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Identification of protein complex is very important for revealing the underlying mechanism of biological processes. Many
computational methods have been developed to identify protein complexes from static protein-protein interaction (PPI) networks.
Recently, researchers are considering the dynamics of protein-protein interactions. Dynamic PPI networks are closer to reality in
the cell system. It is expected thatmore protein complexes can be accurately identified fromdynamic PPI networks. In this paper, we
use the undulating degree above the base level of gene expression instead of the gene expression level to construct dynamic temporal
PPI networks. Further we convert dynamic temporal PPI networks into dynamic Temporal Interval Protein Interaction Networks
(TI-PINs) and propose a novel method to accurately identify more protein complexes from the constructed TI-PINs. Owing to
preserving continuous interactions within temporal interval, the constructed TI-PINs contain more dynamical information for
accurately identifying more protein complexes. Our proposed identification method uses multisource biological data to judge
whether the joint colocalization condition, the joint coexpression condition, and the expanding cluster condition are satisfied; this
is to ensure that the identified protein complexes have the features of colocalization, coexpression, and functional homogeneity.The
experimental results on yeast data sets demonstrated that using the constructed TI-PINs can obtain better identification of protein
complexes than five existing dynamic PPI networks, and our proposed identification method can find more protein complexes
accurately than four other methods.

1. Introduction

The majority of proteins interact with each other to perform
a specific biological process [1]. The fast accumulation of
protein-protein interaction (PPI) data has made maps of PPI
networks of several model organisms become available [2].
Identifying protein complexes from PPI networks plays a key
role in understanding cellular organizations and functional
mechanisms [3].

Over the past decades, the studies on identifying protein
complexes from static protein-protein interaction network
(SPIN) have yielded many effective methods. The clustering-
based methods such as MCODE [4], ClusterONE [5], MCL
[6], PCP [7], APcluster [8], SPICi [9], and DPCLus [10]
identify complexes by detecting closely connected structures

from SPIN. Gavin et al. [1] discovered the core-attachment
structure of yeast protein complexes based on genome-wide
analysis. Accordingly, CORE [11], COACH [12], WPNCA
[13], and MCL-CAw [14] were designed to find protein
complexes from SPIN. Some methods [15–17] detect protein
complexes with biological significance by integrating GO-
based functional annotations and SPIN, and other methods
[18, 19] measure Pearson correlation coefficient between two
proteins and weight SPIN to identify protein complexes.

The aforementionedmethodsmainly focus on identifying
complexes from static protein-protein interaction network
(SPIN). However, the real PPI network in cell keeps changing
over different stages of the cell cycle [20]. In fact, cellular
systems are highly dynamic and responsive to environment
cues [21]. So it is expected thatmodelling the real PPI network
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as dynamic PPI networks can lead to identifyingmore protein
complexes accurately.

Fortunately, bymonitoring simultaneous andquantitative
changes in RNA concentration of thousands of genes under
various experimental conditions, DNA microarray technol-
ogy produced a large number of gene expression data [22, 23].
These gene expression data provide potential insights into the
dynamics of PPI networks. Thus, the key step of identifying
protein complexes from dynamic PPI networks is how to
construct nearly real PPI networks using gene expression
data. During a whole cell cycle, protein is not always active
all the time. To construct the dynamic PPI network, it
requires determining the so-called active time point at which
protein exhibits activity. According to the periodicity of gene
expression, De Lichtenberg et al. [24] constructed dynamic
PPI networks over the yeast mitotic cell cycle by determining
active time points of each protein. A protein is considered to
be active when its level of gene expression exceeds a specified
threshold. Tang et al. [22] used a recommended threshold
to filter nonactive protein over three successive metabolic
cycles and then constructed a time-course protein interaction
network (TC-PIN). Instead of using a global threshold,Wang
et al. [23] presented a three-sigma method, which uses
the sum of the gene expression mean and three standard
deviations as a threshold, to determine active time points of
each protein, and constructed dynamic protein interaction
networks (DPIN) and identified complexes fromDPIN. Some
swarm intelligence-based methods [25–29] also exploit the
three-sigma method to construct dynamic PPI networks
and identify protein complexes. Based on the three-sigma
method, Zhang et al. [30] calculated the active probability of
each protein at different time point to determine the active
time point of each protein and constructed dynamic proba-
bilistic protein interaction networks (DPPN). Furthermore,
OU-Yang et al. [31] proposed a time smooth overlapping
complexes detection (TS-OCD) model to construct dynamic
PPI networks to detect temporal protein complexes. Shen
et al. [32] used the deviation degree method to construct a
Time-Evolving PIN (TEPIN) to detect temporal protein com-
plexes. By adopting a dynamic model-based method to filter
the noisy data from gene expression profiles, Xiao et al. [21]
proposed a k-sigma method to determine whether a protein
at a time point is active and constructed a noise-filtered active
protein interaction network (NF-APIN) to detect protein
complexes. The fore-mentioned methods mainly consider
how to construct the dynamic PPI networks and then apply
existing identification method to find protein complexes
from the constructed dynamic PPI networks.

Furthermore, some researchers have not only investigated
how to construct the dynamic PPI networks but also designed
identifying methods to find protein complexes from the
constructed dynamic PPI networks. By combining the active
probability of proteins and Pearson correlation coefficient of
PPIs with static PPI networks, Zhang et al. [33] constructed
dynamic PPI networks and proposed a protein complex pre-
diction method. Based on the neighbor affinity and dynamic
protein-protein interaction network, DPC-NADPINmethod

[34] selects the proteins with a high clustering coefficient
and their neighbors to consolidate into an initial cluster
and iteratively expands the neighbor proteins to the cluster
to form a protein complex. TS-OCD method [31] captures
the temporal feature of networks between consecutive time
points and detects temporal protein complexes from the
constructed dynamic PPI networks. Shen et al. [35] proposed
a method called DCA (Dynamic Core-Attachment), which
uses three-sigma method to construct dynamic PPI network
integrating the inherent organizations of protein complexes
and applies an outward expanding strategy to identify pro-
tein complexes with the characteristic of core-attachment
structure. All four above-mentioned works identify protein
complexes by constructing dynamic PPI networks using gene
expression data and topological features of PPI networks.

We observed that all the existing methods determine
active time point of proteins by a conservative and relative
high threshold. This leads to losing dynamic information of
gene with expression value that is lower than the specified
threshold. In this paper, we first exploited the undulating
degree above the base level of gene expression instead of the
gene expression level to determine the active time point of
a protein and constructed temporal PPI networks (TPNs)
by protein interaction data and gene expression data. We
then proposed a method which not only converts TPNs into
temporal interval PPI networks (TI-PINs) but also identifies
more colocalized, coexpressed, and functionally significant
protein complexes from the constructed TI-PINs by multi-
source biological data. Finally, we evaluated our constructed
TI-PINs and other dynamic PPI networks and compared our
proposed identification method with four other competing
methods.

2. Methods

In this section, we describe how to construct temporal inter-
val PPI networks (TI-PINs) and identify protein complexes
from TI-PINs.

2.1. Preliminary. Let a graph G=(V, E) represent a static
protein-protein interaction network (SPIN), where V is a set
of nodes (proteins) and N=|𝑉|, E is a set of edges (protein-
protein interactions), and e(i, j) denotes the edge between
nodes i and j, where i, j=1, 2, . . ., N. Let 𝑆𝑝𝑝𝑖=(PP, s) denote
a set of protein-protein interactions with reliability score,
where PP is a set of interacting protein pairs and s(x,y) denote
the reliability score of the interacting protein pair (x,y) in PP.
Thus, we use GW=(V, E, w) to denote the graph G weighted
by 𝑆𝑝𝑝𝑖, where the edge weight w(i, j) is defined as follows:

𝑤 (𝑖, 𝑗) = {{{
𝑠 (𝑖, 𝑗) , 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑃𝑃, 𝑒 (𝑖, 𝑗) ∈ 𝐸
1, 𝑖𝑓 (𝑖, 𝑗) ∉ 𝑃𝑃, 𝑒 (𝑖, 𝑗) ∈ 𝐸

𝑖, 𝑗 = 1, 2, . . . , 𝑁.
(1)

Furthermore, matrix 𝐴𝑁×𝑁 is used to represent the
reliability scorematrix ofGW, where the element 𝑎𝑖,𝑗 of𝐴𝑁×𝑁
is defined as follows:
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𝑎𝑖,𝑗 = {{{
𝑤(𝑖, 𝑗) , 𝑖𝑓 𝑒 (𝑖, 𝑗) ∈ 𝐸
0 𝑖𝑓 𝑒 (𝑖, 𝑗) ∉ 𝐸 𝑖, 𝑗 = 1, 2, . . . , 𝑁. (2)

If 𝑎𝑖,𝑗 ≥ 𝑟, we define the edge 𝑒(𝑖, 𝑗) as a r-reliable link
between nodes i and j, where r is a given reliability threshold
and 𝑟 ∈ {1, 2, . . . , 999} [36].

