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Abstract

Word models (natural language descriptions of molecular mecha-
nisms) are a common currency in spoken and written communica-
tion in biomedicine but are of limited use in predicting the
behavior of complex biological networks. We present an approach
to building computational models directly from natural language
using automated assembly. Molecular mechanisms described in
simple English are read by natural language processing algorithms,
converted into an intermediate representation, and assembled into
executable or network models. We have implemented this
approach in the Integrated Network and Dynamical Reasoning
Assembler (INDRA), which draws on existing natural language
processing systems as well as pathway information in Pathway
Commons and other online resources. We demonstrate the use of
INDRA and natural language to model three biological processes of
increasing scope: (i) p53 dynamics in response to DNA damage, (ii)
adaptive drug resistance in BRAF-V600E-mutant melanomas, and
(iii) the RAS signaling pathway. The use of natural language makes
the task of developing a model more efficient and it increases
model transparency, thereby promoting collaboration with the
broader biology community.
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Introduction

Biophysics and biochemistry are the foundations of quantitative

reasoning about biological mechanisms (Gunawardena, 2014a).

Historically, systems of biochemical mechanisms were described

in reaction diagrams (familiar graphs involving forward and reverse

arrows) and analyzed algebraically. As such systems became more

complex and grew to include large networks in mammalian cells,

word models (natural language descriptions) became the dominant

way of describing biochemical processes; word models are

frequently illustrated using pictograms and informal schematics.

However, formal approaches are generally required to understand

dynamics, multi-component switches, bistability, etc. Dynamical

models and systems theory have proven extremely effective in

elucidating mechanisms of all-or-none response to apoptosis-indu-

cing ligands (Rehm et al, 2002; Albeck et al, 2008), sequential

execution of cell cycle phases (Chen et al, 2004), the interplay

between stochastic and deterministic reactions in the control of cell

fate following DNA damage (Purvis et al, 2012), drug sensitivity

and disease progression (Lindner et al, 2013; Fey et al, 2015),

bacterial cell physiology (Karr et al, 2012), the responses of ERK

kinase (Chen et al, 2009) and the NF-jB transcription factor

(Hoffmann et al, 2002) to environmental stimuli, and similar

biological processes. The challenge arises in linking a rich ecology

of word models to computational representations of these models

that can be simulated and analyzed. The technical environments

used to create and explore dynamical models remain unfamiliar to

many biologists, and a substantial gap persists between the bulk of

the literature and formal systems biology models.

A variety of methods have been developed to make mechanistic

modeling more powerful and efficient. These include fully inte-

grated software environments (Loew & Schaff, 2001; Hoops et al,

2006), graphical formalisms (Kolpakov et al, 2006; Le Novère

et al, 2009), tabular formats (Tiger et al, 2012), high-level modular

and rule-based languages (Danos et al, 2009; Mallavarapu et al,

2009; Smith et al, 2009), translation systems for generating

Systems Biology Markup Language (SBML) models from pathway

information (Ruebenacker et al, 2009; Büchel et al, 2013), and

specialized programming environments such as PySB (Lopez et al,

2013). In addition, the BioModels database has provided a means

to retrieve and reuse existing models (Juty et al, 2015). Such tools

have increased transparency and reusability but not sufficiently to

bridge the gap between verbal descriptions and computational

models.
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To date, most attempts to make modeling more accessible have

focused on graphical interfaces in which users draw reaction

diagrams that are then used to generate equations. This approach is

attractive in principle, since informal diagrams are a mainstay of

most scientific presentations, and schematic diagrams are essential

in engineering, but it has proven difficult in practice to accommo-

date the simultaneous demands of accurately rendering individual

biochemical reactions while also depicting large numbers of inter-

acting components. It is particularly difficult to create graphical

interfaces that model the combinatorially complex reactions encoun-

tered in animal cell signaling (Stefan et al, 2014).

In this paper, we explore the idea that natural language can serve

as a direct input for dynamical modeling. Natural language has

many benefits as a means of expressing mechanistic information: In

addition to being familiar, it can concisely capture experimental find-

ings about mechanisms that are ambiguous and incomplete. Exten-

sive work has been performed on the use of software to convert text

into computable representations of natural language, and such natu-

ral language processing (NLP) tools are used extensively to mine the

scientific literature (Krallinger et al, 2012; Fluck & Hofmann-Apitius,

2014). To our knowledge however, natural language has not been

widely used as a direct input for mechanistic modeling of biological

or chemical processes. A handful of studies have explored the use of

formal languages resembling natural language for model creation

(Kahramano�gullari et al, 2009; Wasik et al, 2013) but these systems

focus on capturing low-level reaction mechanisms and require that

descriptions conform to a precisely defined syntax.

Three technical challenges must be overcome to convert natural

language into executable models. The first is reading text with a

machine in a manner that reliably identifies mechanistic assertions

in the face of variation in how they are expressed. The second is

designing an intermediate knowledge representation that captures

often-ambiguous and incomplete mechanisms without adding

unsubstantiated assumptions (thereby implementing the rule: “don’t

know, don’t write”). This intermediate representation must be

compatible with existing machine-readable sources of network

information such as pathway databases. The third challenge is

translating mechanistic assertions from the intermediate representa-

tion into executable models involving different mathematical form-

alisms and levels of detail; this involves supplying necessary

assumptions left out of the original text.

The method and software tool described in this paper, the Inte-

grated Network and Dynamical Reasoning Assembler (INDRA),

addresses these challenges and makes it possible to construct dif-

ferent types of executable models directly from natural language

and fragmentary information in pathway databases. In contrast to

previous approaches to incorporating natural language in models,

INDRA can accommodate flexibility in style and syntax through the

use of NLP algorithms that normalize variability in expression into

logical forms that effectively represent the underlying meaning

(Box 1). Mechanisms extracted from natural language and other

sources are converted into Statements (the INDRA intermediate

representation) and then translated into one of several types of

models depending on the specific use case. We describe this process

Glossary

Application programming interface (API)
a standardized interface by which one software system can use
services provided by other software, often remotely; in the current
context, INDRA accesses NLP systems and pathway databases via
APIs. INDRA exposes an API that other software can build upon. API is
used here interchangeably with Interface (e.g., INDRA’s TRIPS
Interface).
Assembler
a module in INDRA that constructs a model, network, or other output
from INDRA Statements.
Executable model
a computational model that can be simulated to reproduce the
observable dynamical behavior of a system; often, but not always, a
system of linked differential equations.
Extraction knowledge base (EKB)
a collection of events and terms relevant to molecular biology that is
the result of natural language processing with TRIPS (Box 1).
Grounding
a sub-task of NLP related to NER which assigns unique identifiers to
named entities in text by linking them to ontologies and databases;
in the current context, this involves creating links to databases such
as UniProt, HGNC, GO, or ChEBI.
Knowledge representation
a formalism that allows aggregation of information, potentially from
multiple sources, in a standardized computable format; in the current
context, INDRA Statements serve as a common knowledge
representation for mechanistic information.
Logical form (LF)
a graph representing the meaning of a sentence; an intermediate
output of natural language processing in the TRIPS system
(Box 1).

Model assembly
the process of automatically generating a model in a given
computational formalism from an intermediate knowledge
representation; in our context from INDRA Statements.
Molecular mechanism
used in this paper to refer to processes involved in changing the state
of a molecular entity or in describing its interaction with another
molecular entity as represented by a set of linked biochemical
reactions. Descriptions of mechanisms are common in the biomedical
literature and key assertions are captured in databases in formats
such as BioPAX. The information we extract from such descriptions
are interchangeably referred to as mechanistic information,
mechanistic assertions, mechanistic facts, and mechanistic findings.
Named entity recognition (NER)
a sub-task of NLP concerned with the recognition of special words in
a text that are not part of the general language; in the current
context, NER is used to identify proteins, metabolites, drugs, and
other terms (which are generally referred to as named entities).
Natural language (NL)
language that humans commonly use to communicate in speech and
writing; in the current context, restricted to the English language.
Natural language processing (NLP)
the algorithmic process by which a computer interprets natural
language text.
Policies
user-defined settings that affect the automated assembly process.
Processor
a module in INDRA that constructs INDRA Statements from a specific
input format.
Template extraction
the process by which INDRA Processors extract INDRA Statements
from various input formats.
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in some detail because it relates directly to how we understand and

communicate biological mechanisms in papers and conversations.

The essential challenge is converting the informality and ambiguity

of language, which is frequently a benefit in the face of incomplete

information, into a precise set of statements (or equations) needed

for an executable mathematical model.

As a test case, we show that INDRA can be used to automatically

construct a model of p53 dynamics in response to DNA damage

from a few simple English statements; we show that the qualitative

behavior of the INDRA model matches that of an existing mathemat-

ical model constructed by hand. In a second, more challenging test,

we show that an ensemble of models of the MAP kinase pathway in

cancer cells can be built using literature-derived text describing the

interaction between BRAFV600E and drugs used to treat melanoma.

Finally, we use natural language and INDRA to assemble a large-

scale model of the RAS pathway as defined by a community of RAS

biology experts; we show how this model can be updated using

sentences gathered from the RAS community.

Results

INDRA decouples the curation of mechanistic knowledge from
model implementation

A core concept in INDRA is that the identification, extraction, and

regularization of mechanistic information (curation) is a distinct

process from model assembly and implementation. Mechanistic

models demand a concrete set of assumptions (about catalytic

mechanisms, stoichiometry, rate constants, etc.) that are rarely

expressed in a single paper or molecular interaction entry stored in

a database. Models must therefore combine relatively general asser-

tions about mechanisms extracted from available knowledge

sources (e.g., that enzyme E “activates” substrate S) with informa-

tion or assumptions about molecular details (e.g., that the enzyme

acts on the substrate S in a three-step ATP-dependent mechanism

involving an activating site on the substrate) derived from general

knowledge about biochemistry and biophysics. Precisely how such

details are constructed depends on the requirements of the mathe-

matical formalism, the specific biological use case, and the nature of

the hypothesis being tested. A similar concept was recently intro-

duced for rule-based modeling in Basso-Blandin et al (2016) and in

the context of graphical model diagrams in O’Hara et al (2016). In

both works, the authors make a distinction between the curation

and representation of mechanistic knowledge and its executable

implementation.

Text-to-model conversion in INDRA involves three coupled

steps. First, text is processed into a machine-interpretable form and

the identities of proteins, genes, and other biological entities are

grounded in reference databases. Second, the information is

mapped onto an intermediate knowledge representation (INDRA

Statements) designed to correspond in both specificity and ambigu-

ity to descriptions of biochemistry as found in text (e.g., “MEK1

phosphorylates ERK2”). Third, the translation of this intermediate

representation into concrete reaction patterns and then into

executable forms such as networks of ordinary differential

equations (ODEs) is performed in an assembly step. In this process,

Statements capture mechanistic information available from the

knowledge source without additions or assumptions, deferring

interpretations of specific reaction chemistry that are often unre-

solved by the knowledge source but must be made concrete to

assemble a model.

Information flow from natural language input to a model

The three steps in text-to-model conversion are implemented in a

three-layer software architecture. An input layer comprising Inter-

face and Processor modules (Fig 1A, block 1) is responsible for

communicating with language processing systems (e.g., the TRIPS

NLP system, see Box 1) and pathway databases (e.g., the Pathway

Commons database) to acquire information about mechanisms. An

intermediate layer contains the library of Statement templates

(Fig 1A, block 2), and an output layer contains Assembler modules

that translate Statements into formats such as networks of dif-

ferential equations or protein–protein interaction graphs (Fig 1A,

block 3). INDRA is written in Python and available under the

open-source BSD license. Source code and documentation are

available at http://indra.bio; documentation is also included in the

Appendix.

As an example of text being converted into an executable model,

consider the sentence “MEK1 phosphorylates ERK2 at threonine 185

and tyrosine 187”. Figure 1B shows eight lines of Python code

implementing this example; the numbers alongside each code block

correspond to the three layers of the INDRA architecture in Fig 1A

and implement the flow of information between the user, INDRA,

and external tools shown in Fig 1C. The user first enters the

sentence to be processed and calls the process_text command in the

INDRA TRIPS Interface. This function sends a request to the web

service exposed by the TRIPS NLP system (Allen et al, 2015; Fig 1B

and C, block 1). INDRA can also call on the REACH NLP system,

which has complementary capabilities (Valenzuela-Escarcega et al,

2015), but in this paper we focus exclusively on TRIPS. TRIPS

parses the text into its logical form (Box 1, Appendix Fig S1A) and

then extracts mechanisms relevant to molecular biology into an

extraction knowledge base (EKB; Box 1, Appendix Fig S1B).

