how mercury affected reproductive success (Fig. 3A;

F4,170 = 15.01, P,0.001). In the lower mercury exposure treat-

ments, specifically the 0.3 and 0.6 treatments, lifetime-exposed

birds had significantly lower total reproductive success, as

measured by number of independent offspring, than adult-exposed

birds (P = 0.02 and ,0.001, respectively). This is consistent with

lifetime-exposed birds being more sensitive to the detrimental

effects of mercury exposure. In striking contrast, in the highest

mercury exposure treatment (i.e. 2.4 ppm) lifetime-exposed birds

had higher reproductive success than adult-exposed birds

(P,0.01). As lifetime-exposed birds were the offspring of adult-

exposed birds, this observation is consistent with a rapid, evolved

response to artificial selection for mercury tolerance at the highest

level of mercury exposure.

As with the previous analyses that grouped all birds together, we

dissected components of breeding and survival to help explain

fitness differences between lifetime- and adult-exposed birds.

There was an interaction between the effects of type of mercury

exposure and mercury level on fledging success (Fig. 3D;

F4,150 = 4.742, P = 0.001). Birds with lifetime-exposure to

2.4 ppm had higher fledging success than those exposed to

2.4 ppm only as adults (P,0.001). Latency to re-nest also revealed

a significant interaction between type of exposure and treatment

level (Fig. 3E; F4,155 = 67.73, P,0.001), with lifetime-exposed

birds being affected more than adult-exposed birds at lower dose

treatments (0.3 and 0.6 ppm, P,0.001) but being less impacted at

higher doses (1.2 and 2.4 ppm, P,0.001). There was a significant

interaction between exposure type and treatment in hatching

success as well (Fig. 3C; F4,155 = 38.72, P,0.001), but the pattern

is biologically non-intuitive. There was no significant interaction

between exposure type and treatment level in either clutch size

(Fig. 3B; F4,158 = 0.081, P = 0.99) or adult survival (Fig. 3F;

F4,170 = 0.693, P = 0.60), although survival was generally lower in

the lifetime-exposed birds (F1,170 = 11.744, P = 0.001).

Discussion

The dietary dosing successfully manipulated blood mercury

levels in the different treatments with the lowest two doses (0.3 and

0.6 ppm) accumulating blood mercury levels (approximately 4 and

8 ppm respectively) similar to blood mercury levels seen in wild

bird populations in areas with point source contamination [3].

Mercury levels impacted reproductive success, but not all

reproductive endpoints (e.g. clutch size) were affected by treatment

level (Table 1). The timing of exposure had a significant effect on

reproductive success, with developmentally exposed birds showing

increased sensitivity to mercury at the lower doses (0.3 and

0.6 ppm) but decreased sensitivity in the highest dose (2.4 ppm).

Figure 1. Average blood mercury values for each dietary dose
of adult-exposed and lifetime-exposed zebra finches. Adult-
exposed averages are represented by filled circles and solid lines;
lifetime-exposed averages are represented by hollow circles and dashed
lines. Values are means and bars are one S.E.
doi:10.1371/journal.pone.0095674.g001
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This suggests that there may have been selection for resistance to

mercury after only one generation.

Effect of mercury on reproductive success
Methylmercury exposure reduced reproductive success at all

dosing levels in this study. Ecologically, this observation of both

adult- and lifetime-exposed birds combined (Fig. 1) approximates

the effects of mercury contamination on a free-living population of

non-migratory songbirds that contains a mixture of philopatric

and dispersive individuals. The percent reduction of independent

offspring produced at the lowest dose was similar to what was

observed in tree swallows at an industrially-contaminated site

(16% reduction at approximately 4 ppm in zebra finch versus 20%

reduction at approximately 3 ppm in tree swallow [23]). In

contrast, data from Carolina wrens at the same site predicted 80%

nest failure at comparable blood mercury levels [24]. The average

blood mercury levels of both tree swallows and Carolina wrens at

the contaminated South River were approximately 3 ppm,

indicating that this is a representative value for passerines at a

contaminated site [23,24]. The reduction in fitness we observed in

zebra finches started at our lowest dose of mercury, indicating that

zebra finch reproduction, like that of Carolina wrens, is likely

impacted by dietary mercury at a level below 0.3 ppm.

Figure 2. Effects of dietary mercury on zebra finch reproduction. All points are model averages from the generalized linear mixed models.
Bars are one S.E. A) The average total number of independent offspring produced per pair in one year of reproduction. B) The average clutch size. C)
The proportion of eggs laid that hatched. D) The proportion of hatched chicks that survived to leave the nest. E) The number of days between
removal of the first clutch of eggs and laying of the second clutch. F) The probability that both members of the pair survived for one year.
doi:10.1371/journal.pone.0095674.g002
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Relative sensitivity
Often in toxicology it is assumed that all members of a

particular taxon (e.g. birds) will react similarly to a contaminant,

but this may often not be the case. In previous dosing studies,

reproductive impairment began at 0.5 ppm dietary mercury in

mallards [26] and 0.7 ppm dietary mercury in kestrels [27],

suggesting that zebra finches may be somewhat more sensitive to

mercury than waterfowl or raptors. White ibis showed a 35%

decrease in reproductive success at 0.3 ppm dietary mercury [4].

