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Sudden Transition between 
Classical to Quantum Decoherence 
in bipartite correlated Qutrit 
Systems
F. A. Cárdenas-López, S. Allende & J. C. Retamal

Classical to quantum decoherence transition, an issue existing for incoherent superposition of Bell-
diagonal states is studied for three dimensional bipartite AB mixed quantum systems. Depending 
on the initial conditions, the dynamics of classical and quantum correlations can exhibit a sudden 
transition between classical to quantum decoherence. This result is calculated numerically by using 
entropic and geometric measures of correlations. An alternative explanation for this effect could be 
obtained by extending the bipartite A ⊗ B qutrit system to a pure tripartite A ⊗ B ⊗ C system. The 
freezing of classical correlations in AB is related to a freezing of the entanglement in the AC bipartition.

Quantum correlations have proven to be an essential resource for quantum computation and quantum informa-
tion processing tasks. Entanglement has been extensively studied from a theoretical1,2 and an experimental point 
of view3–5. Entangled states have allowed to improve and develop a great variety of information protocols, such 
as, quantum key distribution6,7, quantum dense coding8,9 quantum teleportation10,11, entanglement swapping12, 
quantum repeaters13, among others. However, in recent years it has been realized that other quantum correlations 
than entanglement could play a central role in the development of quantum information processing, such as 
quantum discord (QD)14–17, defined as the difference between all correlations available in the system and the max-
imum of classical correlations15, or the closest distance between a quantum and its respective classical state16,17. 
It has been proved that states with non-zero QD are more efficient than entangled states in the performance of 
Knill-Laflamme algorithm18,19, quantum cryptography20, quantum state broadcasting21, quantum state discrimi-
nation22, and as an indicator of quantum phase transition23.

Realistic quantum systems are always interacting with their environment, inducing unavoidable decoherence 
processes. Quantum discord has proven to be more robust than entanglement under the action of a Markovian 
environment24. On the other hand, for non-dissipative decoherence channels, incoherent superpositions of Bell 
states can exhibit freezing dynamics25,26. In particular for some specific initial states a sudden transition between 
classical to quantum decoherence can happen25. As classical correlations decay, quantum correlations remain 
constant, until a time where this behavior is exchanged. The existence of this freezing dynamics has been exper-
imentally observed in a variety of systems, such as, photons27, solid states systems28, and nuclear magnetic reso-
nance29. From an entropic point of view, the evaluation of quantum discord is a difficult task, even for two-qubit 
states, since an optimization procedure is required for the conditional entropy over all local measurements. In 
this scenario, closed expressions are known only for specific classes of two qubit states30,31. While qubits are the 
essential ingredient in quantum information, nature is not restricted only to two dimensions. All these funda-
mental issues can be extended beyond qubits. Quantum discord in higher dimensions has been elusive, and little 
is known about calculations beyond two dimensional systems32–36.

In this work we address the study of quantum correlations other than entanglement for 3 ⊗  3-dimensional 
bipartite mixed quantum systems. To accomplish this goal we consider both entropic and geometric measures 
of quantum correlations in order to verify our findings. Specifically we focus on the issue of classical to quan-
tum decoherence transition in a system of two qutrits evolving under a dephasing environment. As the main 
result of this research we found that a sudden transition between classical to quantum decoherence exist for an 
initial superposition of maximally entangled qutrit states. The calculations are carried out by using entropic and 
geometric definitions of quantum correlations. In addition these results are studied using the Koashi-Winter37 
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relation, by extending the mixed 3 ⊗  3 state to an enlarged pure 3 ⊗  3 ⊗  n system. Entanglement embodied in a 
3 ⊗  n bipartition is related with the classical correlations in the 3 ⊗  3 bipartition.

Model
Consider a pair of three dimensional systems each one of them being described in a Hilbert space {|0〉 , |1〉 , |2〉 }.  
We assume that each qutrit system is undergoing an interaction with a non dissipative environment introduc-
ing dephasing on quantum states. A general description of dephasing could even consider collective dephasing. 
Under such conditions we are mainly interested in studying the evolution of a superposition of maximally entan-
gled two qutrit states given by:
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where m =  0, 1, 2. Under a non dissipative environment, which is the situation we are mainly interested, the 
dynamics of entangled qutrit states can be studied considering both local and collective dephasing channels. The 
time evolution of the system, initially prepared in a state ρ(0), can be given in terms of Krauss Operators38, which 
preserves the trace and the positivity ∑ =†( )K Kj