Let 𝐺𝐸𝑁×𝑇 denote the matrix of gene expression of N
proteins across T time points. For a gene i, let 𝑒V𝑖,𝑡 represent
the expression value of gene i at time t and 𝑔𝑒𝑝𝑖 = {𝑔𝑒𝑝𝑖(𝑡) |𝑡 = 1, . . . , 𝑇} denote the gene expression pattern of gene
i, where 𝑔𝑒𝑝𝑖(𝑡) = (𝑒V𝑖,𝑡 − 𝑒V 𝑚𝑖𝑛𝑖)/(𝑒V 𝑚𝑎𝑥𝑖 − 𝑒V 𝑚𝑖𝑛𝑖),𝑒V 𝑚𝑖𝑛𝑖 = min𝑇𝑡=1𝑒V𝑖,𝑡, and 𝑒V 𝑚𝑎𝑥𝑖=max𝑇𝑡=1𝑒V𝑖,𝑡, i=1,2,. . .,N,
t=1,. . .,T. In fact, 𝑔𝑒𝑝𝑖 is composed of T normalized gene
expression values. The normalized gene expression data can
be used tomeasure the undulating degree above the base level
of gene expression during a whole cell cycle.

2.2. Temporal PPI Networks. When a protein is involved in a
specific biological process, the expression data of the protein-
coding gene exhibits the undulation above the base level
of the gene expression during the biological process. If the
normalized expression value of gene i exceeds a specified
threshold at a certain time point, we call that the product of
gene i is activated at this time point. Let 𝑎𝑝𝑖(𝑡) denote the
active state of protein i at time point t, if protein i is active,𝑎𝑝𝑖(𝑡)=1, otherwise, 𝑎𝑝𝑖(𝑡)=0, i=1,..., N, and t=1,..., T. For a
given active threshold 𝜑, 𝑎𝑝𝑖(𝑡) is defined as follows:

𝑎𝑝𝑖 (𝑡) = {{{
1, 𝑖𝑓 𝑔𝑒𝑝𝑖 (𝑡) ≥ 𝜑
0, 𝑖𝑓 𝑔𝑒𝑝𝑖 (𝑡) < 𝜑 ,

𝑖 = 1, . . . , 𝑁, and 𝑡 = 1, . . . , 𝑇.
(3)

Obviously, a lower active threshold𝜑 preservesmore gene
dynamical information. The best active threshold 𝜑 will be
discussed in the section “The effect of active threshold”.

In order to model the dynamics of active proteins
mentioned above, the dynamical PPI network is introduced.
In the following, we discuss how to construct temporal
PPI networks (TPNs) by incorporating time-course gene
expression data into static PPI network SPIN. Let𝑇𝑃𝑁𝑡 =(𝑉𝑡,𝐸𝑡) denote a temporal PPI network at time point t, where𝑉𝑡 and 𝐸𝑡 is the set of proteins and the set of interactions
between active proteins at time point t, respectively, t=1, 2,. . ., T. We use 𝐷𝐴𝑡 to represent the reliability score matrix of𝑇𝑃𝑁𝑡, where element 𝑑𝑎𝑡𝑖,𝑗 in𝐷𝐴𝑡 is computed as follows:

𝑑𝑎𝑡𝑖,𝑗 = 𝑎𝑝𝑖 (𝑡) × 𝑎𝑝𝑗 (𝑡) × 𝑎𝑖,𝑗,
𝑖, 𝑗 = 1, . . . , 𝑁, and 𝑡 = 1, 2, . . . , 𝑇 (4)

2.3. Temporal Interval PPI Networks. A protein complex is
corresponding to a subgraph in PPI network. To represent
the subgraph of a protein complex which appears in several
successive temporal PPI networks, we introduce temporal
interval PPI networks (TI-PINs). A temporal interval PPI
network (TI-PIN) can be generated by merging several

successive temporal PPI networks (TPNs). Given 𝑇𝑃𝑁𝑡
=(𝑉𝑡, 𝐸𝑡), t=1,...,T, let 𝑇𝐼-𝑃𝐼𝑁𝑡𝑙𝑜𝑤,𝑡𝑡𝑜𝑝 and 𝐵𝑡𝑙𝑜𝑤 ,𝑡𝑡𝑜𝑝 denote the
temporal interval PPI network and its reliability score matrix
from 𝑡𝑙𝑜𝑤 to 𝑡𝑡𝑜𝑝, respectively, where 𝑡𝑙𝑜𝑤 and 𝑡𝑡𝑜𝑝 are two time
points and 1 ≤ 𝑡𝑙𝑜𝑤 ≤ 𝑡𝑡𝑜𝑝 ≤ T. 𝑇𝐼-𝑃𝐼𝑁𝑡𝑙𝑜𝑤,𝑡𝑡𝑜𝑝 and element
𝑏𝑡𝑙𝑜𝑤 ,𝑡𝑡𝑜𝑝𝑖,𝑗 in 𝐵𝑡𝑙𝑜𝑤,𝑡𝑡𝑜𝑝 are defined as follows:

𝑇𝐼-𝑃𝐼𝑁𝑡𝑙𝑜𝑤,𝑡𝑡𝑜𝑝 = (𝑉𝑡𝑙𝑜𝑤 ,𝑡𝑡𝑜𝑝 , 𝐸𝑡𝑙𝑜𝑤,𝑡𝑡𝑜𝑝) ,
𝑉𝑡𝑙𝑜𝑤 ,𝑡𝑡𝑜𝑝 = 𝑡𝑡𝑜𝑝⋂

𝑡=𝑡𝑙𝑜𝑤

𝑉𝑡,

𝐸𝑡𝑙𝑜𝑤 ,𝑡𝑡𝑜𝑝 = 𝑡𝑡𝑜𝑝⋂
𝑡=𝑡𝑙𝑜𝑤

𝐸𝑡,
1 ≤ 𝑡𝑙𝑜𝑤 ≤ 𝑡𝑡𝑜𝑝 ≤ 𝑇

(5)

𝑏𝑡𝑙𝑜𝑤 ,𝑡𝑡𝑜𝑝𝑖,𝑗

= {{{
𝑑𝑎𝑡𝑖,𝑗, 𝑖𝑓 1 ≤ 𝑡𝑙𝑜𝑤 = 𝑡 = 𝑡𝑡𝑜𝑝 ≤ 𝑇
min (𝑏𝑡𝑙𝑜𝑤 ,𝑡𝑡𝑜𝑝−1𝑖,𝑗 , 𝑏𝑡𝑙𝑜𝑤+1,𝑡𝑡𝑜𝑝𝑖,𝑗 ) , 𝑖𝑓 1 ≤ 𝑡𝑙𝑜𝑤 < 𝑡𝑡𝑜𝑝 ≤ 𝑇,

𝑖, 𝑗 = 1, 2, . . . , 𝑁
(6)

Obviously, if 1 ≤ 𝑡𝑙𝑜𝑤 = t = 𝑡𝑡𝑜𝑝≤ T, then 𝑏𝑡𝑙𝑜𝑤 ,𝑡𝑡𝑜𝑝𝑖,𝑗 =𝑏𝑡,𝑡𝑖,𝑗=𝑑𝑎𝑡𝑖,𝑗,
namely, 𝑇𝐼-𝑃𝐼𝑁𝑡,𝑡is the same as TPNt. If 1 ≤ 𝑡𝑙𝑜𝑤 < 𝑡𝑡𝑜𝑝 ≤
T, then𝑇𝐼-𝑃𝐼𝑁𝑡𝑙𝑜𝑤,𝑡𝑡𝑜𝑝 is newly constructed by 𝑇𝑃𝑁𝑡, 𝑡𝑙𝑜𝑤 ≤
t ≤ 𝑡𝑡𝑜𝑝. Here, let l=𝑡𝑡𝑜𝑝-𝑡𝑙𝑜𝑤+1 denote the temporal interval
length. Figure 1 shows the generation of 𝑇𝐼-𝑃𝐼𝑁𝑡𝑙𝑜𝑤,𝑡𝑡𝑜𝑝 by
merging the successive temporal PPI networks (TPNs) from𝑡𝑙𝑜𝑤 to 𝑡𝑡𝑜𝑝. FromFigure 1, we can see thatT TPNs can generate
T⋅(T-1)/2 TI-PINs.

For given time points 𝑡𝑙𝑜𝑤 and 𝑡𝑡𝑜𝑝, and 𝑡𝑙𝑜𝑤 < 𝑡𝑡𝑜𝑝,
if the PPI subgraph 𝐺𝑝𝑐 of a protein complex appears in
all 𝑇𝑃𝑁𝑡𝑙𝑜𝑤 ,𝑇𝑃𝑁𝑡𝑙𝑜𝑤+1,. . ., and 𝑇𝑃𝑁𝑡𝑡𝑜𝑝 , then 𝐺𝑝𝑐 also appears
in all 𝑇𝐼-𝑃𝐼𝑁𝑡1,𝑡2 , t1 ≤ t2 and t1, t2=𝑡𝑙𝑜𝑤, 𝑡𝑙𝑜𝑤+1,..., and𝑡𝑡𝑜𝑝. Because the number of 𝑇𝐼-𝑃𝐼𝑁𝑡1,𝑡2 is larger than the
number of𝑇𝑃𝑁𝑡, the chance of exactly identifying the protein
complex from 𝑇𝐼-𝑃𝐼𝑁𝑡1,𝑡2 is higher than that from 𝑇𝑃𝑁𝑡,
where t1 ≤ t2 and t, t1, t2=𝑡𝑙𝑜𝑤, 𝑡𝑙𝑜𝑤+1,..., 𝑡𝑡𝑜𝑝.
2.4. Identification Method. In this section, we introduce
the concepts of the joint colocalization condition, the joint
coexpression condition, the GO-based functional similarity
between proteins, and the expanding cluster condition and
then present our identification method.