A study in which eggs of 26 species were injected with mercury

concluded that two species of songbirds were more sensitive to

mercury than mallards but less sensitive than kestrels or ibis [22].

Our results suggest that dosed zebra finches may, in fact, be no less

sensitive than kestrels to reproductive disruption by mercury.

Dietary doses of 5 ppm have been shown to cause significant

mortality in zebra finches within only 80 days [41] suggesting that

this may be close to the lethal dose for chronic exposure. Thus, we

found 50% reduction in reproduction at approximately half the

lethal dose and 16% reduction at only 6% of the lethal dose. We

suggest that these percentages might be useful guideposts in future

studies when trying to estimate population injury—zebra finches

experienced a substantial loss (,15%) of reproductive productivity

at an exposure level that was only a few percent (,5%) of the

lethal concentration.

Variation in sensitivity of endpoints
The components of reproductive success that appeared to be

most affected by mercury in the zebra finch were fledging success

and latency to re-nest. These endpoints are likely influenced by

parental behavior, and thus may be more impacted by mercury as

it is a known neurotoxin. In the wild, impacts on fledging success

may be exacerbated as parents usually have limited food resources

and face higher risks of predation. Further study is needed to

determine whether the effects on fledging success were due to

impacts on nestling physiology or development or whether

changes in parental behavior accounted for the difference in

nestling survival. Increased length of time between nesting

attempts can have a large effect on individual fitness in the field

as it can limit an individual’s ability to double brood, or prevent

re-nesting if a brood is lost to predation. We did not find a strong

effect of mercury on hatching success, which is contrary to the

prevailing belief that the developing embryo is the most sensitive

life stage to mercury [22]. However, the mortality we observed

during the nestling period may have been due to the delayed

effects of in ovo exposure. The interesting pattern we observed in

which the 0.3 ppm treatment showed slightly higher hatching

success and the 2.4 ppm treatment had much lower hatching

success could be an example of hormesis, similar to that recently

reported for hatching success in mallards [42].

Effects of timing of exposure
We also found some important differences between birds with

lifetime-exposure to mercury and those exposed only as adults.

The lifetime-exposed birds were more sensitive to mercury,

showing significant reproductive suppression at the lower doses

(0.3 and 0.6 ppm) while the adult-exposed birds did not show

reproductive suppression until 1.2 ppm. This could be because

there is a greater impact of mercury when exposure occurs during

development. Alternatively, the difference could be attributed to a

longer period of chronic exposure for the lifetime-exposed birds.

Further research that distinguishes early exposure from longer

exposure will be necessary to separate these two hypotheses. Our

lab is currently investigating this question. Mercury [43], as well as

other environmental contaminants [44,45], is known to have

greater effects on developing organisms and these effects may

continue throughout the life of the individual [46].

Another difference between the lifetime-exposed birds and the

adult-exposed birds occurred at the highest treatment level

(2.4 ppm). The lifetime-exposed birds had higher reproductive

success than the adult-exposed birds at that dietary concentration.

Because the lifetime-exposed birds were the offspring of the adult-

exposed birds, this pattern is consistent with rapid adaptation to

mercury exposure. Selection pressure was exerted both by the fact

that unsuccessful pairs were not represented by offspring in the

lifetime-exposed portion of the experiment and through mortality

during the nestling stage, as all individuals included in the lifetime-

exposure portion had by definition survived exposure as nestlings.

In a previous study we found that families of related zebra finches

responded differently to mercury exposure, with some genetic

families showing little response to mercury contamination [47].

We also know that there is a significant heritable genetic

component to blood mercury level accumulation in our population

of zebra finches [48]. Therefore, we have evidence that there is a

notable genetic component to responses to mercury in this

population upon which selection could act.

Implications for free-living populations
Blood mercury levels produced in this study by the lower doses

(approximately 4 ppm for the 0.3 ppm dose and approximately

8 ppm for the 0.6 ppm dose) resulted in a decline in reproductive

success similar to one songbird species on industrially contami-

nated sites (tree swallow, 3 ppm in blood [23]) but considerably

Table 1. Results of Generalized Linear Mixed Models.