N
j j . The dynamic of the system could be written as
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where the Krauss Operators EA, FB and DAB describe the local and collective depolarizing noise, respectively. 
These operators have been studied by Ali39, and they are defined as
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where γ = −Γt e( )A
t/2A , γ = −Γt e( )B

t/2B , being Γ A,B the local dephasing rates, and ω γ= −t t( ) 1 ( )A A
2 , 

ω γ= −t t( ) 1 ( )B B
2 , γ = −ΓeAB

t/22 . Here Γ 2 is the collective depolarizing noise rate and ω γ= −t t( ) 1 ( )AB1
2 , 

ω γ γ= − −t t t( ) ( ) 1 ( )AB AB2
2 2 , and finally ω γ γ= − −t t t( ) (1 ( )) 1 ( )AB AB3

2 2 .
We are interested in exploring the effects of dephasing channels affecting qutrits in a superposition:

ρ = Ψ Ψ + Ψ Ψ + Ψ Ψc c c , (4)0 1 00 00 2 01 01 3 02 02

where c1 +  c2 +  c3 =  1. By considering ρ0 as the initial state with the following basis {|2, 2〉 , |2, 1〉 , |2, 0〉 , |1, 2〉 , |1, 1〉 ,  
|1, 0〉 , |0, 2〉 , |0, 1〉 , |0, 0〉 }, we obtain that the state evolves to:
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where we have defined λ1 =  (γAγB)2, λ γ γ γ= AB A B2
4 , λ γ γ γ γ= =A B A B3

2 2  and λ4 =  γAγB. In what follows we will 
assume in most of the calculations equal dephasing rates for each qutrit, that is γ γ= = −ΓeA B

t/21  with Γ 1 being 
the local dephasing rate, and γ = −ΓeAB

t/22  with Γ 2 being a collective dephasing rate.
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Correlation Measure and Simulated Annealing Algorithm
We focus on the study of classical and quantum correlations for the model introduced in the previous section for 
different dephasing rates and initial conditions. The correlations dynamics will be studied by using both entropic 
and geometric measures of correlations. From an entropic point of view, quantum correlations embodied in a two 
qutrit mixed quantum state are given by15:

= − , (6)AB
e

AB AB
eQ I C

where  ρ ρ ρ= + −S S S( ) ( ) ( )AB A B AB  is the quantum mutual information and  ρ ρ= −S S( ) ( )AB
e

A A B  are the 
classical correlations, where S(ρA|B) is the conditional entropy obtained as the average of the von Neumann 
entropy of the reduced state of subsystem A after measuring subsystem B, and optimized with respect to all pos-
sible measurement on subsystem B. An alternative definition for classical and quantum correlation are given by 
the geometrical measurement16. In such case quantum correlations are defined by:

 ρ ρ ρ χ= −
χ

min Tr{ log log },
(7)AB

g
AB AB AB

where the optimization is carried out with respect to all possible classical states χ. Let us represent by χAB the 
classical state that minimize AB

g . The classical correlations from a geometrical view are given by:

 χ χ χ π= −
π

min Tr{ log log }, (8)AB
g

AB AB AB

where the optimization is carried out with respect to all possible product states π. Thus the closest product state 
is πAB.

As is clear from definitions, both geometrical and entropic measures rely on an optimization process which 
requires to find the optimal value of a functional. For the entropic definition the optimization is over the all pos-
sible measurement on subsystem B, which requires to cover all possible projections Π = ⊗ †V l l Vl B B  where 
l =  0, 1, 2 and VB is a unitary 3 ×  3 matrix. There is one set of projections which optimize the conditional entropy 
given by an specific unitary VB. In the case of geometric definitions, we have to find the optimal distance AB

g  or 
AB
g  among all the classical and product states, respectively. We need to sample all the classical states to find χAB. 