Included in this process are entity recognition and grounding

whereby MEK1 is recognized as a synonym of the HGNC gene name

MAP2K1 and grounded to UniProt Q02750, and Erk2 is grounded to

MAPK1 and UniProt P28482. These terms are explained in Box 1, in

Appendix Section 2.1, and in Allen et al (2015). The TRIPS Processor

in INDRA extracts Statements directly from the EKB output returned

by TRIPS (Fig 1B and C, block 2). The translation of Statements into

concrete models is performed by an INDRA Assembler. In this exam-

ple, a PySB Assembler was used to build a rule-based model in PySB

(Lopez et al, 2013) and generate an SBML-compatible reaction

network (Fig 1B and C, block 3). Because the Phosphorylation State-

ments in this example are compatible with multiple concrete reac-

tion patterns, the user specifies a policy for assembly: Here, we used

the “two-step” policy, which implements phosphorylation with

reversible enzyme–substrate binding (polices are described below).

The resulting reaction network was instantiated as a set of ODEs

and simulated using default parameter values to produce the tempo-

ral dynamics of all three phosphorylated forms of ERK2 (labeled

MAPK1; Fig 1C, bottom right). The same rule-based model can also

be analyzed stochastically using network-free simulators (Danos

et al, 2007b; Sneddon et al, 2011).
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INDRA Statements represent mechanisms from multiple sources

Integrated Network and Dynamical Reasoning Assembler Statements

serve as the bridge between knowledge sources and assembled

models, and we therefore describe them in detail. Statements are

implemented as a class hierarchy that groups related mechanisms; a

Unified Modeling Language (UML) diagram of existing Statement

classes is shown in Appendix Fig S2. Each INDRA Statement

describes a mechanism involving one or more molecular entities,

along with information specific to the mechanism and any supporting

evidence drawn from knowledge sources. For example, the phospho-

rylation Statement shown schematically in Fig 2A contains references

to enzyme and substrate Agents (which in this case refers to MAP2K1

and MAPK1, respectively), the phosphorylated residue and position

on the substrate, and one or more Evidence objects with supporting

information. An Agent is an INDRA object that captures the features

of the molecular state necessary for a participant to take part in a

molecular process (Fig 2B). This includes necessary post-transla-

tional modifications, bound cofactors, mutations, cellular location,

and state of activity (Fig 2B and Appendix Fig S4). Agents also

include annotations that ground molecular entities to unique

identifiers in one or more databases or ontologies (e.g., HGNC,

UniProt, ChEBI; Fig 2B). Evidence objects contain references to

supporting text, citations, and relevant experimental context

(Fig 2C).

An important feature of both Statements and Agents is that they

need not be fully specified. If there is no information in the source

pertaining to a specific detail in a Statement or Agent, then the corre-

sponding entry is left blank; this is an example of the “don’t know,

don’t write” principle. INDRA and the rule-based models it generates

are designed to handle information that is incomplete in this way. For

example, the Phosphorylation Statement shown in Fig 2A indicates

that the phosphorylation of substrate MAPK1 can occur when the

enzyme MAP2K1 is phosphorylated at serine residues S218 and S222,

but other aspects of the state of MAP2K1 are left unspecified (e.g.,

whether MAP2K1 is phosphorylated at S298, or bound to a scaffold

protein such as KSR). Statements capture the ambiguity inherent in the

vast majority of statements about biological processes, thereby permit-

ting multiple interpretations: For example, phosphorylation of MAP2K1

at S218 and S222 could be necessary and sufficient for activity against

MAPK1, necessary but not sufficient, sufficient but not necessary, or

neither sufficient nor necessary, depending on other molecular context

outside the scope of the Statement. The ability of Statements to capture

knowledge from input sources while making as few additional assump-

tions as possible is an essential feature of the text-to-model conversion

process. It also conforms closely to the way individual experiments are

described and interpreted since single experiments investigate only a

subset of the facts pertaining to a biochemical mechanism and its

implementation in a model. The ambiguity in Statements is resolved

during the assembly step by explicitly declaring assumptions and gener-

ating a fully defined executable model.

Users can inspect INDRA Statements in several complementary

ways: (i) by inspecting Statements as Python objects, (ii) by rendering

Statements visually as graphs (Appendix Fig S3A), and (iii) by serial-

izing Statements into a platform-independent JSON exchange format

(Appendix Fig S3B). The semantics of INDRA Statements as well as

the semantics describing the role that Agents play in each INDRA

Statement are grounded in the Systems Biology Ontology (SBO; Cour-

tot et al, 2011) facilitating integration and reuse in other applications.

These capabilities are demonstrated in Appendix Notebook 1.

Normalized extraction of findings from diverse inputs using
mechanistic templates

The principal technical challenge in extracting mechanisms from

input sources is identifying and normalizing information contained in

disparate formats (e.g., BEL, BioPAX, TRIPS EKB) into a common

form that INDRA can use. INDRA queries input formats for patterns

corresponding to existing Statement types (templates), matching indi-

vidual pieces of information from the source format to fields in the

Statement template. This procedure is implemented for each type of

input, making it possible to extract knowledge in a consistent form.

Template matching does not guarantee that every mechanism found

in a source can be captured by INDRA, but it does ensure that when

a mechanism is recognized, the information is captured in a normal-

ized way that enables downstream model assembly. The process is

therefore configured for high precision at the cost of lower recall.

INDRA implements template-matching extraction for each input

format using a set of Processor modules. In the case of natural

Box 1: Natural language processing using TRIPS

To convert text into computable representations that capture syntax
and semantics, INDRA uses external NLP software systems exposed as
web services. This paper focuses on DRUM (Deep Reader for Under-
standing Mechanisms; http://trips.ihmc.us/parser/cgi/drum), which is a
version of the general-purpose TRIPS NLP system customized for
extracting biological mechanisms from natural language text. TRIPS
has been developed over a period of decades and used for natural
language communication between humans and machines in medical
advice systems, robotics, mission planning, etc. (see, for example,
Ferguson & Allen, 1998; Chambers et al, 2005; Allen et al, 2006).
The first step in processing natural language with TRIPS is a “shallow”

or syntactic analysis of text to identify grammatical relationships
among words in a sentence, recognize named entities such as
proteins, amino acids, small molecules, cell lines, etc., and link these
entities to appropriate database identifiers (the process of grounding).
TRIPS uses this information to perform a “deep” semantic analysis
and try to determine the meaning of a sentence in terms of its logical
structure. This process draws on a general-purpose semantic lexicon
and ontology that defines a range of word senses and semantic rela-
tions among words. The output of this process is represented as a
logical form (LF) graph (Manshadi et al, 2008). The LF graph repre-
sents the sense of each word (e.g., “protein”) and captures the seman-
tic roles of relevant arguments (e.g., “affected”) for each predicate (e.g.,
“activation”). The LF also represents tense, modality, and aspect infor-
mation—information that is crucial for determining whether a state-
ment expresses a stated fact, a conjecture, or a possibility.
The LF graph is then transformed into an extraction knowledge base
(EKB) containing extractions relevant for the domain, in this case
molecular biology. LF graphs compactly represent and normalize
much of the variation and complexity in sentence structure; EKBs can
therefore be extracted from the LF using a relatively small set of rules.
The EKB is an XML file containing entries for terms (e.g., proteins,
drugs), events (e.g., activation, modification) involving those terms,
and higher-level causal relations between the events. The EKB also
contains additional information such as the text from which a given
term or event was constructed.
A more thorough technical description of TRIPS/DRUM is given in
Appendix Section 2.1 and in Allen et al (2015); a broader overview of
NLP systems can be found in Allen (2003).
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A B

C

Figure 1. Building a model from natural language with INDRA.

A The architecture of INDRA consists of three layers of modules (1–3). In layer (1), interfaces collect mechanisms from natural language processing systems (e.g., TRIPS
Interface) and pathway databases (e.g., Pathway Commons Interface) and Processors (e.g., TRIPS Processor, BioPAX Processor) extract INDRA Statements from their
outputs. Statements, the internal representation in INDRA, constitute layer (2). In layer (3), INDRA Statements are assembled into various model formats by Assembler
modules (e.g., PySB Assembler, Graph Assembler).

B A Python script is used to assemble and simulate a model from the text “MEK1 phosphorylates ERK2 at threonine 185 and tyrosine 187”. The process_text method of
INDRA’s TRIPS Processor is called to send the text to the TRIPS NLP system (1) and then process the output of TRIPS to construct INDRA Statements (2). Then, a PySB
Assembler is constructed, the Statements are added to it, and an executable model is assembled using the PySB Assembler’s make_model method with a “two-step”
policy (3). Finally, the model is simulated for 300 s using PySB’s odesolve function.

C User input, INDRA modules, and external tools form a sequence of events to turn a natural language sentence into a model and simulation. The natural language
description from the user is passed to INDRA’s TRIPS Interface, which sends the text to TRIPS (1). The TRIPS system processes the text and creates an Extraction
Knowledge Base graph (Results column; yellow box). INDRA receives the results from TRIPS and constructs two INDRA Statements from it, one for each
phosphorylation event (Results column), which are returned to the user (2). The user then instantiates a PySB Assembler and instructs it to assemble an executable
model (3) from the given INDRA Statements (a schematic biochemical reaction network shown in Results column). Finally, the user calls an ODE solver via PySB’s
odesolve function to simulate the model for 300 s (simulation output shown in Results column).
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language, the EKB (see Glossary and Box 1) output from TRIPS

serves as an input for the TRIPS Processor in INDRA. For a statement

such as “MAP2K1 that is phosphorylated on S218 and S222 phospho-

rylates MAPK1 at T185”, the EKB extraction graph (Fig 3, top left)

has a central node (red text) corresponding to a phosphorylation

event that applies to three terms: MAP2K1 as the agent for this

event, MAPK1 as the entity affected by this event, and “threonine-

185” playing the specific role of being the site where the event

occurs (green text depicts the grounding in UniProt and HGNC iden-

tifiers). A second phosphorylation event (yellow box) involving

S218/S222 of MAP2K1 is recognized by TRIPS as a nested property

of MAP2K1 phosphorylation. It is a precondition for the primary

phosphorylation event on MAPK1.

Integrated Network and Dynamical Reasoning Assembler estab-

lishes that this extraction graph corresponds to an INDRA Phospho-

rylation Statement and then exploits the fact that the template for

such a Statement has entries for an enzyme, a substrate, a residue,

and a position (Fig 2A). The AGENT in the TRIPS EKB is identified

as the enzyme which itself has a modification (phosphorylation) at

specified positions (S218 and S222). The AFFECTED portion of the

TRIPS EKB is identified as the substrate MAPK1. The extracted

INDRA Statement collects this information along with target residue

(“threonine”) and position (“185”) on the substrate. The end result

is a biochemically plausible depiction of a specific type of reaction

from a short fragment of text.

Extraction of a Phosphorylation Statement from databases using

BioPAX or BEL follows the same general procedure. The INDRA

BioPAX Processor uses graph patterns to search for reactions in

which a substrate on the right-hand side gains a phosphorylation

modification relative to the left-hand side (Fig 3, center left). The

Processor identifies this as a phosphorylation reaction and constructs

a Phosphorylation Statement for each such reaction that it finds.

In the case of BEL, statements consisting of subject–predicate–

object expressions describe the relationships between molecular

A B

C

Figure 2. INDRA Statements represent molecular agents and biochemical mechanisms.

A The mechanism “MAP2K1 that is phosphorylated at S218 and S222 phosphorylates MAPK1 on T185” is represented in INDRA as a Phosphorylation Statement with an
enzyme Agent (MAP2K1), a substrate Agent (MAPK1), a residue (threonine), and a position (185) argument. The state of the MAP2K1 Agent is expanded in panel (B). A
Statement can have one or more Evidences associated with it, with an example expanded in panel (C).

B The Agent representing “MAP2K1 that is phosphorylated at S218 and S222” has two modification conditions: serine phosphorylation at 218 and serine
phosphorylation at 222. The grounding to the UniProt and HGNC databases associated with the Agent is also shown.