2.4.1. Joint Colocalization Condition. To accomplish a specific
biological process, some proteins physically interact with
each other to form a protein complex at the same subcellular
localization. Huh et al. [37] investigated the distribution of
yeast proteins at different subcellular localization. Without
loss of generality, we use yeast protein subcellular localization
to illustrate the construction of joint colocalization condition
of a protein complex. Yeast protein subcellular localization
is classified into 22 categories shown in Table 1 [37]. Based
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Table 1: Subcellular localization category for yeast subcellular compartment.

No. subcellular
localization category No. subcellular

localization category No. subcellular
localization category No. subcellular

localization category
1 mitochondrion 7 ER 13 late Golgi 19 early Golgi
2 vacuole 8 nuclear periphery 14 peroxisome 20 lipid particle
3 spindle pole 9 endosome 15 actin 21 nucleus
4 cell periphery 10 bud neck 16 nucleolus 22 bud
5 punctate composite 11 microtubule 17 cytoplasm
6 vacuolar membrane 12 Golgi 18 ER to Golgi
Note. No. is the subcellular localization category number.

TPNs

1

t 1 2 3 4 5 6 7 8 9 10 11 12

1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9) (1,10) (1,11) (1,12)

2 (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9) (2,10) (2,11) (2,12)
3 (3,3) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9) (3,10) (3,11) (3,12)

4 (4,4) (4,5) (4,6) (4,7) (4,8) (4,9) (4,10) (4,11) (4,12)

5 (5,5) (5,6) (5,7) (5,8) (5,9) (5,10) (5,11) (5,12)
6 (6,6) (6,7) (6,8) (6,9) (6,10) (6,11) (6,12)

7 (7,7) (7,8) (7,9) (7,10) (7,11) (7,12)

8 (8,8) (8,9) (8,10) (8,11) (8,12)

9 (9,9) (9,10) (9,11) (9,12)

10 (10,10) (10,11) (10,12)

11 (11,11) (11,12)

12 (12,12) TI-PINs

Gene 
expression 

data

PPI 
data

TPN1 TPN5 TPN9 TPNT

tlow = 5 ttop = 9 T = 12
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V2 V2
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Figure 1: Generating 𝑇𝐼-𝑃𝐼𝑁𝑡𝑙𝑜𝑤 ,𝑡𝑡𝑜𝑝by merging the successive temporal PPI networks TPNs from 𝑡𝑙𝑜𝑤 to 𝑡𝑡𝑜𝑝. For example, TI-PIN5,9 is
generated bymerging TPNs from time point 5 to time point 9. TI-PINs in the triangle of red dash lines are generated by TPNs in the rectangle
of red dash lines. A 𝑇𝐼-𝑃𝐼𝑁𝑡1 ,𝑡2 corresponds to a temporal interval (t1, t2), where 1 ≤ t1 ≤ t2 ≤ T = 12.

on the subcellular localization category, a 22-dimension
0-1 vector is defined to represent the protein subcellular
localization indicating the appearance of a protein during a
whole cell cycle.

Given a protein p, let LV(p) denote the localization vector
of the protein p and 𝐿𝑉𝑖(𝑝) denote the i-th element of
LV(p), i=1,. . ., 22. If the protein p is once localized at the

i-th subcellular localization category in a whole cell cycle,𝐿𝑉𝑖(𝑝)=1, otherwise, 𝐿𝑉𝑖(𝑝)=0, i=1,. . ., 22.
Given a set PS of k proteins {𝑝1, 𝑝2, . . . , 𝑝𝑘} and 𝐿𝑉(𝑝𝑗),

j=1,. . ., k, let JLV(PS)= {𝐽𝐿𝑉1(𝑃𝑆), 𝐽𝐿𝑉2(𝑃𝑆), . . . , 𝐽𝐿𝑉22(𝑃𝑆)}
denote the joint localization vector of PS, where 𝐽𝐿𝑉𝑖(𝑃𝑆)=∧𝑘𝑗=1𝐿𝑉𝑖(𝑝𝑗), i=1,. . .,22, and “∧” is the logical AND operation
on the elements among the localization vectors of proteins
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in PS. If all proteins in PS perform a specific function at
the i-th subcellular localization category, then 𝐽𝐿𝑉𝑖(𝑃𝑆)=1,
otherwise, 𝐽𝐿𝑉𝑖(𝑃𝑆)=0, i=1,. . ., 22. Obviously, JLV(PS) is also
a 22-dimension 0-1 vector.

Given a set PS of proteins and its JLV(PS), let
JC(PS)=∑22𝑖=1 𝐽𝐿𝑉𝑖(𝑃𝑆) denote the joint colocalization
count of PS. Clearly, JC(PS) is the sum of all elements in
JLV(PS). If JC(PS)>0, there exists at least one subcellular
localization category where all proteins in PS are jointly
colocalized in a whole cell cycle. If JC(PS)=0, all proteins in
PS are not jointly colocalized at any subcellular localization
category in a whole cell cycle. We define “JC(PS)>0” as the
joint colocalization condition.

2.4.2. Joint Coexpression Condition. There exists a correlation
between gene expression level and protein activity [38]. The
subunits in a permanent complex are coexpressed [39]. That
suggests analyzing gene coexpression can reveal the potential
interaction between active proteins to some extent.

Given a set GS of k genes {𝑔1, 𝑔2, . . . , 𝑔𝑘} and the
normalized gene expression value gepi(t) of gene i at time
point t, t=1,. . .,T, i=1,. . .,k, we use 𝐽𝐺𝐸𝐺𝑆={𝐽𝐺𝐸𝐺𝑆(𝑡) | 𝑡 =1, . . . , 𝑇} to denote the joint gene expression profile of GS,
where 𝐽𝐺𝐸𝐺𝑆(𝑡) = ∏𝑘𝑖=1𝑔𝑒𝑝𝑖(𝑡) and “Π” is the multiplication
operation on the expression pattern values among k genes. In
essence, we can generate 𝐽𝐺𝐸𝐺𝑆(𝑡) by calculating the product
of the normalized expression values of k genes in GS at time
point t, t=1,..., T.

To measure the joint coexpression level of GS, we use
JQ(GS)=(1/𝑇)∑𝑇𝑡=1 𝐽𝐺𝐸𝐺𝑆(𝑡) to denote the joint coexpression
quantity of GS. If JQ(GS)≥𝛾, all genes in GS are jointly
coexpressed, where 𝛾 is the given threshold. We define
“JQ(GS)≥𝛾” as the joint coexpression condition.

When the temporal interval length is l, we use l+4
successive expression data to analyze the joint coexpression
condition.We set a time window, which covers l+4 successive
time points, on the normalized expression data. If the current
temporal interval is (𝑡𝑙𝑜𝑤, 𝑡𝑡𝑜𝑝), the time window covers l+4
time points including 𝑡𝑙𝑜𝑤-2, 𝑡𝑙𝑜𝑤-1, 𝑡𝑙𝑜𝑤,..., 𝑡𝑡𝑜𝑝, 𝑡𝑡𝑜𝑝+1, and𝑡𝑡𝑜𝑝+2. If 𝑡𝑙𝑜𝑤 < 3, the time window consists of the following
time points: 1, 2,..., 𝑡𝑡𝑜𝑝, 𝑡𝑡𝑜𝑝+1, and 𝑡𝑡𝑜𝑝+2. If 𝑡𝑡𝑜𝑝 > 𝑇-2, the
time window consists of the following time points: 𝑡𝑙𝑜𝑤-2,𝑡𝑙𝑜𝑤-1, 𝑡𝑙𝑜𝑤,...,T-1, and T.

2.4.3. �e GO-Based Functional Similarity between Proteins.
Ontology provides well-defined, structured, and computable
semantics of domain knowledge [40]. Because of the need
for consistent description related to genes and gene products
across species, gene ontology GO has been launched by
a collaborative effort to build complete ontologies in the
biological domain [41]. GO terms include biological process
(BP), molecular function (MF), and cellular component
(CC). BP is referred to as a biological objective to which
the gene or gene product contributes. MF is defined as the
biochemical activity of a gene product. And CC is referred to
as the place in the cell where a gene product is active [42].
These terms are semantically and hierarchically organized
into a directed acyclic graph (DAG).

Semantic similarity is a function to measure closeness in
meaning between ontological terms [43]. The GO semantic
similarity score can be applied to quantify functional sim-
ilarity between proteins. We compute the GO term based
functional similarity 𝑠𝑖𝑚𝑔𝑜(P1, P2) between two proteins P1
and P2 by formula (7) [44, 45].