This can be accomplished by defining an auxiliary classical state as:
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where |i〉  are the states of the composite qutrit basis, dc corresponds to the total dimension of the bipartite Hilbert 
space. We can associate each matrix element to square coordinates of unitary dc-sphere. Thereby the matrix ele-
ments Xi can be written as:
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where = … −j d1, 2, , 1c , φ0 =  π/2 and φ π∈ [0, 2 ]j . To sample all the classical states we need to apply local 
arbitrary unitary transformations to each subsystem, in this way, the general classical state can be written as

χ = ⊗ ⊗ †V V X V V( ) ( ) (12)A B A B

To build the product state, the procedure is slightly different, in this case, the auxiliary product state must be

Π = ⊗X X (13)A B

where Xα (α =  A, B) can be built in the same way that the matrix X, Eq. (9), with the difference that dc =  3 for 
the subsystem A and B and |i〉  is the qutrit basis. To sample all the product states we have to apply local arbitrary 
unitary transformations to each subsystem A and B. Then, the product state will be:

π = ⊗ Π ⊗ †V V V V( ) ( ) (14)A B A B

As we have learned from previous discussion to calculate quantum and classical correlations we must find an 
optimum among a set of states which can be sampled covering this set by arbitrary unitary matrices. In order to 
accomplish this goal we utilize the Simulated Annealing Algorithm (SAA)40 which has been used to calculate 
entanglement in higher dimensional systems41. To sample an arbitrary unitary matrix   and find the one that 
optimize a given functional F ( ) , the conditional entropy or the distance, we need an algorithm that allows us to 
find a parametrization of the matrix elements of such unitary matrix. As is well known, an arbitrary unitary 
M ×  M matrix can be decomposed as the product of M(M −  1)/2 unitary operations42
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Tipically for 3 ×  3 dimension, the unitary transformation Vα (α =  A, B) has the following form
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A general unitary matrix   depends on 3(M −  1)M/2 arbitrary parameters belonging to [0, 2π]. Thus, for a 
bipartite 3 ⊗  3-dimensional system, the classical and quantum correlations can be obtained by parametrizing Π l 
by dE =  9 angles for the entropic definition. On the other hand, for the geometrical measure, the arbitrary classical 
states in bipartite 3 ⊗  3-dimensional systems can be parametrized by dχ =  26 angles. In addition, the general 
product state can be parametrized by dπ =  22 angles.

The sampling of all general unitary matrices for calculating quantum correlation using entropic definitions, or 
the sampling of all classical or product states for calculating quantum correlations using geometrical definitions 
is suitable for the application of the SAA algorithm40. The algorithm relies on a random choice of the parameter 
string φ φ φ φ= …

→

β
( , , , )d1 2

 (where β =  E, χ, or π), and changes the configuration according to the SAA as fol-
lows: (a) Choose any sufficiently large initial value min of ( )F U ; (b) choose at random an initial selection of φ

→
, 

and save it; (c) change at random one of the dβ components of φ
→

, evaluate   and calculate the new  new for ( )F U ; 
(d) if  new is less than the initial min, accept the new configuration of φ

→
 and start the algorithm again at (c); (e) 

if the calculated value  new of the ( )F U  is greater than the initial min , select a random number  ( ⩽ ⩽0 1) and 
compare it with = − −p e C( )/new min   (for a conveniently chosen value of C). If ⩽ p , accept the new configuration 
for φ

→
 and start the algorithm again at (c). If  > p, reject the new configuration for φ

→
 and start the algorithm again 

at c). Parameter C used above plays the role of a temperature. It has to be reduced according to a prescribed rela-
tion in order to resemble absolute zero and it also gives the possibility of accepting a configuration with a higher 
F U( ), preventing the system from being trapped in a local minimum.

Results and Discussions
Let us consider in a first instance a bipartite qutrit system evolution under local dephasing. The general evolution 
in this situation is given in Eq. (5) for the case of independent dephasing environment where Γ ≠ 01  and Γ 2 =  0. 
Consider the case where we superpose two maximally entangled states of two qutrits, resembling the case of two 
qubits25, by choosing the amplitudes c1 and c2 as c1 =  (1 +  c)/2 and c2 =  (1 −  c)/2. In Fig. (1) we show the results for 
classical and quantum correlations calculated for the entropic and the geometric definition, using the SAA algo-
rithm for the particular value c =  0.6. The existence of a sudden transition between classical to quantum decoher-
ence is clearly observed, as compared with the situation in two qubit Bell-diagonal states. Geometric and entropic 
approach are coincident describing this behavior for this case.