C An Evidence object is shown which is associated with an INDRA Statement obtained from the BEL Large Corpus (see Box 2) as the source. The Evidence object
represents the evidence text for the entry (“c-Raf activates MEK1 by phosphorylating at serine residues 218 and 222”), the citation associated with the entry (PubMed
identifier 8621729), the original BEL statement (shown under Source ID) and any annotations that are available, including the organism (in this example, 9606, which
is the identifier for Homo sapiens). In some cases, epistemic information is known about the Statement, such as whether it is an assertion or a hypothesis, and the
Evidence object has a corresponding field to carry this information.
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entities or biological processes (Box 2). INDRA’s BEL Processor

queries a BEL corpus (formatted as an RDF graph) for expressions

consistent with INDRA Statement templates. For example, Phospho-

rylation Statements are extracted by searching for expressions in

which the subject represents the kinase activity of a protein that

directly increases an object representing a modified protein (Fig 3,

bottom left); directly increases is a predicate used when molecular

entities interact physically. Triples that fit this pattern are extracted

into an INDRA Phosphorylation Statement with the subject as the

enzyme and the object as the substrate.

Figure 3. INDRA Statements constructed from TRIPS NLP extractions, BioPAX, and BEL.

An identical INDRA Statement is constructed from three knowledge sources. A corresponding fragment of each source format (representing the phosphorylated state of
MAP2K1 on S222) is highlighted in blue. Top left: A TRIPS EKB (see Box 1) graph is shown for the sentence “MAP2K1 that is phosphorylated on S218 and S222
phosphorylates MAPK1 at T185”. The main phosphorylation event has agent, affected, and site arguments, each of them referring to a term. The agent term resolves to a
gene with name MAP2K1 and database references to UniProt and HGNC. The MAP2K1 term also refers to an additional event in which it is affected (yellow background).
This additional event represents the phosphorylated state at two molecular sites: serine 218 and serine 222. The affected term associated with the main phosphorylation
event is MAPK1 with its associated UniProt and HGNC references. Finally, the site argument of the main event is a molecular site resolving to threonine 185. Middle left: A
BioPAX Biochemical Reaction is shown with unmodified MAPK1 on the left-hand side and MAPK1 with a Sequence Modification Feature of phosphorylation at threonine
185 on the right-hand side. Both the left- and the right-hand sides use the same Cross Reference to a UniProt identifier. A Catalysis is associated with the Biochemical
Reaction with MAP2K1 as the controller. MAP2K1 has two Sequence Modification Features: phosphorylation at serines 218 and 222. MAP2K1 also refers to a UniProt
identifier via a Cross Reference. Two alternative visual representations of the same BioPAX Reaction are given in Appendix Fig S5. Bottom left: A graphical representation of
a BEL statement is shown in which the subject is the Kinase Activity of the Protein Abundance of the modified MAP2K1 (with phosphorylations at serines 218 and 222). The
object of the statement is the Protein Abundance of modified MAPK1 (phosphorylation at threonine 185) with the predicate being Directly Increases. Below the graphical
representation, the statement is also given in BEL script format. Right: All example mechanisms from the three knowledge sources are constructed as the same INDRA
Phosphorylation Statement with MAP2K1 as the enzyme (subject to modification conditions) and MAPK1 and the substrate. The Evidence associated with the INDRA
Statement (not shown) constructed would be different for each knowledge source.
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Assembly of alternative executable models from
mechanistic findings

The role of INDRA Assemblers is to generate models from a set of

Statements. This step is governed not only by the relevant biology,

but also by the requirements of the target formalism (e.g., ODE

systems, rule-based models, or graphs) and decisions about model

complexity (e.g., the number of variables, parameters, or agents).

INDRA has multiple Assemblers for different model formats; here,

we focus on the PySB Assembler, which creates rule-based models

that can either be simulated stochastically or as networks of dif-

ferential equations (Danos et al, 2007a; Faeder et al, 2009).

Models assembled by INDRA’s PySB Assembler can be exported

into many widely used modeling formalisms such as SBML,

MATLAB, BNGL, and Kappa using existing PySB functions (Lopez

et al, 2013).

Assembling an INDRA Phosphorylation Statement into execu-

table form requires a concrete interpretation of information that is

almost always unspecified or ambiguous in the source text or data-

base object. We illustrate this process using four alternative ways to

describe the phosphorylation of MAPK1 by MAP2K1 (Fig 4). As a

first step, the assembly of this Statement requires a concrete inter-

pretation of a partially specified state of the enzyme agent: MAP2K1

sites S218 and S222 are specified as being phosphorylated but no

information is available about other sites or binding partners. In

assembling rules, the PySB Assembler omits any unspecified

context, exploiting the “don’t care, don’t write” convention (Box 3)

so that the states of unspecified sites are treated as being irrelevant

for rule activity. The default interpretation is therefore that phos-

phorylation of MAP2K1 at S218 and S222 is sufficient for kinase

activity; whether or not it is also necessary is determined by other

rules involving MAP2K1 that may be in the model.

The second step in the assembly of a Phosphorylation Statement

is generating a concrete set of biochemical reactions that constitute

an executable model. The challenge here is that the concept of

protein “phosphorylation” can be realized in a model in multiple

different ways. For example, a “one-step” policy converts an INDRA

Phosphorylation Statement into a single bimolecular reaction in

which a product (a phospho-protein) is produced in a single irre-

versible reaction without explicit consideration of enzyme–substrate

complex formation. One-step reactions can be modeled using a vari-

ety of rate laws depending on modeling assumptions, including a

pseudo-first-order rate law (Fig 4, “one-step policy, pseudo-first-

order” comprising one reaction rule and one free parameter) in

which the rate of the reaction is proportional to the product of the

enzyme and substrate concentrations. Such a representation is not

biophysically realistic, since it does not reproduce behaviors such

as enzyme saturation, but it has the advantage of requiring only

one free parameter. Alternatively, a one-step reaction can be

modeled with a Michaelis–Menten rate law (Fig 4, “one-step policy,

Michaelis-Menten”) which generates one reaction rule and two free

parameters; this policy makes a quasi-steady-state assumption

about the enzyme–substrate complex (Chen et al, 2010). One-step

mechanisms are convenient for modeling coarse-grained dynamics

and causal flows in complex signaling networks (Salazar & Höfer,

2006). A “two-step policy” is more realistic and creates two rules:

one for reversible enzyme–substrate binding and one for product

release (Fig 4, “two-step policy”; two reaction rules and three free

parameters). This is the most common interpretation of a phospho-

rylation reaction in existing dynamical models and correctly

captures enzyme saturation, substrate depletion, and other impor-

tant mass-action effects. However, the two-step policy does not

explicitly consider ATP as a substrate, and cannot model the action

of ATP-competitive kinase inhibitors at the enzyme active site. The

“ATP-dependent” policy corrects for this and explicitly models the

binding of ATP and substrate as separate reaction steps (Fig 4,

“ATP-dependent policy”) generating three reaction rules and five

free parameters. Other mechanistic interpretations of “phosphoryla-

tion” are also possible: for example, two-step or ATP-dependent

policies in which the product inhibits the enzyme by staying bound

(or rebinding) after the phospho-transfer reaction (Gunawardena,

2014b). Such rebinding can have a substantial impact on kinase

activity.

It might appear at first glance that the most biophysically realistic

policy is preferable in all cases. However, a fundamental tradeoff

always exists between model complexity and faithfulness to under-

lying detail: As the biochemical representation becomes more

detailed, the number of free parameters and intermediate species

increases, reducing the identifiability of the model (Raue et al,

2009). Given such a tradeoff, the benefit of having multiple assem-

bly policies becomes clear: Alternative models can automatically

be constructed from a single high-level biochemical assertion

Box 2: BioPAX and BEL

BioPAX is a widely used format for describing biological interactions
that facilitates exchange and integration of pathway information from
multiple sources (Demir et al, 2010). BioPAX is the core exchange
format underlying the Pathway Commons database, which aggregates
information from over 20 existing sources including Reactome, NCI-
PID, KEGG, PhosphoSitePlus, BioGRID, and Panther (Cerami et al,
2011). Pathway Commons provides a web service with an interface
for submitting queries about pathways and recovering the result as a
BioPAX graph; a query could involve finding all proteins and interac-
tions in the neighborhood of a specified protein or finding all paths
between two sets of proteins.
BioPAX employs a Web Ontology Language (OWL) knowledge repre-
sentation centered around biochemical processes and reactants and is
applicable to metabolic, signaling, and gene regulatory pathways. The
representation of reactions in BioPAX is flexible: An arbitrary set of
complexes and standalone molecules on the left-hand side of a reac-
tion can produce complexes and molecules on the right-hand side
subject to one or more catalytic controllers.
The Biology Expression Language (BEL) facilitates the curation of
knowledge from the literature in a machine-readable form. While
BioPAX is designed to capture direct, molecular interactions, BEL can
express indirect effects and higher-level cellular- or organism-level
processes; for example, BEL can represent results such as the abun-
dance of BAD protein increases apoptosis. Each BEL Statement records
a scientific finding, such as the effect of a drug or other perturbation
on an experimental measurement, along with contextual annotations
such as organism, disease, tissue, and cell type. BEL Statements are
structured as subject, predicate, object (RDF) triples: The subject and
object are BEL Terms identifying molecular entities or biological
processes, and the predicate is a relationship such as increases or
decreases. BEL has been used to create both public and private knowl-
edge bases for machine reasoning; the BEL Large Corpus (see www.
openbel.org) is currently the largest openly accessible BEL knowledge
base and consists of about 80,000 statements curated from over
16,000 publications.
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depending on their suitability for a particular modeling task. The

transparency and repeatability of model generation using assembly

policies is especially important for larger networks in which

hundreds or thousands of distinct species are subject to adjustment

as the biophysical interpretation changes. Assembly policies can be

applied globally to the model or to specific Statement types (e.g., a

one-step policy for IncreaseAmount Statements vs. a two-step policy

for Phosphorylation Statements). In the current implementation of

INDRA, policies cannot be applied to individual Statements; this

extension is feasible but would require that the user maintains

consistency among Statements involving the same reactants.

To enable simulation of reaction networks as ODEs in the

absence of data on specific rate parameters, INDRA uses a set

of biophysically plausible default parameters; for example, associ-

ation rates are diffusion limited (106 M�1 s�1), off-rates default to

10�1 s�1 (yielding a default KD of 100 nM) and catalytic rates

default to 100 s�1. These parameter values can be adjusted

manually or obtained by parameter estimation. An extensive liter-

ature and wide range of tools exist for parameter estimation

using experimental data, and they are directly applicable to

models assembled by INDRA (Mendes & Kell, 1998; Moles et al,

2003; Eydgahi et al, 2013; Thomas et al, 2015). For simplicity,

we do not discuss this important topic further and rely below

either on INDRA default parameters or on manually adjusted

parameters (as listed in the Appendix) to facilitate dynamical

simulations.

Figure 4. INDRA Statements are assembled into biochemical rules via assembly policies.

The flow from representation and model content to implementation is governed by assembly policies and biochemical rule templates (top). A Phosphorylation INDRA
Statement with enzyme (MAP2K1) and substrate (MAPK1) can be assembled using several policies including one-step policy with pseudo-first-order rate law (center, top),
one-step policy with Michaelis–Menten rate law (center, second from top), two-step policy (center, second from bottom), and ATP-dependent policy (center, bottom). Each
policy corresponds to a template for a generic enzyme (E) and a substrate (S). The one-step policies assume that the enzyme catalyzes the phosphorylation of the substrate in
a single step such that the transient enzyme–substrate complex is not modeled. This is represented as a single rule irrespective of the associated rate laws (Rule 1; red boxes
and PySB rules). The two-step policy assumes the reversible formation of an enzyme–substrate complex and an irreversible catalysis and product release step corresponding
to two overlapping rules (Rules 1–2; red boxes). The ATP-dependent policy assumes a template in which the enzyme has to bind both the substrate and ATP but can bind them
in an arbitrary order. This corresponds to two rules: one for ATP binding and one for substrate binding. A third rule describes the release of the phosphorylated substrate from
the enzyme–substrate complex (Rules 1–3; red boxes).
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Modeling alternative dynamical patterns of p53 activation

As an initial test of using INDRA to convert a word model and

accompanying schematic into an executable model, we turned to a

widely cited review in Cell that describes the canonical reaction

patterns controlling the responsiveness of mammalian signal trans-

duction systems to stimulus (Purvis & Lahav, 2013). Figure 5 of

Purvis and Lahav (2013) depicts the dynamics of p53 response to

single-stranded and double-stranded DNA breaks (SSBs and DSBs).