𝑠𝑖𝑚𝑔𝑜 (𝑃1, 𝑃2)
= ∑𝑚𝑖=1 𝑆𝑖𝑚 (𝑔𝑜1,𝑖, 𝑆𝑇2) + ∑𝑛𝑗=1 𝑆𝑖𝑚 (𝑔𝑜2,𝑗, 𝑆𝑇1)𝑚 + 𝑛

(7)

where ST1={𝑔𝑜1,1, 𝑔𝑜1,2, . . . , 𝑔𝑜1,𝑚} is a term set annotating
protein P1, ST2={𝑔𝑜2,1, 𝑔𝑜2,2, . . . , 𝑔𝑜2,𝑛} is a term set annotat-
ing protein P2, and Sim(𝑔𝑜1,𝑖, ST2) and Sim(𝑔𝑜2,𝑗, ST1) are
computed by formula (8).

𝑆𝑖𝑚 (𝑔𝑜, 𝑆𝑇) = 𝑘max
𝑗=1

𝑠𝑖𝑚 (𝑔𝑜, 𝑔𝑜𝑗) (8)

where go denotes a GO term, ST={𝑔𝑜1, 𝑔𝑜2, . . . , 𝑔𝑜𝑘} denotes
a set of kGO terms, and sim(go, 𝑔𝑜𝑗) is computed by formula
(9).

𝑠𝑖𝑚 (𝑔𝑜1, 𝑔𝑜2) = 𝑒−𝑐1𝑙 ⋅ 𝑒𝑐2ℎ − 𝑒−𝑐2ℎ𝑒𝑐2ℎ + 𝑒−𝑐2ℎ ⋅ 𝑒
𝑐3𝑑 − 𝑒−𝑐3𝑑𝑒𝑐3𝑑 + 𝑒−𝑐3𝑑 (9)

where go1 and go2 are two different GO terms, l denotes the
sum of the lengths of the shortest paths from mica to go1
and from mica to go2, h and d represent the depth and the
information content ofmica, respectively, and 𝑐1=0.2, 𝑐2=0.3,𝑐3=30, whilemica is referred to as the maximum informative
common ancestor of two terms go1 and go2 in a DAG [44].

Correspondingly, we use formulas (7)-(9) to calculate the
MF term based similarity 𝑠𝑖𝑚𝑚𝑓(P1, P2), the CC term based
similarity 𝑠𝑖𝑚𝑐𝑐(P1, P2), and the BP term based similarity𝑠𝑖𝑚𝑏𝑝(P1, P2) between proteins P1 and P2, respectively. The
values of 𝑠𝑖𝑚𝑚𝑓(P1,P2), 𝑠𝑖𝑚𝑐𝑐(P1,P2), and 𝑠𝑖𝑚𝑏𝑝(P1,P2) range
from 0.0 to 1.0. The larger these values are, the more similar
proteins P1 and P2 are. If 𝑠𝑖𝑚𝑚𝑓(P1, P2)≥𝜔, proteins P1 and
P2 are judged to be similar based on the MF term, where 𝜔 is
a given threshold. Similarly, if 𝑠𝑖𝑚𝑐𝑐(P1, P2)≥𝜎 and 𝑠𝑖𝑚𝑏𝑝(P1,
P2)≥𝜃, proteins P1 and P2 are judged to be similar based on
the CC term and the BP term, respectively, where 𝜎 and 𝜃 are
given thresholds.

2.4.4. Expanding Cluster Condition. It is well known that
members of a protein complex are similar to each other in
functionality. In order to use the seed expanding strategy to
mine a functional aggregation cluster from a PPI network,
we devise an expanding cluster condition to judge whether
a protein is functionally similar to a protein cluster (PC). Our
method uses the expanding cluster condition to iteratively
add the functionally similar proteins into the protein cluster
PC to generate candidate protein complexes with functional
homogeneity.

Given a protein cluster PC and a protein u, the CC
term based minimal similarity CC(PC,u), the MF term
based minimal similarity MF(PC,u), and the BP term based
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minimal similarity BP(PC,u) between PC and u are defined
by formulas (10), (11), and (12), respectively.

𝐶𝐶 (𝑃𝐶, 𝑢) = min {𝑠𝑖𝑚𝑐𝑐 (𝑢, V) | 𝑎𝑢,V ≥ 𝑟, V ∈ 𝑃𝐶} (10)

𝑀𝐹(𝑃𝐶, 𝑢) = min {𝑠𝑖𝑚𝑚𝑓 (𝑢, V) | 𝑎𝑢,V ≥ 𝑟, V ∈ 𝑃𝐶} (11)

𝐵𝑃 (𝑃𝐶, 𝑢) = min {𝑠𝑖𝑚𝑏𝑝 (𝑢, V) | 𝑎𝑢,V ≥ 𝑟, V ∈ 𝑃𝐶} (12)

where r is a given reliability threshold.
To judge whether CC(PC,u), MF(PC,u), and BP(PC,u)

exceed their specified thresholds 𝜎, 𝜔, and 𝜃, respectively, we
define three Boolean variables bcc, bmf, and bbp as follows:

𝑏𝑐𝑐 = {{{
𝑡𝑟𝑢𝑒, 𝑖𝑓𝐶𝐶 (𝑃𝐶, 𝑢) ≥ 𝜎
𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (13)

𝑏𝑚𝑓 = {{{
𝑡𝑟𝑢𝑒, 𝑖𝑓𝑀𝐹 (𝑃𝐶, 𝑢) ≥ 𝜔
𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (14)

𝑏𝑏𝑝 = {{{
𝑡𝑟𝑢𝑒, 𝑖𝑓 𝐵𝑃 (𝑃𝐶, 𝑢) ≥ 𝜃
𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (15)

If at least two out of three Boolean variables bcc, bmf,
and bbp are “true” at the same time, the value of EC(PC,u) in
formula (16) will become “true”. This means that the protein
u is similar with the protein cluster PC in at least two aspects.
Therefore, the protein u can be added into the protein cluster
PC. We define “EC(PC,u)=true” as the expanding cluster
condition.

𝐸𝐶 (𝑃𝐶, 𝑢) = (𝑏𝑐𝑐 ∧ 𝑏𝑚𝑓 ∨ 𝑏𝑐𝑐 ∧ 𝑏𝑏𝑝 ∨ 𝑏𝑚𝑓 ∧ 𝑏𝑏𝑝) (16)

2.4.5. Algorithm. The main idea of our algorithm is to
iteratively construct temporal interval PPI network (TI-PIN)
from time point t1 to time point t2, 𝑇𝐼-𝑃𝐼𝑁𝑡1,𝑡2 and identify
protein complexes from 𝑇𝐼-𝑃𝐼𝑁𝑡1,𝑡2 , 1 ≤ t1 ≤ t2 ≤ T. To
construct different temporal interval TI-PINs, our algorithm
dynamically constructs TI-PINs in a bottom-up approach as
shown in Figure 1. Firstly, the TI-PINs of temporal interval
length l=1 are constructed. Next, the TI-PINs of temporal
interval length l=2 are constructed, and so on. In Figure 1,
the direction of arrow indicates the order of constructing TI-
PINs. To identify a protein cluster, our algorithm initializes a
protein cluster by selecting a node not being amember of any
identified protein cluster, and successively checks the joint
colocalization condition, the joint coexpression condition,
and the expanding cluster condition to determine whether
to add the adjacent nodes into the protein cluster, and
terminates until no nodes around the protein cluster satisfy
all three above-mentioned conditions. By repeating the iden-
tifying process of a protein cluster, different protein clusters
(PCs) are identified one by one from the constructed TI-PINs.
We call our algorithm as ICJointLE-DPN (Identifying protein
complexes with the features of joint colocalization and joint
coexpression from Dynamic Protein Networks). Algorithm 1
describes ICJointLE-DPN in detail.

By converting temporal PPI networks TPNs into tempo-
ral interval PPI networks TI-PINs, the constructed TI-PINs
preserve only interactions lasting over the temporal interval.
Besides, the amount of the constructed TI-PINs is more than
that of TPNs. So, our constructed TI-PINs can offer more
opportunities to accurately identify more protein complexes.

Now we analyze the time complexity of ICJointLE-
DPN. Consider Algorithm 1, ICJointLE-DPN dynamically
constructs TI-PINs. For T time points, ICJointLE-DPN can
construct T∙(T+1)/2 TI-PINs. For each constructed TI-PIN,
there are at most N protein nodes, where N is the total
number of protein nodes in the constructed TI-PIN. For
each protein node not being a member of any identified
protein cluster, ICJointLE-DPN selects this protein node as
an initial protein cluster and expands the protein cluster by
checking N-1 other protein nodes. The time complexity of
identifying protein complexes from each constructed TI-PIN
isO(N∙(N-1)), namely,O(N2).Therefore, the time complexity
of ICJointLE-DPN is O(N2∙T∙(T+1)/2)=O((N∙T)2).

In the following section, we evaluate our constructed
TI-PINs and other dynamic PPI networks and compare
our proposed identification method with other competing
methods.

3. Experiments and Results

In this section, we first introduce the testing data sets
and the benchmark data. Subsequently, we describe metrics
evaluating the quality of identified protein complexes. Finally,
we present the experimental results and comparative analysis.