Unlike the case of two qubits, little can be said from an analytical point of view to describe this transition in 
qutrit systems. However, an alternative way to calculate the classical correlations could be of help to understand 
and verify this result. This could be accomplished by considering the Koashi-Winter relation for entanglement 
and classical correlations embodied in a tripartite pure quantum state37. Consider a tripartite quantum system 
described by a pure state ΨABC , see Fig. (2). Entanglement and classical correlation among bipartitions are 
related as:
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where  ←AB
e  stand for the classical correlations among the AB subsystems. The arrow indicates measurements that 

are carried out on system B. In order to use this relation, we have to transform the state given by Eq. (5) into a pure 
state, this can be carried out by extending the state to a larger Hilbert space. To illustrate this, we consider the case 
for c3 =  0 and local dephasing, that is Γ 2 =  0, i.e. λ λ=1 2

2, λ γ= A3
3, and λ γ= A4

2. After some manipulations we can 
write the state as:
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Figure 1. Evolution of classical and quantum correlations as a function of Γ1t. The circle and triangle points 
are obtained by using the geometrical measure. The continuous lines are calculated by entropic measure.
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C

Figure 2. Diagram describing tripartite (ABC) pure state obtained by purification of bipartite mixed state 
3 ⊗ 3 (AB). 
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where we defined the states
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From the expression (19) we immediately infer that ρ can be purified to a 3 ⊗  3 ⊗  7 dimensional Hilbert space. 
We denote this purification as ABC.

The Koashi-Winter relation states that the classical correlations in a AB bipartition are connected to the entan-
glement in a AC bipartition. Such connection has been useful to calculate entanglement in 2 ⊗  N systems that can 

Figure 3. Simulated Annealing calculation of entanglement EAC for 3 ⊗ 7 (AC) bipartition, and the 
corresponding classical correlations for the 3 ⊗ 3 (AB) bipartition, using the Koashi-Winter relation for the 
state in Fig. (1).

Figure 4. Evolution of classical and quantum correlations as a function of Γ1t. Points are obtained by using 
geometrical measurement. The continuous lines are calculated by entropic measurement.
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be obtained from pure tripartite 2 ⊗  2 ⊗  N systems43. In order to use this relation let us consider the 3 ⊗  (3 ⊗  7) 
partition:

Ψ = Ψ + Ψ + Ψt p p p( ) 0 1 2 (22)0 0 1 1 2 2

where Ψi  are entangled stated states in the 3 ⊗  7 bipartition, p0 =  p1 =  p2 =  1/3 and
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where the |ei〉  with i =  1, 2, …  7 are the states in the purification space.
The state (22) can be considered as a pure state decomposition of an entangled mixed state in the 3 ⊗  7 (AC) 

bipartition. The entanglement in the 3 ⊗  7 mixed state, will give us information about the classical correlations 
embodied in the 3 ⊗  3 (AB) bipartition. Entanglement in 3 ⊗  7 can be calculated by using the Simulated Annealing 
Algorithm (SAA)41. This is carried out searching for all pure state decompositions ρ ψ ψ= ∑ qAC i i AC

i
AC
i  of AC 

bipartition, applying an arbitrary unitary operation on the first qutrit of the state given in (22). The Entanglement 
EAC of the AC bipartition would be given by the decomposition that minimize ψ∑ q E ( )i i AC

i , where ψE ( )AC
i  is 

the von Neumann entropy of the reduced density matrix ρA
i . In Fig. (3) we show the entanglement evolution in the 

Figure 5. Maximal entanglement transferred to the AC bipartition as a function of c. 

Figure 6. Time for which sudden transition happens as a function of c. 
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3 ⊗  7 bipartition (EAC), the corresponding von Neumann entropy for reduced state of the qutrit (SA =  log2 3), and 
the classical correlation for the 3 ⊗  3 bipartition ( ←

AB
e ), calculated through the Koashi-Winter expression. This 

result is in complete agreement with the calculation of the entropic and geometric measures for 3 ⊗  3 system in 
(Fig. 1). Entanglement EAC is transfered from the AB bipartition up to a time tc where it became constant, given 
that SA is constant, the classical correlation in the AB became constant. This is an independent verification of the 
sudden transition between classical to quantum decoherence as given in Fig. (1). Entanglement freezing in the AC 
bipartition explain the freezing of classical correlations in AB bipartition.

The amount of classical correlation where the AB partition system saturates depend on the value of c. The 
maximum corresponding to c =  1 is equal to 1.5850 and the minimum value is 0.5850 for c =  0. The last case 

(a) (b)
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0.00
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0 1 2 3
0.00
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Figure 7. Classical and quantum correlation under the action of noisy channels as a function of Γ 1t for two 
different initial condition (a,b) for the same dephasing rates. Due to the global dephasing channel the quantum 
correlation suffer a revival until the critical time. The dots are obtained by using geometrical measure. The 
continuous line are calculated by entropic measure.