Using a schematic illustration, Purvis and Lahav explain that pulsa-

tile p53 dynamics arises in response to DSBs but sustained dynamics

are induced by SSBs. The difference is attributed to negative feed-

back from the Wip1 phosphatase to the DNA damage-sensing kinase

ATM, but not to the related kinase ATR. We wrote a set of simple

declarative phrases (Fig 5B and C) corresponding to edges in the

schematic diagram (Fig 5A) that represent activating or inhibitory

interactions between Mdm2 (an E3 ubiquitin-protein ligase), p53,

Wip1, and ATM (or ATR; yellow numbers in Fig 5A–C). We then

used INDRA to read the text (the “word models”) and assemble

executable models in PySB. These models were instantiated as

networks of ODEs and simulated numerically. For each model, we

plotted p53 activation over time using standard Python libraries

(Oliphant, 2007).

We found that our initial word models (comprising sentences

1–5 in Fig 5B and sentences 1–6 in 5C) failed to reproduce the p53

dynamics expected for SSBs and DSBs: In our INDRA models, SSBs

induced steady, low-level activation of p53 and DSBs failed to

induce oscillation (Appendix Fig S6). One feature not explicitly

included in the Purvis and Lahav diagrams and hence missing from

our initial word models is negative regulation of Mdm2 and Wip1.

Visual representations of signaling pathways frequently omit such

inhibitory mechanisms despite their impact on dynamics (Heinrich

et al, 2002) (Purvis and Lahav were aware of these inhibitory reac-

tions since they are found in ODE-based models of p53 dynamics

from the same research group (Batchelor et al, 2011); because the

diagram’s purpose was to illustrate the specific role of negative feed-

back, these reactions were likely omitted for clarity). The mecha-

nisms that inactivate Mdm2 involve binding by the catalytic

inhibitor p14ARF (Agrawal et al, 2006) and those for Wip1 involve

HIPK2-mediated phosphorylation and subsequent ubiquitin-

dependent degradation (Choi et al, 2013) (depicted by dotted arrows

and pink numbers in Fig 5A). We added these reactions to the

model as simple natural language phrases (denoted by pink

numbers in Fig 5B and C).

When the updated word models were assembled using INDRA

and simulated as ODEs, p53 exhibited sustained activation in

response to SSBs but did not oscillate in response to DSBs

(Appendix Fig S6). We then realized that the DSB response model

lacked a fundamental property of an oscillatory system, namely a

time delay (Novák & Tyson, 2008). This delay had previously been

modeled by Lahav and colleagues (Batchelor et al, 2011) by using

delay differential equations but time delays can also be generated

by positive feedback (Novák & Tyson, 2008). Both ATM and ATR

are known to undergo activating auto-phosphorylation (Bakkenist

& Kastan, 2003; Liu et al, 2011). We therefore added phrases

describing auto-activation of ATM or ATR to the word models (de-

noted by dotted arrow and green numbers in Fig 5A, correspond-

ing to green numbers in 5B and C). When assembled by INDRA,

the extended word models successfully generated p53 oscillation

in response to DSBs (Fig 5C). The presence of oscillations was

robust to changes in kinetic parameters and initial conditions

(Appendix Table S3 and Appendix Fig S6). Moreover, in the

expanded model ATR-dependent p53 activation by SSBs still

resulted in sustained p53 activation (Fig 5B, Appendix Table S2

and Appendix Fig S6). The key point in this exercise is that

features essential for the operation of a dynamical system (e.g.,

degradation and auto-activation) were omitted from an informal

diagram focusing on feedback for reasons of brevity and clarity,

but this had the unintended consequence of decoupling the text

from the pathway schematic and the schematic from the dynamics

being described. By converting word models directly into execu-

table computational models, we ensure that verbal descriptions

and dynamical simulations are congruent.

The p53 model offers an opportunity to test how robust INDRA

(and the TRIPS reading system) are to changes in the way input text

is phrased. When we tested eight alternatives for the phrase “Wip1

inactivates ATM” ranging from “Wip1 has been shown to deactivate

ATM” to “ATM is inactivated by Wip1” (Fig 5D, right, green side-

bar) and found that all eight generated the same INDRA Statement

and thus the same model as the original sentence. However, NLP is

sensitive to spelling errors such as “deaactivates” [sic] and to gram-

matical errors such as “Wip1 inactivate ATM”. In addition, some

valid linguistic variants are not recognized, representing a limitation

of extraction into INDRA Statements (Fig 5D, right, red sidebar). We

also tested whether differences in the way biological entities are

named affects recognition and grounding; we found that Wip1, WIP-

1, WIP1, PPM1D, and Protein phosphatase 1D as well as ATM, Atm,

Box 3: Rule-based modeling and PySB

Accurate simulation of biochemical systems requires that every
species be explicitly tracked through time. The combinatorial nature
of protein complex assembly, post-translational modification, and
related processes causes the number of possible molecular states in
many signaling networks to explode and exceed the capacity for effi-
cient simulation (Stefan et al, 2014). For example, full enumeration of
complexes involved in EGF signaling would require more than 1019

molecular species differing in their states of oligomerization, phospho-
rylation, and adapter protein binding (Feret et al, 2009). Rule-based
modeling (RBM) languages such as Kappa and BioNetGen (BNGL)
address this challenge by allowing interactions among macro-
molecules to be defined using “rules” specifying the local context
required for a molecular event to occur (Danos et al, 2007a; Faeder
et al, 2009). The molecular features that do not affect the event are
omitted from the rule, a convention known as “don’t care, don’t
write”. Specifying molecular interactions as rules has two chief bene-
fits: (i) It makes the representation of a model much more compact
and transparent than a set of equations and (ii) it enables the simula-
tion of very complex systems using network-free methods (Danos
et al, 2007b). RBMs can also be translated into conventional modeling
formalisms such as networks of ODEs.
Executable model assembly in INDRA is built on PySB, a software
system that embeds a rule-based modeling language within Python,
thereby enabling the use of macros and modules to concisely express
recurring patterns such as catalysis, complex assembly, sub-pathways
(Lopez et al, 2013). Rule-based modeling languages are well suited to
building executable models from high-level information sources such
as natural language because assertions about mechanisms typically
specify little molecular context. INDRA converts such assertions into
one or more model rules using policies that control the level of detail.
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and ataxia telangiectasia mutated all worked as expected (Fig 5D,

bottom, green). However, the recognition of protein and gene names

in text is challenging; for instance, “PP2C delta” was not recognized

as a synonym for Wip1 (Fig 5D, bottom, red), though the more

common variant “PP2Cd” is.

We then used INDRA to assemble a more detailed and mechanis-

tically realistic model of p53 activation following DSBs (Fig 5E;

POMI1.0). While the model in Fig 5C contained only generic activat-

ing and inhibitory reactions, the goal of POMI1.0 was to test INDRA

concepts such as phosphorylation, transcription, ubiquitination, and

A

D E

B C

Figure 5. Modeling patterns of p53 activation dynamics from natural language.

A Patterns of p53 activation dynamics upon double-strand break DNA damage (left) and single-strand break DNA damage (right), adapted from Purvis and Lahav (2013).
Edges with yellow numbers correspond to the original diagram in Purvis and Lahav (2013); pink and green numbers correspond to mechanisms added subsequently,
as described in the text.

B Natural language descriptions of the mechanisms involved in single-strand break DNA damage (SSB) response corresponding to the diagram on the left-hand side of
(A) and dynamical simulation of p53 activity from the corresponding INDRA-assembled model (below).

C Natural language descriptions of the mechanisms involved in double-strand break DNA damage (DSB) response corresponding to the diagram on the right-hand side
of (A) and dynamical simulation of p53 activity from the corresponding INDRA-assembled model (below).

D For the base sentence “Wip1 inactivates ATM”, variants in the names of entities are shown below with four examples that produce the intended result (green sidebar)
and one example that does not (red sidebar). To the right, eleven linguistic variants of the sentence are shown with eight producing the intended result (green
sidebar) and three that do not, including one with a grammatical error and one with a spelling error (red sidebar).

E The POMI1.0 model is a mechanistically more detailed variant of the double-strand break response model (which is shown in the right-hand side diagram of A, with
its natural language description shown in B). The model assembled with INDRA produces oscillations in p53 activity over time when simulated (bottom).
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degradation. We also used modifiers to describe the molecular state

required for a protein to participate in a particular reaction (e.g.,

“ubiquitinated p53 is degraded”). The set of ten phrases shown in

Fig 5E were assembled into 11 rules, 12 ODEs, and 18 parameters

(Appendix Table S4). When we simulated the resulting ODE model,

we observed the expected oscillation in p53 activity (Fig 5E and

Appendix Fig S6). By adding and removing different aspects of the

underlying mechanism using natural language, we observed that

including the mechanism “Active ATM phosphorylates another ATM

molecule” was essential for oscillation; the phrase “ATM phosphory-

lates itself” generated a valid set of reactions but did not create oscil-

lations for any of the parameter values we sampled. The difference

is that “Active ATM phosphorylates another ATM molecule” corre-

sponds to a trans-phosphorylation reaction (other phrasings also

work, such as “Active ATM trans-phosphorylates itself”)—one mole-

cule of ATM phosphorylates another molecule of ATM. In contrast,

“ATM phosphorylates itself” implies modification in cis, which is

incapable of generating oscillations in the p53 network. ATM trans-

phosphorylation represents a form of positive feedback since the

flux through the phosphorylation reaction increases with the

concentration of the reaction product, namely phosphorylated ATM.

As described in detail by Novák and Tyson, positive feedback in

such reaction mechanisms can create the “dynamical hysteresis”

necessary for a time delay (Novák & Tyson, 2008). It is well known

that ATM and ATR auto-phosphorylations occur in trans (Bakkenist

& Kastan, 2003; Liu et al, 2011), validating this aspect of the model.

This result highlights a danger in the use of word models alone: Dif-

ferences in mechanism that profoundly impact network dynamics

can be obscured by ambiguous and imprecise natural language.

Such ambiguities are propagated by INDRA and can be identified by

the user at multiple (intermediate) stages of the extraction and

assembly process (see Appendix iPython Notebook 1). The phrase

“Active ATM phosphorylates another ATM molecule” is not particu-

larly elegant English, but it is unambiguous; understanding

that “ATM phosphorylates itself” is insufficient for p53 oscillation

highlights the essential difference between trans and cis

phosphorylation.

The foregoing analysis of the Lahav and Purvis review illustrates

several beneficial features of direct text-to-model conversion: (i) the

possibility of identifying subtle gaps and deficiencies in word

models with the potential to profoundly affect network dynamics

and function; (ii) the ability to maintain precise congruence between

verbal, pictorial, and computational representations of a network;

and (iii) a reminder to include neglected negative regulatory mecha-

nisms when explaining network dynamics. We propose that future

figures of this type include accompanying declarative text (precisely

stated word models) on the basis of which graphs and dynamical

models can be created. We have found that it is remarkably infor-

mative to experiment with language and then render it in

▸Figure 6. INDRA-built models of vemurafenib resistance in response to growth factor signals.

A Simplified schematic representation of the observed ERK phosphorylation phenomena in BRAF-V600E mutants that are hypothesized to be the basis of adaptive
resistance. In untreated BRAF-V600E cells (left), mutant BRAF is constitutively active independently of RAS and leads to higher ERK phosphorylation levels (thick green
edge) and stronger negative feedback to SOS (thick red edge). Upon vemurafenib treatment, in the short term (center), ERK phosphorylation is decreased due to BRAF
V600E inhibition (thin green edge). Over time, resistance develops (right); the ERK-SOS feedback loop becomes weaker (thin red edge) and increased RAS activity
induces RAF dimerization, leading to a rebound in ERK phosphorylation (thick green edge).

B MEMI1.0 is described in 14 sentences which are assembled into 28 PySB rules and 99 ordinary differential equations. Simulation of phosphorylated ERK (blue) and
active RAS (green) is shown relative to their respective values at time 0, when vemurafenib is added. The model simulation shows that upon vemurafenib addition,
the amount of phosphorylated ERK is quickly reduced and stays at a low level, while the amount of active RAS is unchanged.