3.1. Experimental Dataset. To construct temporal interval
PPI networks (TI-PINs), we selected three yeast PPI data
sets. The first one, downloaded from the STRING database
V10 version [36], consists of 6418 proteins and 939998
interactions with reliability score. The second one contain-
ing 5811 proteins and 256516 interactions was downloaded
from the BioGrid database 3.4.128 version [46]. The last
one, containing 5022 proteins and 22381 interactions, was
downloaded from the DIP database with the release date
2015/07/01[47]. According to formula (1), we used reliability
scores annotating interactions in STRING to score the inter-
actions shared in STRING and BioGrid/DIP.

Furthermore, we selected two yeast gene expression data
sets to conduct the comparative experiment. One data set,
GSE3431 [48], is extracted from the file GDS2267 full.soft
which was acquired with access number GDS2267 on
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser. GSE3431 is
an expression profile of yeast by Affymetrix Yeast Genome
S98 Array over three successive metabolic cycles. GSE3431
contains 36 raw gene expression data gathered at 25-minute
interval. Let T1, T2,..., and T36 denote the 36 successive time
points, thuswe can calculate the average value ave 𝑔𝑒𝑖 of three
raw gene expression data at three time points 𝑇𝑖, 𝑇𝑖+12, and𝑇𝑖+24 for each gene in GSE3431. The average value ave 𝑔𝑒𝑖
is used to represent the i-th gene expression value, i=1, 2,...,
12. We used the 12 gene expression values for each gene to
analyze joint coexpression condition and construct TI-PINs
for GSE3431. Another data set GSE4987 [49] is composed

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser
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Input: Reliability-scored PPI data set 𝐺𝑊 = (𝑉, 𝐸, 𝑤),𝑁 × 𝑇 gene expression matrix 𝐺𝐸𝑁×𝑇.
Output: Candidate Protein Complex set CPCs.
Begin
1. 𝐶𝑃𝐶𝑠 ← Φ;
2. for 𝑙 = 1 to 𝑇 do
3. for t2=T to l step -1 do
4. t1 = t2 -l+1;
5. construct 𝑇𝐼-𝑃𝐼𝑁𝑡1 ,𝑡2 ;
6. agglomerate the jointly co-localized, jointly co-expressed, functionally similar

proteins to identify all protein clusters PCs one by one from the constructed 𝑇𝐼-𝑃𝐼𝑁𝑡1 ,𝑡2 ;
7. 𝐶𝑃𝐶s ← 𝐶𝑃𝐶s ∪ 𝑃𝐶𝑠;
8. end for
9. end for
10. Remove the protein complexes of size 1 in CPCs;
11. Post-process CPCs to ensure that no duplicate protein complexes appear in the CPCs.
End.

Algorithm 1: ICJointLE-DPN.

of gene expression data of wild type W303a cells, which
are sampled at 5-minute interval over two hours per cell
cycle across two cell cycles. GSE4987 contains 50 raw gene
expression data across two cell cycles, where there are 25 raw
gene expression data per cell cycle. Similarly, we calculated 25
gene expression values for each gene in GSE4987, and used
the 25 gene expression values for each gene to analyze joint
coexpression condition and construct TI-PINs for GSE4987.

In addition, we used the yeast-related protein localization
data [37], downloaded fromhttp://yeastgfp.yeastgenome.org,
to analyze joint colocalization condition.The GO term anno-
tations of the yeast-related proteins were downloaded from
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3431.
We used the GO term annotations to calculate the GO term
based functional similarity between proteins. The known
complexes set CYC2008 containing 408 manually curated
heterometric protein complexes was downloaded from
http://wodaklab.org/cyc2008/ [50].

3.2. Evaluation Metrics. Comparing identified complexes
with known ones is a commonly used evaluation. There are
several statistical matching-based metrics, which evaluate
the quality of identified complexes and the performance
of identification methods. The biological relevance-based
metrics, which are independent of the known complexes,
are used to evaluate the biological significance of identified
complexes.

3.2.1. �e Statistical Matching-Based Metrics. If an identified
complex and a known complex overlap each other, there
exist common proteins between them.The overlapping score
between an identified complex ic and a known complex kc,
OS(ic, kc), is calculated as follows [4]:

𝑂𝑆 (𝑖𝑐, 𝑘𝑐) = 𝑉𝑖𝑐 ∩ 𝑉𝑘𝑐2𝑉𝑖𝑐 × 𝑉𝑘𝑐 (17)

where 𝑉𝑖𝑐 and 𝑉𝑘𝑐 are the protein set of ic and the protein set
of kc respectively. IfOS(ic, kc)≥𝜆, ic is matched with kc, where

the threshold 𝜆 is usually set to 0.2 [4, 11]. Particularly, OS(ic,
kc)=1 indicates that ic is completely matched with kc.

Let IC be the set of complexes identified by computational
method and KC be the set of the known complexes. Then
let Mic represent the number of identified complexes which
matches at least one known complex in KC, andMkc denote
the number of known complexes which matches at least one
identified complex in IC.Mic andMkc are defined as follows
[4]:

𝑀𝑖𝑐 = |{𝑖𝑐 | 𝑖𝑐 ∈ 𝐼𝐶, ∃𝑘𝑐 ∈ 𝐾𝐶, 𝑂𝑆 (𝑖𝑐, 𝑘𝑐) ≥ 𝜆}| (18)

𝑀𝑘𝑐 = |{𝑘𝑐 | 𝑘𝑐 ∈ 𝐾𝐶, ∃𝑖𝑐 ∈ 𝐼𝐶, 𝑂𝑆 (𝑖𝑐, 𝑘𝑐) ≥ 𝜆}| (19)

We evaluate the quality of identified complexes by preci-
sion (prec), recall(rec), and f-measure (fm) [51].

𝑝𝑟𝑒𝑐 = 𝑀𝑖𝑐|𝐼𝐶| (20)

𝑟𝑒𝑐 = 𝑀𝑘𝑐|𝐾𝐶| (21)

𝑓𝑚 = 2 × 𝑝𝑟𝑒𝑐 × 𝑟𝑒𝑐𝑝𝑟𝑒𝑐 + 𝑟𝑒𝑐 (22)

Frac is defined as the fraction of matched complexes,
whichmeasures the percentage of known complexesmatched
with identified complexes [5]. In fact, Frac is equivalent to rec.

The maximum matching ratio (MMR) [5] is based on
a maximal one-to-one mapping between identified complex
and known complex, and it measures accuracy that the
identified complexes can represent the known complexes.
MMR is calculated as follows [5]:

𝑀𝑀𝑅 = ∑𝑛𝑖=1max {𝑂𝑆 (𝑘𝑐𝑖, 𝑖𝑐𝑗) | 𝑗 = 1, . . . , 𝑚}𝑛 (23)

where 𝑘𝑐𝑖 is the i-th known complex, i=1,...,n, and n= |𝐾𝐶|,
and 𝑖𝑐𝑗 is the j-th identified complex, j=1,...,m andm= |𝐼𝐶|.

http://yeastgfp.yeastgenome.org
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3431
http://wodaklab.org/cyc2008/
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Let 𝑛𝑖 be the number of proteins in the i-th known
complex and 𝑡𝑖𝑗 be the number of common proteins between
the i-th known complex and the j-th identified complex,
i=1,. . .,n, and j=1,. . .,m. Sensitivity (Sn), positive predictive
value (PPV), and geometric mean (Acc) of Sn and PPV [51]
are used to assess the accuracy of identification methods. Sn,
PPV, and Acc are computed by formulas (24)-(26).

𝑆𝑛 = ∑𝑛𝑖=1max {𝑡𝑖𝑗 | 𝑗 = 1, 2, . . . , 𝑚}∑𝑛𝑖=1 𝑛𝑖 (24)

𝑃𝑃𝑉 = ∑𝑚𝑗=1max {𝑡𝑖𝑗 | 𝑖 = 1, 2, . . . , 𝑛}∑𝑛𝑖=1∑𝑚𝑗=1 𝑡𝑖𝑗 (25)

𝐴𝑐𝑐 = √𝑆𝑛 × 𝑃𝑃𝑉 (26)

As a result, the performance of identification method
is evaluated by the comprehensive score FAM, which is
calculated by formula (27) [5].

𝐹𝐴𝑀 = 𝐹𝑟𝑎𝑐 + 𝐴𝑐𝑐 +𝑀𝑀𝑅 (27)

Obviously, FAM is a metric measuring statistical match
and is mainly used to statistically evaluate the identification
accuracy.

Let #PM be the number of identified complexes that
match with known complexes exactly. In fact, #PM is a
metric for evaluating the degree of exact match between the
identified complexes and known complexes.

In the following, we will illustrate how to use both
#PM and FAM to comprehensively compare the quality of
two sets of identified complexes via analyzing the relative
performance of these two sets of identified complexes.

For two sets of identified complexes with metrics #PM
and FAM, S1 with #PM1 and FAM1 and S2 with #PM2 and
FAM2, let G1,2 denote the geometric mean of the relative
performances of S1 and S2, and G1,2 is calculated as follows:

𝐺1,2 = √ #𝑃𝑀1
#𝑃𝑀2 ×

𝐹𝐴𝑀1𝐹𝐴𝑀2 = √
#𝑃𝑀1 × 𝐹𝐴𝑀1
#𝑃𝑀2 × 𝐹𝐴𝑀2 (28)

If G1,2 > 1, then the quality of S1 will be superior to that
of S2 in terms of the product of #PM and FAM; otherwise,
the quality of S2 will be superior to that of S1 in terms of
the product of #PM and FAM. Hence, whether the quality
of a set of identified complexes is superior to that of another
set of identified complexes can be judged in terms of the
product of #PM and FAM. In essence, we treat the product
of #PM and FAM as a comprehensive score of exact match
and statistical match. So, in our experiments, we chose the
product of #PM and FAM, #PM×FAM, as themajormetric to
comprehensively evaluate the quality of identified complexes.