(a) (b)

Figure 8. Classical and quantum correlation under the action of noisy channels as a function of Γ At for two 
different initial conditions without global dephasing (a) and with global dephasing (b). We have considered one 
qutrit protected from local dephasing, i.e., Γ B =  0. The dots are obtained by using the geometrical measure. The 
continuous line are calculated by the entropic measure.
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occurs for the initial balanced amplitudes c1 =  c2 =  1/2, see Fig. (4). We can calculate numerically the amount of 
maximal entanglement transferred to the AC bipartition which is the entanglement embodied in the state

∑ρ → ∞ = Ψ Ψt p( )
(24)AC

i
i i i

where Ψi  are the states (23) for large times

Ψ = +

Ψ = +

Ψ = +

c e c e
c e c e
c e c e

0 1
1 2
2 0 (25)

0 1 1 2 6

1 1 2 2 4

2 1 3 2 5

The maximal entanglement EAC as a function of c is shown in Fig. (5). We observe that for c =  1 no entangle-
ment is obtained between the AC bipartition as can be understood immediately from Eq. (4) for c2 =  c3 =  0. The 
maximum entanglement transferred to AC corresponds to the balanced state with c1 =  c2 =  1/2. The correspond-
ing times for which the sudden transition happens are shown in Fig. (6).

Considering global dephasing in addition to local dephasing, the issue of sudden transition between clas-
sical to quantum decoherence is still present along the dynamics of the AB system as can be seen in Fig. (7a). 
We observe that the amount of initial quantum correlation decreases as we spread the probability among states 
belonging to a wider Hilbert subspace. This reduction is enhanced as we approach to a balanced superposition, 
as we can see in (7.b). In all the cases we see that classical correlations maintain their decay behaviour until it 
suddenly becomes constant. This behavior can be verified in the same way as we did for the first case analyzed, 
by using the Koashi-Winter relation. However, quantum correlations increases because of the global dephasing 
until they start to decay. The same increment was observed in the presence of multilocal environments in bipartite 
qubit-qutrit systems36.

As a final remark we mention a recent work where time invariant quantum discord has been obtained for an 
special class of qubit-qutrit states44. Such situation appears when the qubit is protected from the environment. 
We consider the situation when one of our qutrits is protected, assuming, for example Γ A =  1 and Γ B =  0 in equa-
tion (5), for the kind of initial states we are studying. Figure (8) illustrates the quantum correlations of the qutrit 
systems without global dephasing (see Fig. (8a)) and with global dephasing (see Fig. (8b)). We observe in Fig. (8) 
that the sudden transition between classical to quantum decoherence is still present for the case when one qutrit 
is protected. An interesting issue should be to investigate whether or not there is class of entangled qutrit states 
that could exhibit time invariant quantum discord.

For the entropic definition, we have changed the annealing parameter as C =  10−910−k, where k =  [1, K], and K 
is the number of annealing processes. For every figure in this work we used K =  10, with 105 iterations for each k 
and Δ φ =  0.0125. For the geometric definition, we have changed the annealing parameter for the classical corre-
lation (quantum correlation) as C =  10−510−k (C =  10−610−k) where k =  [1, K]. For this case we used K =  20, with 
105 iterations for each k and Δ φ =  0.01. Each point has been calculated independently, where most of the points 
converges to the first seed.

Conclusions
In summary, we have addressed the calculation of quantum and classical correlations for incoherent superposi-
tions of maximally entangled qutrit states. We have carried out the calculation by using the simulated annealing 
algorithm, which is simple to implement and provides an efficient numerical approach. We focused on the issue of 
classical to quantum decoherence transition in a system of two qutrits evolving under a dephasing environment. 
As the main result of this research, we have found that a sudden transition between classical to quantum deco-
herence exist for an initial superposition of maximally entangled qutrit states. This freezing is intimately linked 
to the Entanglement freezing between one qutrit and the environment, as confirmed by using the Koashi-Winter 
expression. The amount of classical correlation saturation is limited by this entanglement. In addition, we have 
observed that the sudden transition between classical to quantum decoherence is still present for the case when 
one qutrit is protected. We have used the entropic and geometric measures of correlations, both describing the 
same behavior. These results can be of help to enhance the study of quantum discord and classical correlations in 
higher dimensions and for the implementation of quantum information processing protocols.
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