C In MEMI1.1, by extending three existing sentences (4, 5, 14) and adding two new ones (15, 16) (changes shown in orange), the ERK-SOS negative feedback is modeled
and assembled into 34 rules and 275 ODEs. The model simulation (right) reproduces RAS reactivation (green) upon vemurafenib treatment; however, the
experimentally observed rise in ERK phosphorylation (blue) is not reproduced.

D MEMI1.2 extends MEMI1.1 by adding a sentence (17) and replacing an existing sentence with two new sentences (8A and 8B) (changes shown in green). INDRA
produces a model consisting of 37 rules and 353 ODEs. Model simulations are able to reproduce the expected rise in RAS activation (green) and the increased
phosphorylation of ERK (blue).

Box 4: The MAPK pathway and vemurafenib resistance in cancer

In normal cells, signal transduction via MAPK is initiated when an
extracellular growth factor such as EGF induces dimerization of recep-
tor tyrosine kinases (the EGFR RTK, for example) on the cell surface.
Dimerization and subsequent activation of RTKs results in assembly of
signaling complexes at the plasma membrane and conversion of RAS-
family proteins (HRAS, KRAS, and NRAS) to an active, GTP-bound state.
RAS-GTP activates members of the RAF family of serine/threonine
kinases (ARAF, BRAF, and RAF1), which serve as the first tier in a
three-tier MAP kinase signaling cascade: RAF proteins phosphorylate
MAP2K/MEK family proteins, which in turn phosphorylate the MAPK/
ERK family proteins that control transcription factor activity, cell
motility, and other aspects of cell physiology. MAPK signaling is
subject to regulation by feedback mechanisms that include inhibitory
phosphorylation of EGFR and SOS by ERK, inhibition of the GRB2-
mediated scaffold by the SPRY family of proteins, and inhibition of
ERK by DUSP proteins (Lito et al, 2012).
MAPK/ERK signaling is a key regulator of cell proliferation and is
mutated in a variety of human cancers (Dhillon et al, 2007), with
dramatic effects on cellular homeostasis. Overall, ~20% of all cancers
carry driver mutations in one of the genes that encode MAPK path-
way proteins (Stephen et al, 2014) and in the case of melanoma, 50%
of cancers carry activating point mutations in BRAF (most commonly
BRAF V600E). ATP-competitive inhibitors such as vemurafenib provide
significant clinical benefit in treating BRAF-mutant melanoma.
However, remission of disease is transient, as tumors and tumor-
derived cell lines develop resistance to vemurafenib over time (Lito
et al, 2012). Recent studies have identified feedback regulation, bypass
mechanisms, and other context-dependent factors responsible for
restoring ERK signaling to pre-treatment levels (Lito et al, 2012, 2013;
Shi et al, 2012). For example, in the BRAF-V600E cell line A375, vemu-
rafenib has been shown to suppress EGF-induced ERK phosphoryla-
tion completely upon treatment (Lito et al, 2013) but ERK
phosphorylation levels rebound within 48 h, with a concurrent
increase in the level of RAS-GTP, the active form of RAS (Lito et al,
2012). It is the biology of this adaptation that we aim to capture in
an INDRA model.
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computational form: It was this type of experimentation that led us

to rediscover for ourselves the importance of negative regulation

and nonlinear positive feedback in generating p53 oscillations.

Modeling resistance to targeted therapy by vemurafenib

The MAPK/ERK signaling pathway is a key regulator of cell prolifer-

ation, differentiation, and motility and is frequently dysregulated in

human cancer (Box 4). Multiple ATP-competitive and non-competi-

tive (allosteric) inhibitors have been developed targeting kinases in

this pathway. The most clinically significant drugs bind RAF and

MEK kinases in BRAF-mutant melanomas. For patients whose

tumors express an oncogenic BRAFV600E/K mutation, treatment with

the BRAF inhibitor vemurafenib (or, in more recent practice, a

combination of the BRAF inhibitor dabrafenib and MEK inhibitor

trametinib) results in dramatic tumor regression. Unfortunately, this

is often followed by drug resistance and disease recurrence 6–

18 months later (Larkin et al, 2014). The mechanisms of drug resis-

tance are under intensive study and include an adaptive response

whereby MAPK signaling is reactivated in tumor cells despite

continuous exposure to BRAF inhibitors (Lito et al, 2012, 2013; Shi

et al, 2012). Reactivation of MAPK signaling in drug-treated

BRAFV600E/K cells is thought to involve disruption of ERK-mediated

negative feedback (Fig 6A). The biochemistry of this process has

been investigated in some detail and is subtle. For example, dif-

ferential affinity of BRAF kinase inhibitors to monomeric and

dimeric forms of BRAF is partly responsible for the ERK rebound

(Kholodenko, 2015; Yao et al, 2015). Many of these processes have

not been subjected to detailed kinetic modeling within the scope of

the MAPK signaling pathway, and several mechanistically distinct

hypotheses have been advanced to describe the same drug adapta-

tion phenomenon. Adaptation to BRAF inhibitors therefore repre-

sents a potentially valuable application of dynamical modeling to a

rapidly moving field of cancer biology (Kholodenko, 2015).

We sought to use natural language to rapidly create models of

MAPK signaling in melanoma cells using mechanisms drawn from

the literature, with a particular focus on a series of influential papers

from the Rosen laboratory (Joseph et al, 2010; Lito et al, 2012;

Poulikakos et al, 2010; Yao et al, 2015). We also sought to establish

whether different biochemical hypotheses could be easily tested by

modifying models at the level of natural language.

The baseline MAPK model (Melanoma ERK Model in INDRA;

MEMI1.0) consists of 14 sentences describing canonical reactions

involved in ERK activation by growth factors (Fig 6B, MEMI1.0) and

corresponds in scope to previously described models of MAPK

signaling (Birtwistle et al, 2007; Stites et al, 2007). In the baseline

model, BRAFV600E constitutively phosphorylates MEK as long as it is

not bound to vemurafenib (sentence 9: “BRAF V600E that is not

bound to Vemurafenib phosphorylates MEK”). A two-step policy

involving reversible substrate binding was used to assemble all

phosphorylation and dephosphorylation reactions. For simplicity,

we did not specify residue numbers or capture multi-site phosphory-

lation, instead modeling each step in the MAPK cascades as a single,

activating phosphorylation event. With these assumptions, 14

sentences were processed by TRIPS to yield 14 INDRA Statements

that were assembled into 28 PySB rules and 99 differential equa-

tions; the network of coupled ODEs was then simulated. 65 of the

99 species in the model involve complexes assembling around

EGFR, which are generated by the biochemical reactions described

in the sentences that constitute the word model.

A key property of vemurafenib-treated BRAFV600E cells as

described by Lito et al is that the drug initially reduces pERK below

its steady-state level but pERK then rebounds despite the continued

presence of vemurafenib. Levels of RAS-GTP (the active form of

RAS) also increase during the rebound phase (Lito et al, 2012). In

MEMI1.0, addition of EGF causes activation of RAS and phosphory-

lation of ERK at steady state. Addition of vemurafenib rapidly

reduces pERK levels (Fig 6B) but extended simulations under a

range of EGF and vemurafenib concentrations show that the amount

of active RAS depends only on the amount of EGF and is insensitive

to the amount of vemurafenib; moreover, no rebound in pERK is

observed in the presence of vemurafenib (Fig 6B and Appendix Fig

S7A). Thus, MEMI1.0 fails to capture drug adaptation.

In a series of siRNA-mediated knockdown experiments, Lito et al

showed that pERK rebound involves an ERK-mediated negative feed-

back on one or more upstream pathway regulators such as Sprouty

proteins (SPRY), SOS, or EGFR. To identify a specific mechanism that

might be involved, we used the BioPAX and BEL search capabilities

built into INDRA. We queried Pathway Commons (Cerami et al,

2011) for BioPAX reaction paths leading from ERK (MAPK1 or

MAPK3) to SOS (SOS1 or SOS2) and obtained multiple INDRA State-

ments for a MAPK1 phosphorylation reaction that had one or more

residues on SOS1 as a substrate (including SOS1 sites S1132, S1167,

S1178, S1193, and S1197). However, Pathway Commons did not

provide any information on the effects of these phosphorylation

events on SOS activity. To search for this, we used INDRA’s BEL Inter-

face to query the BEL Large Corpus (Catlett et al, 2013; Box 2) for all

curated mechanisms directly involving SOS1 and SOS2. We found

evidence that ERK phosphorylates SOS and that ERK inactivates SOS

(Corbalan-Garcia et al, 1996). We did not find a precise statement in

either database stating that phosphorylation of SOS inactivates it, but

the publication referred to in the BEL Large Corpus as evidence of this

interaction (Corbalan-Garcia et al, 1996) describes a mechanism

whereby SOS phosphorylation interferes with its association with the

upstream adaptor protein GRB2. To include the inhibitory phosphory-

lation of SOS by ERK, we therefore modified three sentences (Fig 6C,

Model 2, Sentences 4, 5, and 14) in Model 1 and added two new

sentences (Fig 6C, Model 2, sentences 15 and 16). Thus, although

INDRA can assemble Statements derived from databases directly into

models, in this case human curation (via changes to the natural

language text) was required to identify gaps in the mechanisms avail-

able from existing sources.

The inclusion of SOS-mediated feedback produced 16 declarative

sentences that were translated into a MEMI1.1 model having 34

rules and 275 ODEs. Assembly of MEMI1.1 involved imposing

assumptions to limit combinatorial complexity. For instance, in

sentence 15 (Fig 6C), we specified that ERK cannot be bound to

DUSP6 for ERK to phosphorylate SOS. While it is not known

whether or not ERK can bind both DUSP6 and SOS at the same time,

allowing for this possibility introduces a “combinatorial explosion”

(Faeder et al, 2005; Feret et al, 2009) in the number of reactions

and makes mass-action simulation difficult. It is common to make

simplifying assumptions of this type in dynamical models (see, for

instance; Chen et al, 2009), and an advantage of using natural

language is that the assumptions are clearly stated. When MEMI1.1

was simulated, we observed that, given a sufficient level of basal
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activity by addition of EGF, addition of vemurafenib resulted in

dose-dependent increases in active RAS over pre-treatment levels

(Appendix Fig S7B). However, pERK levels remained low, suggest-

ing that negative feedback alone (at least as modeled in MEMI1.1) is

insufficient to explain the rebound phenomenon observed by Lito

et al (Fig 6C, Appendix Fig S7B).

It has been suggested that RAF dimerization plays an important

role in cellular responsiveness to RAF inhibitors (Lavoie et al, 2013;

Yao et al, 2015). Both wild-type and BRAFV600E dimers have a lower

affinity for vemurafenib as compared to their monomeric forms

(Yao et al, 2015). Moreover, Lito et al observed that the reactivation

of ERK following vemurafenib treatment was coincident with forma-

tion of RAF dimers, leading to the suggestion that vemurafenib-

insensitive dimers in cells play a role in the reactivation of ERK

signaling (Kholodenko, 2015). To model this possibility, we created

MEMI1.2 in which binding of vemurafenib to monomeric or dimeric

BRAF is explicitly specified by separate sentences, allowing the

effects of different binding affinities to be explored (Fig 6D). Assem-

bly of this model yielded 353 ODEs, many of which were required

to represent the combinatorial complexity of BRAF dimerization and

vemurafenib binding (Appendix Fig S8). Simulation showed that

RAS activation increases and settles at a higher level following

vemurafenib treatment, with the magnitude of the increase depen-

dent on the amount of EGF and the concentration of drug (Fig 6D,

Appendix Fig S7C). Following a period of pERK suppression,

rebound in pERK levels to ~30% of their maximum is observed

(Fig 6D) effectively recapturing the key findings of Lito et al subse-

quent work has shown that resistance to vemurafenib can also

involve proteins such as DUSP, SPRY2 (Lito et al, 2013), and CRAF

(Montagut et al, 2008). These mechanisms do not feature in the

models described here, but could be included in MEMI by adding a

few phrases to the word model.