3.2.2. �e Biological Relevance-Based Metrics. We noticed
that the known complexes are generally incomplete [52]. Even
though an identified complex does notmatchwith any known
complex, it may be an uncharacterized but valid complex
[5]. A protein complex tends to be responsible for a specific

biological process or molecular function [53]. Hence, it is
necessary for evaluating biological relevance to analyze the
over-expression of an identified protein complex.

The GO term based over-expression analysis for biolog-
ical process and molecular function can be used to reveal
functional homogeneity of proteins in a complex to some
extent [5]. For a PPI network containing N proteins, we
use K to denote the total number of the term X-annotated
proteins in the PPI network. For a given complex containing𝑛𝑠 proteins, the p-value of this complex is defined as the
probability that the number of termX-annotated proteins in a
protein set of size 𝑛𝑠 is not less than 𝑘𝑠, where 𝑘𝑠 is the number
of the term X-annotated proteins in this complex [54].The p-
value is computed as follows [54]:

𝑝-V𝑎𝑙𝑢𝑒 = 1 − 𝑘𝑠−1∑
𝑖=0

(𝑁−𝐾𝑛𝑠−𝑖 ) ( 𝐾𝑖 )(𝑁𝑛𝑠 ) = 𝑛𝑠∑
𝑖=𝑘𝑠

(𝑁−𝐾𝑛𝑠−𝑖 ) ( 𝐾𝑖 )(𝑁𝑛𝑠 ) (29)

We used the open source software GO::TermFinder [55]
to calculate the p-value of an identified complex.

If p-value<𝜓, we call that the term X-annotated proteins
enrich the complex at 𝜓-level [54], where 𝜓 is a given
threshold. If the term X-annotated proteins enrich a complex
at the level of 𝜓=0.01 [54], this complex will has significantly
biological function and be called significant complex [5].The
over-expression score of a set of identified protein complexes
is defined as the ratio of the number of significant protein
complexes to the total number of protein complexes in the set.
We can evaluate the biological relevance of a set of identified
protein complexes by calculating its over-expression score.

3.3. Experimental Results. Firstly, we evaluated the effect
of active threshold 𝜑 on the quality of protein complexes
identified from temporal PPI networks (TPNs). Secondly,
we assessed the protein complexes identified from temporal
interval PPI networks (TI-PINs). Finally, we compared our
method ICJointLE-DPN with Zhang’s method [33], DPC-
NADPIN [34], TS-OCD [31], and DCA [35].

3.3.1.�e Effect of Active�reshold. Here we first constructed
different temporal PPI networks (TPNs) by combining three
yeast PPI data sets (STRING, BioGrid, and DIP) with two
yeast gene expression data sets (GSE3431 and GSE4987). And
then we evaluated the quality of the complexes identified
from these different TPNs. Figure 2 shows the variation
curves of value #PM×FAM of complexes identified from
different constructed TPNs with the changing 𝜑.

FromFigure 2(a) we can see that for GSE3431, the value of
#PM×FAM of the complexes identified from the constructed
TPNs is the largest when 𝜑=0.01 for DIP and 𝜑=0.1 for
STRING and BioGrid respectively. At the meantime, from
Figure 2(b), we can also see that for GSE4987, the value of
#PM×FAM is the largest when 𝜑=0.05 for DIP, and the value
of #PM×FAM is the largest when 𝜑=0.2 for STRING and
BioGrid. Hence, in the following experiments, these values of𝜑, shown in Table 2, are used to construct different TPNs for
different combination of yeast expression data sets and yeast
PPI data sets.
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Table 2: Setting values of 𝜑 for different combination of yeast gene expression data sets and yeast PPI data sets.

Yeast expression data sets Yeast PPI data sets 𝜑
GSE3431

STRING 0.1
BioGrid 0.1
DIP 0.01

GSE4987
STRING 0.2
BioGrid 0.2
DIP 0.05
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Figure 2: Plot of value of #PM×FAM of complexes identified from the constructed TPNs by integrating gene expression data into yeast PPI
data with respect to value of 𝜑.(a) Plot of value of #PM×FAM of complexes identified from the constructed TPNs by integrating GSE3431
into STRING, BioGrid, and DIP, respectively, with respect to value of 𝜑. (b) Plot of value of #PM×FAM of complexes identified from the
constructed TPNs by integrating GSE4987 into STRING, BioGrid, and DIP, respectively, with respect to value of 𝜑.

3.3.2. Setting of Parameters for ICJointLE-DPN. In our exper-
iments, we empirically adjusted the value of parameters 𝜎,𝜔, and 𝜃 to enable ICJointLE-DPN to perform well. We
adjusted the value of parameters 𝜎,𝜔, and 𝜃 from 0.1 to 0.9 by
increment 0.1 through several experiments respectively, and
set these parameters to the appropriate values.

Table 3 shows the values of four parameters for algorithm
ICJointLE-DPN with different combination of yeast gene
expression data sets and yeast PPI data sets.

3.3.3. Evaluating Identified Complexes. To evaluate the qual-
ity of complexes identified by our method ICJointLE-DPN,
we first constructed TPNs and TI-PINs. And then we exe-
cuted algorithm ICJointLE-DPN to identify complexes from
SPIN, TPNs, and TI-PINs respectively. Finally, we compared
the quality of the complexes identified from SPIN, TPNs, and
TI-PINs respectively in terms of value of #PM×FAM, which
is shown in Table 4.

As seen in Table 4, we can find that for the same yeast
PPI data set, the values of #PM×FAM resulting from both
TPNs and TI-PINs are apparently larger than that resulting
from SPIN.This indicates that identifying protein complexes
from dynamic PPI networks can improve the quality of
identified complexes. From Table 4, we can also see that

the value of #PM×FAM resulting from TI-PINs is larger
than that from TPNs. It means that identifying protein
complexes from TI-PINs can further enhance the quality of
identified complexes. As mentioned in the section “temporal
interval PPI networks”, the use of TI-PINs constructed by
several successive TPNs can provide more opportunities to
accurately identify more protein complexes.

To further illustrate the effect of our constructed TI-PINs,
we ran our algorithm ICJointLE-DPN to identify complexes
from TI-PINs and other existing dynamic PPI networks
respectively. The experimental results are shown in Figure 3.

We can see from Figure 3 that no matter which yeast PPI
data set is integrated with either GSE3431 or GSE4987 to con-
struct TI-PINs, the value of #PM×FAM of complexes iden-
tified by ICJointLE-DPN from the constructed TI-PINs is
apparently larger than that fromother dynamic PPI networks.
Such results may partly be attribute to using the relatively
low active threshold 𝜑. In addition, by preserving continuous
interactions, our constructed TI-PINs can indeed offer more
opportunities to identify more protein complexes accurately.

As a result, our constructed TI-PINs have more con-
tributions to identification of protein complexes than other
dynamic PPI networks such as TEPIN, DPIN, NF-APIN,
DPPN, and TC-PINs.
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Table 3: Value of parameters r, 𝜎, 𝜔, and 𝜃 for ICJointLE-DPN.
Yeast expression data sets Yeast PPI data sets r 𝜎 𝜔 𝜃
GSE3431

STRING 999 0.7 0.6 0.1
BioGrid 999 0.7 0.6 0.1
DIP 990 0.7 0.1 0.3

GSE4987
STRING 999 0.7 0.6 0.1
BioGrid 999 0.7 0.6 0.1
DIP 990 0.7 0.1 0.3

Table 4: Values of #PM×FAM of complexes identified from SPIN, TPNs, and TI-PINs.

Yeast expression data sets Yeast PPI networks #PM×FAM
STRING BioGrid DIP

GSE3431
SPIN 356.54 337.93 282.01
TPNs 433.68 415.28 347.72

TI-PINs 441.38 423.30 356.69

GSE4987
SPIN 338.49 334.74 277.48
TPNs 424.25 416.00 343.00

TI-PINs 426.60 420.18 345.02

Table 5: Setting parameters for TS-OCD method.

Parameters Repeat times tau delta T K lambda beta iter rho
value 1 0.3 0.3 12 1000 0.0625 16 20 0.000001

3.3.4. Comparing IdentificationMethods. In order to evaluate
the performance of the identification methods, we com-
pared our method ICJointLE-DPN to three other competing
methods Zhang’smethod [33], DPC-NADPIN [34], TS-OCD
[31], and DCA[35]. As described in the section “Expanding
cluster condition”, in our method, only those PPIs with
reliability score not lower than reliability threshold r are
used to identify protein complexes. For fair comparison,
we removed those PPIs with reliability score lower than
reliability threshold r in three yeast PPI data sets before
executing four other competingmethods. ForDPC-NADPIN
method, no parameters need to be set. Zhang’s method uses
two parameters Pre thresh andComplex threshwhose default
values are 0.5 and 0.1. For DCA, we set parameters to the
recommended values 𝛼=0.6, 𝛽=0.55, and 𝛾=1.4.The setting of
nine parameters used inTS-OCDmethod is shown inTable 5.