Analysis Factor F Stat. DF P

Independent Offspring Model 16.69 9, 170 , 0.001

Mercury Level 23.52 4, 170 , 0.001

Type of Exposure 3.22 1, 170 0.08

Level * Type 15.01 4, 170 , 0.001

Clutch Size Model 0.28 9, 158 0.98

Mercury Level 0.38 4, 158 0.82

Type of Exposure 0.59 1, 158 0.44

Level * Type 0.08 4, 158 0.99

Hatching Success Model 28.58 9, 155 , 0.001

Mercury Level 10.10 4, 155 , 0.001

Type of Exposure 79.47 1, 155 , 0.001

Level * Type 38.72 4, 155 , 0.001

Fledging Success Model 11.39 9, 150 , 0.001

Mercury Level 16.63 4, 150 , 0.001

Type of Exposure 19.04 1, 150 , 0.001

Level * Type 4.74 4, 150 , 0.01

Latency to Re-nest Model 59.59 9, 155 , 0.001

Mercury Level 39.45 4, 155 , 0.001

Type of Exposure 5.196 1, 155 0.02

Level * Type 67.73 4, 155 , 0.001

Adult Survival Model 2.03 9, 170 0.04

Mercury Level 0.82 4, 170 0.51

Type of Exposure 11.74 1, 170 , 0.01

Level * Type 0.69 4, 170 0.60

doi:10.1371/journal.pone.0095674.t001
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less than another (Carolina wren, 3 ppm in blood [24]). These

differences could be attributed to the interspecific variation in

sensitivity observed among bird species [22]. Additionally, the

decreased sensitivity to mercury observed in zebra finches relative

to Carolina wrens could be a result of less stressful living conditions

within the aviary relative to the field. In captivity, the birds have

unlimited access to food and water with no risk of predation. It

may be that these stressors (i.e. limited food and predation risk)

exacerbate the effects of mercury on free-living birds. Thus the

fitness reduction shown here may be an underestimate of the

actual harm to wild populations and much caution should be used

in applying it to wild birds. However, if our results here were an

accurate representation of the effects in the field, the reduction in

reproductive success even at the lowest dosing level could

potentially lead to population declines, particularly in small or

isolated populations. This lends support to the idea that mercury

contamination may be of significant conservation concern to

populations of birds with high exposure or additional threats. We

also feel that our metric of observing a significant loss in

productivity at approximately 6% of the lethal mercury exposure

level could be used as a conservative starting point for assessing

potential population damages. Although this is likely an underes-

Figure 3. Differences in the effects of mercury on reproduction between adult-exposed and lifetime-exposed zebra finches. Adult-
exposed averages are represented by filled circles and solid lines; lifetime-exposed averages are represented by hollow circles and dashed lines. All
points are model averages from the generalized linear mixed models. Bars are one S.E. A) The average total number of independent offspring
produced per pair in one year of reproduction. B) The average clutch size. C) The proportion of eggs laid that hatched. D) The proportion of hatched
chicks that survived to leave the nest. E) The number of days between removal of the first clutch of eggs and laying of the second clutch. F) The
probability that both members of the pair survived for one year.
doi:10.1371/journal.pone.0095674.g003
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timate (for the reasons explained above), if field workers have

information about lethal dietary levels in free-living birds, the

results of our study can be used as a starting point for extrapolating

expected reductions in reproductive success at lower dietary

concentrations.

Another important consideration for applying these findings to

free-living birds is that lifetime-exposed birds are more sensitive to

mercury contamination than those exposed only as adults. The

lifetime-exposed birds can be compared to relatively sedentary or

philopatric species that spend their entire lives on contaminated

sites or return to their natal area to breed, whereas the adult-

exposed birds may be more representative of birds with longer

natal dispersal distances that hatch on an uncontaminated site and

then immigrate to a contaminated area to breed. Natal dispersal

distances vary between species, so even philopatric species may

have dispersal distances large enough for them to escape

contamination as adults. However, many species of conservation

concern are limited by available habitat and are therefore more

philopatric than generalist species. Because of this, these already-

vulnerable species may be at even greater risk from mercury

pollution. In fact, the lifetime-exposed birds in this study had a

27% reduction in reproductive success at the lowest dietary dose

used here (0.3 ppm), suggesting that mercury can be a very serious

threat to philopatric populations.

We also found evidence suggestive of adaptation to mercury

contamination after just one generation of strong selection. If

genetic variation for resistance to mercury pollution exists in wild

populations as well, which seems reasonable as there was variation

in our relatively small zebra finch population, then evolution may

occur in philopatric populations relatively rapidly. Genetic

variance for tolerance of environmental pollutants has been

documented in several invertebrate species [49,50] and in fish

[51]. Similar variation in birds could lead to genetic differences

between populations on contaminated and uncontaminated sites,

resulting in underestimates of the effects of mercury when birds

from contaminated sites are compared to those from reference

sites. Additionally, we have previously found that the families that

are more resistant to the effects of mercury had lower fitness on

control diets [25]. Thus, those birds that are best able to breed on

a contaminated site may produce offspring that have lower fitness

if they disperse to uncontaminated areas, resulting in another

more cryptic cost of mercury on species as a whole.
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