This example demonstrates that it is possible to use INDRA to

model signaling systems of practical interest at a scope and level of

detail at which interesting biological hypotheses can be explored

and tested. Comparison of models MEMI1.0 to 1.2 suggests that

both feedback and BRAF dimerization are necessary for vemu-

rafenib adaption and pERK rebound, in line with experimental

evidence. The number of free parameters in these models varies,

and we have not performed formal model calibration or verification,

so the conclusion that MEM1.2 is superior to 1.0 is not rigorously

proven. However, INDRA-assembled rule sets represent a solid

starting point for such downstream analysis.

One issue we encountered in assembling these models was

controlling complexity arising from the formation of multiple

protein complexes from a single set of reactants. This is a known

challenge in dynamical modeling of biochemical networks with

poorly understood implications for cellular biochemistry (Faeder

et al, 2005; Harmer et al, 2010; Sneddon et al, 2011). From the

perspective of an INDRA user, this is likely to manifest itself as a

property that can be diagnosed at the level of PySB rules or ODE

networks, which can be inspected interactively (see Appendix Note-

book 2). Unwanted combinatorial complexity can be resolved in

two ways: (i) by using natural language to make additional assump-

tions about molecular context and (ii) by choosing assembly policies

minimizing combinatorial complexity by reducing complex forma-

tion (e.g., Michaelis–Menten instead of two-step policy). Both strate-

gies are illustrated in Appendix Notebook 2.

An extensible and executable map of the RAS signaling pathway

The BRAF pathway described above is part of a larger immediate-

early signal transduction network with multiple receptors as inputs

and transcription, cell motility, and cell fate determination as

outputs. RAS is a central node in this network and is an important

oncogenic driver (Stephen et al, 2014). The ubiquity of RAS muta-

tions in cancer has led to renewed efforts to target oncogenic RAS

and RAS effectors. As a resource for the community of RAS

researchers, the NCI RAS Initiative has created a curated pathway

diagram that defines the scope of the RAS pathway as commonly

understood by a community of experts (Stephen et al, 2014). Such

pathway diagrams can serve as useful summaries, but unless they

are backed by an underlying computable knowledge representation,

they are of limited use in quantitative data analysis.

We used INDRA to describe the RAS signaling network and auto-

matically generated a diagram (Fig 7A, right) corresponding to the

community-curated Ras Pathway v1.0 diagram (available at http://

www.cancer.gov/research/key-initiatives/ras/ras-central/blog/what-

do-we-mean-ras-pathway). We described the interactions in natural

language (Fig 7A left, full text shown in Appendix Section 2.4) and

used TRIPS to convert the description into INDRA Statements. A

node-edge graph was generated using INDRA’s Graph Assembler and

rendered using Graphviz (Fig 7A, right). Although different stylisti-

cally, the pathway map assembled using INDRA matches the original

one drawn by hand in the following ways: It (i) includes the same

set of proteins, (ii) represents the same set of interactions among

these proteins, and (iii) recapitulates the semantics and level of

mechanistic detail of the original diagram in that interactions are

represented as directed positive and negative edges or undirected

edges indicating complex formation. The pathway map is also

▸Figure 7. An INDRA-assembled extensible and executable pathway map of RAS signaling.

A Positive and negative activations as well as complex formation between proteins are written in natural language (left) to describe simplified interactions in the RAS
pathway (for full text, see Appendix Section 2.5). The INDRA-assembled graph is shown on the right showing activations (black), inhibitions (red), and binding (blue).

B A correction on the pathway map is made by editing the original text. One sentence is removed (red sentence) and is replaced by another one (green sentence) as a
basis for the updated assembly whose relevant parts are shown as a graph below. P90RSK is removed as a substrate of mTORC2 and added as a substrate of MAPK1
and MAPK3 (green highlight).

C The pathway map is extended with a new branch by adding four additional sentences describing JNK signaling. The newly added pathway (green highlight; gene
names appearing as their standard gene symbols, for instance, “HPK1” in the original sentences is represented as the node MAP4K1) provides a parallel path from
EGFR to the JUN transcription factor, both of which were included in the original model.

D Simulation results of Boolean models assembled from natural language under different inhibitor conditions. The “Basic model” contains the links shown in (A); the
“Extended model” contains the extensions shown in (C). Each trace represents the activity of JUN in the presence of growth factors averaged over 100 stochastic
simulations (see Materials and Methods).
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visually comparable to one drawn by hand, and allows natural

language-based editing and extension of the underlying set of mecha-

nisms. For example, following distribution of v1.0 RAS diagram, the

RAS Initiative solicited verbal feedback from a large number of RAS

biologists both in person and via a discussion forum. Suggestions

from the community consisted largely of corrections and pathway

extensions. Using INDRA, these revisions of the network can be

made directly, simply by editing the natural language source mate-

rial. For example, one contributor noted that in the published path-

way diagram (Fig 7A, right), P90RSK is activated by the mTORC2

complex, whereas in fact it is actually a substrate of MAPK1 and

MAPK3 (https://www.cancer.gov/research/key-initiatives/ras/ras-

central/blog/2014/what-do-we-mean-ras-pathway#comment-169352

6648). To account for this correction, we modified the natural

language description by replacing the sentence “mTORC2 activates

P90RSK” with “MAPK1 and MAPK3 activate P90RSK”. The pathway

map obtained following automated assembly of the revised text

correctly reflects the change suggested by the contributor (Fig 7B).

Several readers also suggested expanding the pathway map to

include other relevant proteins. Extensions of this type are easy to

achieve using natural language: For example, we extended the v1.0

RAS diagram to include JNK, a MAP kinase that is activated in many

cells by cytokines and stress (Anafi et al, 1997; Antonyak et al,

1998; Wagner & Nebreda, 2009). This was achieved by adding four

sentences (Fig 7C, top), including “MAP3K7 activates MKK4 and

MKK7” and “MKK4 and MKK7 activate JNK1 and JNK2”. The

subnetwork appended to the diagram is shown in Fig 7C (bottom).

Note that we used common names for the JNK pathway kinases in

the word model but INDRA canonicalized these to their official gene

names (e.g., “HPK1”, “MKK4”, and “JNK1” were converted to

MAP4K1, MAP2K4, and MAPK8, respectively).

The set of mechanisms used to generate the diagrams in Fig 7A–C

can also be translated into a qualitative predictive model. We used the

Simple Interaction Format (SIF) Assembler in INDRA to generate a

Boolean network corresponding to the natural language pathway

description in Fig 7A (see Appendix Section 2.4 for the rules compris-

ing the network). Such a Boolean network can be used to predict the

effects of perturbations such as ligand or drug addition. For example,

we simulated the effects of adding growth factors and MEK inhibitors

on phosphorylated c-Jun. The Boolean network simulation correctly

predicted that c-Jun would be phosphorylated in the presence and

absence of MEK inhibitor (Fig 7D, blue). We then instantiated the

extended network in Fig 7C (which identifies the JNK pathway as a

possible contributor to c-Jun phosphorylation). In this case, joint inhi-

bition of JNK and MEK was required to fully inhibit c-Jun phosphory-

lation (Fig 7D, green). The biology in this example is relatively

straightforward but it demonstrates that natural language descriptions

of mechanisms, along with automated assembly into executable

forms, can be used as an efficient and transparent way of creating

extensible knowledge resources for data visualization and analysis.

Discussion

In this paper, we described a software system, INDRA, for construct-

ing executable models of signal transduction directly from text. The

process uses natural language reading software (TRIPS, in this

paper) to convert text into a computer-intelligible form, identifies

biochemical mechanisms, and then casts these mechanisms in an

intermediate knowledge representation that is decoupled from both

input and output formats. The intermediate representation, compris-

ing a library of INDRA Statements, is then used to assemble compu-

tational models of different types including networks of ODEs,

Boolean networks, and interaction graphs according to user-speci-

fied policies that determine the level of biophysical detail. We have

applied INDRA to three successively more ambitious use cases: (i)

translating a diagram and accompanying text describing p53 regula-

tion by DNA damage, (ii) modeling adaptive drug resistance in

BRAFV600E melanoma cells exposed to the BRAF inhibitor vemu-

rafenib, and (iii) constructing a large-scale model of RAS-mediated

immediate-early signaling based on a crowd-sourced schematic

drawing. These examples demonstrate the surprising but encourag-

ing ability of machines to exploit the flexibility and ambiguity of

natural language and then add prior knowledge about reaction

mechanisms needed to create well-defined executable models.

The p53 POMI model represents a use case corresponding in

scope to the mechanistic hypotheses typically presented in the liter-

ature in verbal or graphical form. We based POMI on a word model

found in a review and found it necessary to add several additional

mechanisms to reproduce the described oscillations in p53 (these

include negative regulatory reactions and a positive feedback step

involving auto-phosphorylation of ATM in trans). Editing and

updating the model to explore alternative hypotheses was accom-

plished strictly at the level of the natural language description. This

example highlights the potential of natural language, assembled into

executable model form, to expose important and frequently over-

looked differences between a formal representation of a mechanism

(in this case, a network for ODEs) and a diagram that purports to

describe it. Direct conversion of text into models via INDRA helps to

minimize such mismatches while keeping the description in an

accessible and easily editable natural language form. We propose

that pathway schematics found in the conclusions of molecular biol-

ogy papers include a set of declarative statements that match the

schematic and any depiction of dynamics arising from simulation.

Ensuring congruence among these representations will improve

general understanding of cellular biology and make schematics and

their underlying assumptions accessible to machines.

The BRAFV600E MEMI model involved a much greater number of

molecular species and reactions due to the combinatorics of

complex formation among BRAF, vemurafenib, MEK, and RAS. In

INDRA, formation of unlikely polymers in the model assembled by

INDRA was controlled by providing stricter molecular context on

mechanisms in the form of natural language (e.g., “DUSP6 dephos-

phorylates ERK that is not bound to SOS”). While managing combi-

natorial complexity is a key challenge in building models of

signaling, a benefit of using INDRA is that assumptions made

regarding combinatorial complexity are made explicit either in the

form of the natural language description or the policies chosen for

model assembly (e.g., one-step Michaelis–Menten vs. two-step).

The broader RAS pathway is the largest network tackled in this

paper, but by restricting the mechanisms to positive and negative

regulation and binding it remains manageable. Such a model could

in principle be solicited directly from the community and we plan to

release the INDRA RAS model to the same group of experts that

helped Frank McCormick and colleagues build and improve the

original RAS schematic (Stephen et al, 2014).
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Challenges in generating executable models from text
and databases

Automating the construction of detailed biochemical models from

text involves overcoming three technical challenges. The first is

turning text into a computable form that correctly captures the

biochemical events described in a sentence (typically verbs or

actions) and the precise biomolecules involved (typically the

subjects and objects of a phrase or sentence). This is possible in our

system because TRIPS can extract meaning from sentences describ-

ing complex causal relationships in the face of variations in syntax

(Box 1). TRIPS performs an initial shallow syntactic search to iden-

tify and ground named entities (genes, proteins, drugs, etc.) and

then uses generic ontologies to perform “deep” semantic analysis,

determining the meaning of a sentence in terms of its logical

structure.

The second challenge involves extracting and normalizing infor-

mation about mechanisms contained in NLP output. INDRA extracts

mechanistic information from graphs generated by TRIPS by search-

ing for matches to a predefined set of templates corresponding to

biochemical processes (e.g., phosphorylation, transcription, bind-

ing, activation; Fig 3). These templates regularize the description of

biochemistry in text by capturing relevant information in pre-deter-

mined fields: For example, a template for phosphorylation is struc-

tured to have a protein kinase, a phosphorylated substrate, and a

target site. Information extracted by this template-matching proce-

dure is stored in corresponding fields in Statements, INDRA’s inter-

mediate representation; missing fields are left blank. INDRA

Statements currently encompass terms and reactions commonly

found in signal transduction pathways and gene regulation;

however, the system is being extended to include a wider variety of

biochemical processes.

The third challenge in text-to-model conversion is assembling an

executable model from high-level mechanistic facts acquired from

input sources. Knowledge of reaction type and reactant identity is

insufficient to construct a biophysical model: Additional information

derived from an understanding of classes of biochemical mechanism

is almost always required. For example, the conversion of a phos-

phorylation Statement into a reaction network can involve one-step

kinetics, reversible two-step kinetics, or two-step kinetics with

explicit ATP binding. Conversion of Statements into explicit models

is controlled by the imposition of assembly policies (Fig 4). Greater

biophysical realism comes at the cost of increased model complexity

and reduced parameter identifiability. Thus, there is no single opti-

mal approach to model instantiation: The level of detail is deter-

mined by the purpose of the model and the way it will be

formulated mathematically.