By analyzing known complexes in CYC2008, we found
that the number of the complexes of size two to six exceeds
84% of the total number of known complexes. To evaluate
the ability of identifying complexes of size two to six, Table 6
shows the distribution of the size of the complexes identified
exactly by five methods.

From Table 6, we can see that our method ICJointLE-
DPN has stronger ability of exactly identifying the complexes
of size two to six than other four competing methods.
Especially,DPC-NADPIN,TS-OCD, andDCA fail to identify
any complexes of size two.

To evaluate the overall performance of five competing
methods, we reported the statistical matching-based metrics
of the identified complexes in Table 7.

FromTable 7,we can see that ourmethod ICJointLE-DPN
outperforms the other four competing methods in terms
of #PM, Frac, MMR, FAM, and #PM×FAM. We also see
that, concerning fm, ICJointLE-DPN obtains almost all the
largest values except for one among five competing methods,
and with regard to Acc, ICJointLE-DPN is ranked top two.
Overall, our method ICJointLE-DPN can not only iden-
tify complexes accurately but also identify more complexes
exactly matched with known complexes from TI-PINs.

Nowwe give two examples related to the complexes iden-
tified from dynamical PPI networks which are constructed
via incorporating GSE3431 into DIP. Figure 4 illustrates the
matching example betweennuclear exosome complex and the
complexes identified by five competing methods.

As can be seen from Figure 4(a), TSOCD and ICJointLE-
DPN can identify nuclear exosome complex exactly. Zhang’s
method misses four proteins outside the ellipse in Fig-
ure 4(b). DPC-NADPIN wrongly identifies the yellow-
colored YNL189W and misses YHR081W outside the ellipse
in Figure 4(c). DCA wrongly identifies three yellow-colored
proteins in Figure 4(d).

Similarly, Figure 5 shows the matching example between
COMA complex and the complexes identified by five com-
peting methods.

From Figure 5, we can see that our method ICJointLE-
DPN fails to identify COMA complex exactly due to miss-
ing YBR211C outside the ellipse in Figure 5(a). TSOCD
and Zhang’s method wrongly identify the yellow-colored
YBR107C andmissYBR211Coutside the ellipse in Figure 5(b),
these two methods are unable to detect COMA complex
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Table 6: Distribution of the size of the exactly identified complexes.

Yeast expression data sets Yeast PPI Data sets Methods The number of the exactly identified complexes Total
Size 2 3 4 5 6 7 8 9 10 12 14 15

GSE3431

STRING

ICJointLE-DPN 112 44 17 7 4 1 3 1 0 1 0 0 190
Zhang’s method 53 19 9 5 2 1 2 0 0 1 0 0 92
DPC-NADPIN 0 18 10 4 0 1 0 0 0 1 0 0 34

TS-OCD 0 5 7 3 1 1 1 0 0 1 1 0 20
DCA 0 4 3 0 0 0 0 0 0 0 0 0 7

BioGrid

ICJointLE-DPN 113 42 15 6 4 0 1 2 1 1 0 0 185
Zhang’s method 56 20 10 5 3 1 2 0 0 1 0 0 98
DPC-NADPIN 0 20 11 4 1 1 1 0 0 1 0 0 39

TS-OCD 0 19 7 4 4 2 3 0 0 1 0 1 41
DCA 0 4 3 1 0 0 0 0 0 0 0 0 8

DIP

ICJointLE-DPN 111 41 11 4 2 1 1 2 0 1 0 0 174
Zhang’s method 65 17 7 2 1 1 1 0 0 0 0 0 94
DPC-NADPIN 0 11 6 2 1 1 1 1 0 0 0 0 23

TS-OCD 0 4 5 0 1 1 0 0 0 1 0 0 12
DCA 0 3 5 1 0 0 0 0 0 0 0 0 9

GSE4987

STRING

ICJointLE-DPN 107 45 17 6 5 0 2 1 1 0 1 0 185
Zhang’s method 52 21 12 4 3 2 2 0 0 0 0 1 97
DPC-NADPIN 0 3 1 2 0 0 0 0 0 0 0 0 6

TS-OCD 0 2 2 4 3 1 2 0 1 0 0 0 15
DCA 0 2 2 1 1 0 0 0 0 0 0 0 6

BioGrid

ICJointLE-DPN 111 46 16 4 4 0 1 3 2 0 0 0 187
Zhang’s method 59 22 13 4 3 2 1 0 0 0 0 0 104
DPC-NADPIN 0 4 2 2 0 0 0 0 0 0 0 0 8

TS-OCD 0 16 7 5 5 2 2 0 1 0 1 0 39
DCA 0 2 3 2 1 0 1 0 0 0 0 0 9

DIP

ICJointLE-DPN 110 40 13 4 2 1 1 2 1 0 0 0 174
Zhang’s method 69 20 8 3 3 2 1 0 0 0 0 0 106
DPC-NADPIN 0 4 2 0 0 0 0 0 0 0 0 0 6

TS-OCD 0 8 3 2 2 1 0 0 0 0 0 0 16
DCA 0 5 3 2 1 0 0 0 0 0 0 0 11
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Figure 3: Comparison of values of #PM×FAM of complexes identified by ICJointLE-DPN from different dynamic PPI networks. (a) GSE3431
and (b) GSE4987 are integrated into STRING, BioGrid, and DIP, respectively, to construct six types of dynamic protein interaction networks.
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Table 7: Statistical matching-based metrics of the complexes identified by five competing methods.

Yeast expression data sets Yeast PPI data sets Methods #PM fm Frac Acc MMR FAM #PM×FAM

GSE3431

STRING

ICJointLE-DPN 190 0.71 0.95 0.75 0.75 2.45 465.50
Zhang’s method 92 0.63 0.86 0.80 0.59 2.25 207.00
DPC-NADPIN 34 0.71 0.77 0.71 0.48 1.96 66.64

TS-OCD 20 0.55 0.46 0.68 0.30 1.45 29.00
DCA 7 0.55 0.51 0.57 0.27 1.35 9.45

BioGrid

ICJointLE-DPN 185 0.72 0.93 0.80 0.73 2.46 455.10
Zhang’s method 98 0.63 0.85 0.78 0.58 2.21 216.58
DPC-NADPIN 39 0.71 0.75 0.72 0.48 1.94 75.66

TS-OCD 41 0.66 0.65 0.73 0.43 1.81 74.21
DCA 8 0.55 0.51 0.56 0.27 1.34 10.72

DIP

ICJointLE-DPN 174 0.69 0.85 0.70 0.68 2.23 388.02
Zhang’s method 94 0.67 0.76 0.71 0.52 1.99 187.06
DPC-NADPIN 23 0.63 0.55 0.67 0.35 1.57 36.11

TS-OCD 12 0.39 0.27 0.54 0.18 1.00 12.00
DCA 9 0.48 0.36 0.55 0.21 1.12 10.08

GSE4987

STRING

ICJointLE-DPN 185 0.60 0.95 0.72 0.75 2.42 447.70
Zhang’s method 97 0.64 0.91 0.79 0.62 2.32 225.04
DPC-NADPIN 6 0.52 0.56 0.59 0.30 1.46 8.76

TS-OCD 15 0.55 0.53 0.68 0.34 1.56 23.4
DCA 6 0.61 0.70 0.64 0.37 1.71 10.26

BioGrid

ICJointLE-DPN 187 0.67 0.93 0.76 0.74 2.43 454.41
Zhang’s method 104 0.63 0.90 0.78 0.63 2.31 240.24
DPC-NADPIN 8 0.54 0.55 0.60 0.13 1.45 11.6

TS-OCD 39 0.66 0.68 0.74 0.46 1.88 73.32
DCA 9 0.62 0.68 0.65 0.36 1.69 15.17

DIP

ICJointLE-DPN 174 0.67 0.86 0.68 0.68 2.22 386.28
Zhang’s method 106 0.67 0.83 0.74 0.58 2.15 227.9
DPC-NADPIN 6 0.44 0.36 0.53 0.21 1.10 6.60

TS-OCD 16 0.41 0.29 0.54 0.20 1.04 16.64
DCA 11 0.58 0.50 0.63 0.29 1.42 15.62

exactly. Likewise, owing to wrongly identifying the yellow-
colored YKL049C and missing YBR211C outside the ellipse
in Figure 5(c), DPC-NADPIN fails to find COMA complex
exactly. We can also see from Figure 5(d) that DCA is
unsuccessful in detecting the COMAcomplex due towrongly
identifying the yellow-colored YGR140W.

To evaluate the functional enrichment of identified
complexes, we compared our method ICJointLE-DPN to
other four competing methods with respect to biological
process (BP) enrichment analysis. For complexes identified
by ICJointLE-DPN from different TI-PINs, their raw data
of BP enrichment analyses and their results of significant
statistics are presented in SupplementaryMaterials (Available
here). Table 8 shows the proportion of the complexes that
are significantly enriched by BP term-annotated proteins,
where #IC is the total number of identified complexes, #SC
denotes the number of identified complexes with significant
enrichment.