Constructing executable models of signaling networks from

pathway databases using BioPAX or BEL presents several chal-

lenges, despite the fact that this information is structured and often

manually curated by experts. BioPAX reactions and BEL statements

often lack the uniqueness (i.e., many variants of the same

mechanism are curated) and context (i.e., participants in curated

mechanisms are missing necessary molecular state) required to

build coherent executable models automatically. For instance,

Pathway Commons contains a multitude of representations of the

reaction whereby MAPK21 phosphorylates and activates MAPK1

(Appendix Fig S10). These reactions differ in their molecular details

including which phosphorylation sites are involved and what the

assumptions about the state (activity, modification, bound cofac-

tors) of MAP2K1 are. These reactions cannot simultaneously be

included in a single, coherent model as they would result in causal

inconsistencies. We therefore require the user to determine which

INDRA Statements extracted from a database should be included in

a given model. INDRA then subjects this information to an analo-

gous process as text, using templates and assembly policies to

control the generation of specific reaction patterns. In the future,

manual selection of relevant BioPAX or BEL statements could be

replaced by, or supplemented with, automated tools ensuring the

selection of coherent subsets of mechanisms to be included in a

model.

Separating model content and implementation

Most approaches to modeling biological networks directly couple

the specification of scope and collection of relevant facts to the

mathematical implementation. For example, in an ODE-based

model, molecular species are directly instantiated as variables

and related to each other using one or more differential equations

containing terms determined by each mass-action reaction (Fig 8A

“ordinary differential equations” and Fig 8B, left). Although

conceptually straightforward, the lack of separation between

content and implementation [an issue also discussed in Basso-

Blandin et al (2016)] makes it difficult to update a model with

new findings from the literature or new hypotheses, to change

the level of biophysical detail, or to switch mathematical formal-

isms. Programmatic modeling overcomes some of these problems

by allowing the construction of models at a higher level of

abstraction in which users implement reusable and composable

macros and modules (Fig 8A “PySB Macro” and Fig 8B, center;

Pedersen & Plotkin, 2008; Mallavarapu et al, 2009; Smith et al,

2009; Lopez et al, 2013). The mathematical equations necessary

for simulation are then generated automatically from the abstract

representations.

Integrated Network and Dynamical Reasoning Assembler intro-

duces a further level of abstraction whereby a user describes a set

of reactions in natural language or searches for related mechanisms

in pathway databases and then uses a machine to turn these facts

into executable models (Fig 8A “natural language” and Fig 8B,

right). In this process, a user has full control over the content of the

model and the level of detail, as specified by policies, but model

assembly happens automatically. Such decoupling simplifies the

creation of dynamical models from natural language descriptions,

enables the creation of closely related models differing in detail or

mathematical formalism, and makes sure that verbal and mathe-

matical descriptions of the same process are in correspondence

(Fig 8B, right).

The decoupling of biological knowledge from specific applica-

tions reflects the way in which biologists gather mechanistic infor-

mation and apply it to specific research questions. We acquire

informal knowledge through years of reading and experience, but

this knowledge remains highly flexible; it allows for uncertainty

about particular details and can be applied to a diverse set of prob-

lems in the laboratory. The ambiguity inherent in verbal descrip-

tions of mechanisms conforms closely to the way in which

individual experiments are designed and interpreted: It is
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extremely rare for one experiment to elucidate the status of all rele-

vant sites of post-translational modification, regulatory subunit

binding, or allosteric regulation of an enzyme. Natural language

allows biologists to communicate provisional and changing knowl-

edge without prematurely resolving ambiguities or presupposing

the biological context or experimental format in which the knowl-

edge might be applied.

Relationship to previous work

Several software tools have been developed to partially automate

the construction of executable models from bioinformatics data-

bases such as KEGG, Pathway Commons (Ruebenacker et al, 2009;

Büchel et al, 2013; Wrzodek et al, 2013; Turei et al, 2016).

Automating model translation in this way increases throughput and

maintains links between model assumptions and curated findings in

databases, eliminating the need for labor-intensive annotations of

hand-built models (Le Novère et al, 2005). Such approaches have

been particularly successful in the field of metabolism in which

knowledge about enzyme–substrate reactions is well curated and

closely corresponds in level of detail to what is required for mecha-

nistic modeling (Büchel et al, 2013). In signal transduction, curation

is less complete, the number of molecular states and interactions is

far higher, and networks vary dramatically from one cell type to the

next. This complexity has been addressed for the most part by using

strictly qualitative formalisms that describe positive and negative

influences between nodes (Büchel et al, 2013; Turei et al, 2016).

In contrast, INDRA uses an intermediate representation that

A

B

Figure 8. Approaches to building dynamical models of biochemical mechanisms.

A Stages of describing a mechanism from concept to implementation. The mechanism “an enzyme binds a substrate” is shown at different levels of abstraction from
mechanistic concept to equation-level implementation. The conceptual description can be expressed in natural language, which can be formalized as an INDRA
Statement between an enzyme and a substrate Agent. The PySB description and a corresponding BioNetGen description (see Box 3) describe a particular
implementation of this mechanism in terms of a single rule, which corresponds to a “low-level” instance of three differential equations describing the temporal
behavior of the enzyme, substrate, and their complex in time.

B Comparison of “classical” mathematical modeling (left), programmatic modeling with PySB (center), and modeling with INDRA (right). In each paradigm, red arrows
show processes that are done by the user and green arrows show ones that are automatically generated.
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encompasses both mechanistic processes (e.g., phosphorylation)

and empirical causal influences (e.g., activation and inhibition). The

model assembly procedure makes use of mechanistic information

where available, but can incorporate qualitative influence relation-

ships when mechanisms are not known. In its use of an intermedi-

ate representation to bridge the gap between elements of

mechanistic knowledge and executable models, INDRA Statements

are related to the graphical meta-model for rule-based modeling

developed by Basso-Blandin et al (2016), which represents binding

and modification actions at the level of structural features within

agents (e.g., domains and key residues). In this way, their frame-

work is complementary to INDRA Statements, and the two

approaches could be productively integrated.

Integrated Network and Dynamical Reasoning Assembler’s abil-

ity to assemble information from knowledge sources into annotated,

exchangeable, and extensible models relies heavily on the existence

of community standards such as SBO (Courtot et al, 2011) and

MIRIAM (Le Novère et al, 2005), and on structured resources

including identifiers.org (Juty et al, 2012), UniProt (The UniProt

Consortium, 2015), CHEBI (Degtyarenko et al, 2008). For an exten-

sive overview of the role of these resources in building large,

reusable models, we refer the reader to (Waltemath et al, 2016).

Early instances of software systems for converting input and output

formats allowed one-to-one conversion from BioPAX to SBML

(Ruebenacker et al, 2009). Cell Designer (Funahashi et al, 2008)

accepts input in formats such as BioPAX and makes plugins such as

SBML Squeezer (Dräger et al, 2015) available for export into SBML.

Similarly, Cytoscape (Cline et al, 2007) makes it possible to import

protein interactions from multiple databases and output the results

to SBML. More recent one-to-many tools translate information from

a single knowledge source into multiple output formats (Wrzodek

et al, 2013), while many-to-one tools aggregate pathway informa-

tion from many sources but target a single output format (Turei

et al, 2016).

By uncoupling knowledge-level statements from a particular

formal implementation, whether graphical or mathematical, natural

language modeling is complementary to and compatible with a wide

variety of input and output formats. In the case of INDRA, an inter-

mediate representation enables a wide variety of many-to-many

conversions involving text, BioPAX, BEL, PySB, BNGL, SBML,

ODEs, logical models and graph-based formats such as SBGN (an

INDRA-assembled SBGN graph of the model presented in Fig 5C is

shown in Appendix Fig S9). Further integration of natural language

and graphical modeling, for example, by coupling INDRA to

SBGNViz graphical interface (Sari et al, 2015), will improve the

quality of human–machine interaction and further facilitate model

assembly and exploration.

Limitations and future extensions of INDRA

An appealing feature of using natural language to build models is that

it is immediately accessible to all biologists. However, this does not

necessarily imply that INDRA will allow modeling laypersons to

directly build and use sophisticated models, as the use of natural

language does not in and of itself address many of the other chal-

lenges in developing a meaningful dynamical model, including deter-

mination of parameter sensitivity, investigation of network dynamics,

insight into combinatorial complexity, multistability, oscillations. We

therefore propose that natural language modeling would be useful in

facilitating collaboration between biologists with domain-specific

expertise and computational biologists. The advantage of natural

language in this context is that it makes it easy for teams to communi-

cate about biological hypotheses and mechanisms without becoming

mired in details of model implementation. For experienced modelers,

INDRA offers a means to efficiently build multiple model types from a

single set of high-level assumptions, provided that the model can be

described in terms of molecular mechanisms and assembled using

available policies. By design, the software does not perform parame-

ter estimation, simulation, or model analysis, leaving these tasks to

the many existing tools and methods.

Limitations in model construction using INDRA can be grouped

into two categories: (i) issues relating to the reading of natural

language by external NLP systems and (ii) limitations in the represen-

tation and assembly of mechanisms in INDRA. In this paper, we

construct models using simple declarative sentences that lack much

of the complexity and ambiguity of spoken language and the scientific

literature. Declarative language can express a wide variety of biologi-

cal mechanisms at different levels of detail and ambiguity and it

reduces many of the difficulties associated with NLP-based extraction

of biological mechanisms. Although TRIPS and INDRA are robust to

variation in syntax and naming conventions, they cannot understand

all possible ways a concept can be stated; for example, “Wip1 makes

ATM inactive” is not recognized as a substitute for “Wip1 inactivates

ATM” (Fig 5). In such cases, rephrasing is usually successful.

The TRIPS system (as well as other NLP systems we tried, such as

REACH) can be used to process the more complex and ambiguous

language used in scientific publications and they are both state-of-

the-art systems with different strengths and weaknesses. Empirical

results presented in Allen et al (2015) show that TRIPS compares

favorably in precision and recall to ten other NLP systems on an

event extraction task from biomedical publications, and reaches

precision and recall levels close to those produced by human cura-

tors. While reading from the biomedical literature is less robust as

compared to reading the declarative language used in this paper, the

fundamental challenge in generating models directly from literature

information is not reading but knowledge assembly. The assembly

challenge involves multiple interconnected issues, including (i) the

large amount of full and partial redundancy of knowledge generated

when mechanisms are read at scale (e.g., MEK phosphorylates ERK

vs. MEK1 phosphorylates ERK), (ii) inconsistencies between knowl-

edge collected from multiple sources which may or may not be

resolvable based on context, (iii) the distinction between direct physi-

cal interactions and indirect effects, and (iv) technical errors such as

erroneous entity disambiguation and normalization. In the approach

described here, human experts simplify machine reading and assem-

bly by paraphrasing statements about mechanisms into simplified,

declarative language. As illustrated in the POMI models of p53

dynamics, the use of simplified language is not only useful for machi-

nes, it helps to clarify complex issues for humans as well. However,

we are actively working to extend INDRA so it can assemble informa-

tion from the primary scientific literature into coherent models.

The domains of knowledge covered by INDRA are limited by the

scope of the natural language processing, intermediate representa-

tion, and assembly procedures developed to date, which do not

include all types of biological mechanisms (e.g., lipid biology,

microRNA function, epigenetic regulation remain future
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extensions). However, INDRA can extract and represent comparable

proportions of reactions in signaling, transcriptional regulation, and

metabolism, which are widely curated in existing databases

(Appendix Table S1). To further extend this coverage, we are (i)

updating processors to retrieve a wider range of information, (ii)

adding new Statement types, and (iii) creating new assembly proce-

dures. Other areas of future development include automated

retrieval of binding affinities and kinetic rates for parameter estima-

tion. Encouragingly, the Path2Models software has shown that auto-

mated retrieval of kinetic parameters from databases is feasible for

metabolic models (Büchel et al, 2013), and this approach may be

adaptable to signaling pathways as well. Another planned extension

involves capturing more abstract observations in addition to mecha-

nistic information. For instance, the experimental finding “IRS-1

knockdown resulted in reduction of insulin stimulated Akt1 phospho-

rylation at Ser 473” (Varma & Khandelwal, 2008) cannot be directly

represented as a molecular mechanism. Literature and databases

contain a wealth of such indirect, non-mechanistic information that

could be used as biological constraints to infer or verify mechanistic

models. However, we expect that INDRA will primarily remain a

tool for investigating properties of linked biochemical reactions

rather than as a general-purpose mathematical modeling tool. As

illustrated in the p53 modeling example above (Fig 5), this empha-

sis requires the modeler to provide an explicit molecular basis for

phenomenological properties such as oscillations, switches, delays.