As seen from Table 8, for five competing methods,
their identified complexes of size larger than 6 are almost
biologically significant except for the four italic cases. From

Table 8, we can also see that for the significant enrichment
of identified complexes of size not larger than 6, our method
performs slightly weaker than DPC-NADPIN, TS-OCD, and
DCA but stronger than Zhang’s method.

In summary, our proposed identification method overall
outperforms other four competing methods in terms of the
number of identified complexes exactly matched with known
complexes #PM, the fraction of known complexes matched
with identified complexes FRAC, maximum matching ratio
MMR, comprehensive score FAM, and the product of #PM
and FAM. Concerning the significant enrichment, five com-
peting methods overall perform well when they identify
complexes of size larger than 6; when identifying complexes
of size not larger than 6, our proposed method performs
slightly weaker than DPC-NADPIN, TS-OCD, and DCA but
stronger than Zhang’s method.

4. Conclusions

Gene expression data contains temporal information of
protein activity. By integrating gene expression data into PPI



BioMed Research International 13

YGR095C YOL142W

YHR801W YDR280W

YCR035C YDL111C

YHR069C YGR195W

YNL232W YGR158C

YOR001W YOL021C

(a) TSOCD, ICJointLE-DPN

YGR095C

YOL142W

YHR801W

YDR280W

YCR035C

YDL111C

YHR069C

YNL232W

YGR158C

YOR001W

YOL021C

YGR195W

(b) Zhang’s method

YGR095C

YHR801W

YDR280W

YDL111C

YHR069C

YNL232W

YGR158C

YOL021C

YGR195WYNL189W

YOL142W

YOR001W

YCR035C

(c) DPC-NADPIN

YGR095C

YHR801W

YDR280W

YDL111C

YNL232W

YGR158C

YOL021C

YGR195WYNL189W

YOL142W

YOR001W

YCR035C

YHR069C

YLR398C

YPR189W

(d) DCA

Figure 4: The complexes identified by five competing methods. (a) The No. 396 complex identified by TSOCD and the No. 901 complex
identified by ICJointLE-DPN bothmatch with nuclear exosome complex exactly. (b)TheNo. 829 complex is incorrectly identified by Zhang's
method by not including the four proteins outside the ellipse. (c) The No. 1929 complex identified by DPC-NADPIN by wrongly including
the yellow-colored YNL189W and excluding YHR081W. (d) DCA identified the No. 55 complex wrongly with the inclusion of three yellow-
colored proteins.

data to determine active time point of interacting proteins,
we exploited temporal dynamics of proteins to construct
temporal PPI networks TPNs. In order to accurately identify
more protein complexes, we further converted TPNs into
temporal interval PPI networks TI-PINs. The experimen-
tal results confirmed that our constructed TI-PINs have
more contributions to identification of protein complex than
TEPIN (Time-Evolving PIN), DPIN (dynamic protein inter-
action networks), NF-APIN (noise-filtered active protein
interaction networks), DPPN (dynamic probabilistic protein
interaction networks), and TC-PIN (time-course protein
interaction networks).

Based on our constructed TI-PINs, we devised a novel
method ICJointLE-DPN which uses multisource biological
data to identify protein complexes. First, our proposed
method employs protein localization data to analyze the joint
colocalization condition to judge whether a group of proteins
is of joint colocalization. Secondly, our proposed method
uses gene expression data to analyze the joint coexpression
condition to judge whether a group of proteins is of joint
coexpression. Thirdly, our method exploits three types of
similarity to analyze the expanding cluster condition to judge
whether a group of proteins is of functional homogeneity. As
a result, by combining these three conditions, our proposed

method can accurately identify more protein complexes
from TI-PINs than other four competing methods Zhang’s
method, DPC-NADPIN, TS-OCD, and DCA.

Identifying protein complexes from dynamic PPI net-
works remains to be a challenging work in postgenomic era.
In cell system, protein activity and protein-protein interac-
tion have dynamical characteristics. Hence, it is important
for identifying protein complexes to construct dynamic PPI
networks close to reality. Due to the limited gene expression
samples and failure to capture some transient interactions,
it is difficult to construct dynamic PPI networks completely
expressing protein interactions in cell system. Although
many works have made to construct effective dynamic PPI
networks to identify protein complexes, the efforts on con-
structing nearly real PPI networks will still be encouraged. In
addition, it is also important to design an effective method to
identify protein complexes from dynamic PPI networks. To
find protein complexes with biological relevance by compu-
tational approach, multisource biological data should be used
to identify protein complexes fromdynamic PPI networks. As
seen from Table 8, some protein complexes of size not larger
than 6 identified by our method are not significant enough in
biological meaning. This suggests that more other biological
data should be integrated into protein complex identification.
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Table 8: Proportion of the complexes enriched significantly by BP term-annotated proteins.

Yeast
expression
data sets

Yeast PPI
data sets Methods #IC #SC

% of
significant
(size≤6)

% of
significant
(6<size<20)

% of
significant
(size≥20)

GSE3431

STRING

ICJointLE-
DPN 5137 4873 93.33% 100.00% 100.00%

Zhang’s
method 1117 1013 88.56% 100.00% 100.00%

DPC-
NADPIN 6464 6439 98.88% 99.94% 100.00%

TS-OCD 1175 1157 97.26% 100.00% 100.00%
DCA 1261 1261 100.00% 100.00% 100.00%

BioGrid

ICJointLE-
DPN 4896 4559 90.69% 100.00% 100.00%

Zhang’s
method 1074 974 88.73% 100.00% 100.00%

DPC-
NADPIN 5437 5420 99.16% 100.00% 100.00%

TS-OCD 1784 1749 96.56% 100.00% 100.00%
DCA 1201 1199 98.45% 100.00% 100.00%

DIP

ICJointLE-
DPN 4398 4118 91.42% 100.00% 100.00%

Zhang’s
method 836 725 85.18% 100.00% 100.00%

DPC-
NADPIN 3019 3007 99.24% 100.00% 100.00%

TS-OCD 439 434 98.50% 100.00% 100.00%
DCA 595 595 100.00% 100.00% 100.00%

GSE4987

STRING

ICJointLE-
DPN 12283 11913 95.34% 99.97% 100.00%

Zhang’s
method 1863 1712 89.36% 100.00% 100.00%

DPC-
NADPIN 4509 4498 99.45% 100.00% 100.00%

TS-OCD 2302 2266 97.26% 100.00% 100.00%
DCA 3212 3204 98.84% 99.94% 100.00%

BioGrid

ICJointLE-
DPN 10558 10100 93.25% 100.00% 100.00%

Zhang’s
method 1821 1660 88.75% 100.00% 100.00%

DPC-
NADPIN 3657 3641 99.15% 100.00% 100.00%

TS-OCD 3354 3295 97.12% 100.00% 100.00%
DCA 2686 2678 98.46% 99.60% 100.00%

DIP

ICJointLE-
DPN 8745 8359 92.86% 100.00% 100.00%

Zhang’s
method 1343 1177 85.76% 100.00% 100.00%

DPC-
NADPIN 6464 1668 99.66% 100.00% 100.00%

TS-OCD 734 721 97.68% 100.00% 100.00%
DCA 1269 1266 99.27% 100.00% 100.00%
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Figure 5: The complexes identified by five competing methods. (a) The No. 1935 complex identified by ICJointLE-DPN misses YBR211C
outside the ellipse. (b) The No. 123 complex identified by TSOCD and the No. 137 complex identified by Zhang's method incorrectly contain
the yellow-colored YBR107C and omit YBR211C outside the ellipse. (c) The No. 159 complex identified by DPC-NADPIN wrongly includes
the yellow-colored YKL049C and omits YBR211C outside the ellipse. (d)TheNo. 433 complex identified byDCAwrongly includes the yellow-
colored YGR140W.

In future work, we will further investigate the integration of
more biological data into our method in order to not only
identify protein complexes more accurately but also improve
the significant enrichment of the identified protein complexes
of size not larger than 6.

Data Availability

Algorithm ICJointLE-DPN is implemented in C++. The
software suite of our method and the results produced by
ICJointLE-DPN from three yeast PPI data sets STRING,
BioGrid, andDIP are available at https://dx.doi.org/10.6084/m9
.figshare.7824233. Or please contact to zhangjx@gxu.edu.cn.
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Supplementary Materials

For complexes identified by ICJointLE-DPN from differ-
ent TI-PINs, their raw data of BP enrichment analyses

and their results of significant statistics are, respectively,
compressed in the following three packages. They are also
available at https://dx.doi.org/10.6084/m9.figshare.7824233.
Additional File 1: BioGrid BP.rar for the protein complexes
identified from TI-PINs constructed by integrating GSE3431
and GSE4987 into BioGrid respectively. Additional File 2:
DIP BP.rar for the protein complexes identified from TI-
PINs constructed by integrating GSE3431 and GSE4987 into
DIP, respectively. Additional File 3: STRING BP.rar for the
protein complexes identified from TI-PINs constructed by
integratingGSE3431 andGSE4987 into STRING, respectively.
(Supplementary Materials)
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