A system such as INDRA allowing biologists to “talk” to a machine

about a biological pathway in natural language suggests the possibil-

ity that an improved machine could also “talk back” to the human

user in a manner analogous to Apple’s Siri (Carvunis & Ideker, 2014).

At its most basic level, such a system would allow humans and

machines to jointly curate knowledge, thereby resolving ambiguities

or errors in NLP or assembly. A more sophisticated machine would

use its internal knowledge base to autonomously identify relevant

reactions, inconsistencies in a user’s input, or novel hypotheses aris-

ing from model simulation. A computer agent could interact with

many human experts simultaneously, facilitating curation and model-

ing efforts by communities of biologists. We anticipate that such

human–machine collaborative systems will be increasingly valuable

in making sense of the large and complex datasets and fragmentary

mechanistic knowledge that characterize modern biomedicine.

Materials and Methods

Software availability

Integrated Network and Dynamical Reasoning Assembler is avail-

able under the open-source BSD license. Code and documentation

are available via http://indra.bio; the documentation is also

included as part of the Appendix. The TRIPS/DRUM system for

extracting mechanisms from natural language is available at

http://trips.ihmc.us/parser/cgi/drum. INDRA version 1.5.0 was

used to obtain all results in the manuscript. INDRA can be

imported in a Python environment and integrated with existing

Python-based tools directly. To allow the integration of INDRA

with non-Python tools, including graphical modeling environments,

a REST API is available, through which all input processing and

assembly functionalities of INDRA can be used (for more details

on the REST API, see the INDRA documentation attached as part

of the Appendix).

TRIPS interface

The INDRA TRIPS Interface is invoked using the top-level function

process_text. This function queries the TRIPS/DRUM web service

via HTTP request, sending the natural language content as input

and retrieving extracted events in the EKB-XML format. The Inter-

face then creates an instance of the TripsProcessor class, which is

then used to iteratively search the EKB-XML output, via XPath

queries, for entries corresponding to INDRA Statements. Extracted

Statements are stored in the statements property of the TripsProces-

sor, which is returned by the Interface to the calling function.

BioPAX/Pathway commons interface

Integrated Network and Dynamical Reasoning Assembler’s BioPAX

Interface either queries the Pathway Commons web service or reads

an offline BioPAX OWL file (Box 2). The Interface contains three

functions that can be used to query the Pathway Commons database

via the web service: (i) process_pc_neighborhood, which returns the

reactions containing one or more query genes; (ii) process_pc_paths-

between, which returns reaction paths connecting the query genes,

subject to a path length limit; and (iii) process_pc_pathsfromto,

which returns reaction paths from a source gene set to a target gene

set, subject to a path length limit. The BioPAX Interface processes

the resulting OWL files using PaxTools (Demir et al, 2013), yielding

a BioPAX model as a Java object accessible in Python via the

pyjnius Python-Java bridge (https://github.com/kivy/pyjnius).

INDRA’s BioPAX Processor then uses the BioPAX Patterns package

(Babur et al, 2014) to query the BioPAX object model for reaction

patterns corresponding to INDRA Statements.

BEL/NDEx interface

Integrated Network and Dynamical Reasoning Assembler’s BEL

Interface either reads an offline BEL-RDF file or obtains BEL-RDF

from the BEL Large Corpus via the Network Data Exchange (NDEx)

web service (Pratt et al, 2015). Subnetworks of the BEL Large

Corpus are obtained by calling the method process_ndex_neighbor-

hood, which retrieves BEL Statements involving one or more query

genes. The BEL Processor then uses the Python package rdflib to

query the resulting RDF object for BEL Statements corresponding to

INDRA Statements via the SPARQL Protocol and RDF Query

Language (SPARQL; https://www.w3.org/TR/sparql11-overview).

Assembly of rule-based models

Assembly of rule-based models is performed by instances of the

PySB Assembler class. Given a set of INDRA Statements and

assembly policies as input, the make_model method of the PySB

Assembler assembles models in two steps. First, information is

collected about all molecular entities referenced by the set of State-

ments. This defines the activity types, post-translational modifi-

cation sites, binding sites, and mutation sites for each Agent,

which can then be used to generate the agent “signatures” for the

rule-based model. In PySB, the molecular entities of the model are
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represented by a set of instances of the PySB Monomer class.

Because assembly policies chosen by the user govern the nature of

binding interactions (e.g., one-step vs. two-step modification), the

binding sites and agent signatures must be generated in accordance

with the chosen policies at this step. For policies involving explicit

binding between proteins (e.g., the two-step policy for post-transla-

tional modifications), each PySB Monomer is given a unique bind-

ing site for each interacting partner. The second step is the

generation of reaction rules corresponding to each of the input

Statements. The PySB Assembler iteratively processes each State-

ment, calling the assembly function specific to the Statement type

and chosen policy. Depending on the Statement type and policy,

one or more PySB rules may be generated and added to the PySB

model. The PySB model returned by the make_model function can

then be converted into other formats (Kappa, BNG, SBML, Matlab,

etc.) depending on the type of simulation or analysis to be

performed (Lopez et al, 2013). Importantly, the PySB Assembler

adds annotations to the generated PySB model that link molecular

entities referenced in the model to their identities in reference

ontologies (e.g., HGNC and UniProt). These annotations are in turn

propagated into SBML and other model formats by existing PySB

model export routines.

Models of p53 activation in response to single- and double-
strand break DNA damage

The text defining each model was submitted to the TRIPS web

service for processing via INDRA’s TRIPS Interface. The TRIPS

system returned Extraction Knowledge Base graphs (Box 1 and

Appendix Section 2.1) from which INDRA’s TRIPS Processor

extracted INDRA Statements. These Statements were then assembled

using INDRA’s PySB Assembler into a rule-based model. The default

“one-step” assembly policy was used, which generates rules in

which the subject of an activation, inhibition, and modification

changes the state of the object without binding.

The eight sentences constituting the SSB damage response model

(Fig 5B) resulted in eight INDRA Statements (each of type Activa-

tion or Inhibition). For example, the sentence “Active p53 activates

Mdm2” was represented as an Activation Statement with an addi-

tional condition on the Agent representing p53, requiring that it be

active. During INDRA Statement construction, names of genes are

standardized to their HGNC gene symbol (Eyre et al, 2006); thus,

the Agent representing “Mdm2” is renamed “MDM2”, and the

Agent representing “p53” is renamed “TP53”. Default initial condi-

tions (10,000 molecules, based on a default concentration of 10�8

molar in a typical HeLa cell volume of 1.6 × 10�12 l) generated by

the PySB Assembler were used for each protein in its inactive state

and simulations were started with an initial one active ATR mole-

cule to initiate the activation pathway. The forward rates for activa-

tion and inhibition rules were set to 10�7 molec�1 s�1 (using a

conversion rate of 105 M�1 s�1 in a typical HeLa cell volume, as

above). The forward rate of the rules corresponding to ATR auto-

activation and p53 inactivation by Wip1 was modified to be

5 × 10�7 molec�1 s�1, that is, faster than the forward rate of other

rules (a summary of all rules and rates is given in the Appendix Sec-

tion 2.3). PySB’s reaction network generation and simulation func-

tions were then used to instantiate the model as a set of eight

ordinary differential equations. The model was simulated using the

scipy package’s built-in vode solver for up to 20 h of model time

while tracking the amount of active p53, which was then plotted

(Fig 5B). Natural language processing for this model took 10 s

(here and in the following, this includes network traffic time to and

from the web service); the assembly and simulation of the model

took < 1 s.

The method for constructing the simple DSB response model

(Fig 5C) with ATM was analogous to the SSB model. The same

initial amounts and forward rate constants were used as in the

previous model, except in this case an initial condition of one active

ATM molecule was used, and the inactivation of ATM by Wip1 was

given a forward rate of 10�5 molec�1 s�1. For this model, the nine

natural language sentences were captured in nine INDRA Statements

and generated into a model of nine rules and finally nine ODEs. The

model was again simulated up to 20 h while observing the active

form of p53. Similar to the SSB response model, natural language

processing for this model took around 10 s, with assembly and

simulation taking < 1 s.

The POMI1.0 model (Fig 5E) extends the basic DSB response

model by specifying the activation/inhibition processes in more

mechanistic detail. The model is described in 10 sentences yielding

12 INDRA Statements and a model containing 11 PySB rules and 12

ODEs (via the PySB Assembler using the “one-step” policy). The

same rate constants were used as in the simple DSB response model;

additionally, the degradation rate of Mdm2 was set to 8 × 10�2 s�1

and the rate of synthesis of Mdm2 by p53 to 2 × 10�2 molec�1 s�1

(a full list of rules and associated rate constants is given in the

Appendix Section 2.3). Natural language processing for this model

took 14 s; assembly and simulation took < 1 s.

Models of response to BRAF inhibition

The sentences for the MEMI1.0, 1.1, and 1.2 models were processed

with the TRIPS web service via INDRA’s TRIPS Interface. Natural

language processing took 37 s for MEMI1.0, 60 s for MEMI1.1, and

75 s for MEMI1.2. The resulting INDRA Statements were then

assembled using INDRA’s PySB Assembler module into a rule-based

model using the “two-step” policy for assembling post-translational

modifications. Kinetic rate constants were set manually and the

initial amounts of each protein were set to correspond in their order

of magnitude to typical absolute copy numbers measured across a

panel of cancer cell lines in Appendix Tables S5 of Shi et al (2016).

A summary of the kinetic rates and initial amounts is given in

Appendix Tables S5–S7. Each model was instantiated as a system of

ordinary differential equations and simulated using the scipy Python

package’s built-in vode solver. Each model was started from an

initial condition with all proteins in an inactive, unmodified, and

unbound state. The models were run to steady state and the values

of GTP-bound RAS (active RAS) and phosphorylated ERK were

saved. Another simulation was then started from the steady-state

values with vemurafenib added and the time courses of active RAS

and phosphorylated ERK were normalized against their unperturbed

steady-state values and plotted.

Extensible and executable RAS pathway map

The pathway map was created by processing 47 sentences with

TRIPS (see Appendix Section 2.5) to generate 141 INDRA

Molecular Systems Biology 13: 954 | 2017 ª 2017 The Authors

Molecular Systems Biology From word models to executable models Benjamin M Gyori et al

22



Statements. Reading and extraction of Statements took a total of

160 s. The Statements were then assembled using INDRA’s Graph

Assembler, which produced a network that was laid out using

Graphviz (Ellson et al, 2002) as shown in Fig 7A. The same set of

Statements was then assembled using the INDRA SIF Assembler

which produced a list of positive and negative interactions between

genes that can be interpreted by network visualization software

(Shannon et al, 2003) and Boolean network simulation tools. The

logical functions for each node were generated by combining the

state of parent nodes such that the presence of any activating input

in an on state and the absence of any inhibitory inputs in an on state

resulted in the node’s value taking an on state at the next time step

(logical rules are given in Appendix Section 2.5). Boolean network

simulations were performed using the boolean2 package (Albert

et al, 2008). The presence of growth factors was modeled by setting

the value of the “GROWTH-FACTOR” node to True; inhibitor effects

were modeled by clamping the values of the inhibited protein nodes

to False. For each condition, 100 independent traces were simulated

using asynchronous updates on the nodes (which results in stochas-

tic behavior) and the average of the value of each node (with 0

corresponding to the low and 1 to the high state of each node) was

taken across all simulations to produce the time course plots in

Fig 7D.

Data availability

The POMI1.0 and MEMI1.0-1.2 models are provided in Model Files

EV1 in SBML, BNGL, Kappa, and PySB formats, in addition to the

natural language text files used to build them. The RAS pathway

model and its extension are provided in SIF and Boolean network

formats. Code used to generate these models is part of the INDRA

repository and can be found in the models folder of https://github.

com/sorgerlab/indra.

Expanded View for this article is available online.
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