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Introduction

Pathogen drug resistance is a central problem in medicine

and public health. It is central both to infectious disease

(Fong and Drlica 2003) and also to cancer medicine. A

cancer is a population of endogenous pathogen cells,

which often evolves resistance to the drugs used to treat

it. Consequently, the development of drug resistance

within a patient is a central problem in cancer biology

(Pepper 2008; Moscow et al. 2003; O’Connor et al. 2007;

Pepper et al. 2009). Regardless of their origin, pathogen

cells acquire drug resistance through somatic (within

host) mutation and selection. Somatic selection is the

preferential survival and proliferation of cells with muta-

tions allowing them to resist a therapeutic drug. Those

cells then pass that resistance to an expanding lineage of

progeny cells (Pepper 2008).

Because drug resistance arises though somatic selection

and evolution, understanding this process is crucial to

addressing the problem. It was recently proposed that

evolution of drug resistance could be reduced by develop-

ing drugs that do not directly target pathogen cells them-

selves but instead target the secreted metabolites, or

‘public goods’ compounds, that they use to modify their

microenvironment to their advantage (Pepper 2008). To

examine this hypothesis, we use simulations based on an

agent-based computational model.

This study examines the implications for drug and

vaccine design of the theory for public goods evolution

developed by (Driscoll and Pepper 2010). This theory

was based on the physics of diffusion, along with some

basic assumptions about fitness effects of diffusible cell

products. It has not previously been closely integrated

with standard evolutionary theory. Here, we pursue this

integration through the Price equation, which represents

the change per generation in the mean value of a trait

as the covariance between trait value and fitness (Price

1970, 1972; Hamilton 1975). This covariance is factored

into three components representing standard deviation

of the trait value of interest, standard deviation of
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Abstract

Pathogen drug resistance is a central problem in medicine and public health. It

arises through somatic evolution, by mutation and selection among pathogen

cells within a host. Here, we examine the hypothesis that evolution of drug

resistance could be reduced by developing drugs that target the secreted metab-

olites produced by pathogen cells instead of directly targeting the cells them-

selves. Using an agent-based computational model of an evolving population of

pathogen cells, we test this hypothesis and find support for it. We also use our

model to explain this effect within the framework of standard evolutionary the-

ory. We find that in our model, the drugs most robust against evolved drug

resistance are those that target the most widely shared external products, or

‘public goods’, of pathogen cells. We also show that these drugs exert a weak

selective pressure for resistance because they create only a weak correlation

between drug resistance and cell fitness. The same principles apply to design of

vaccines that are robust against vaccine escape. Because our theoretical results

have crucial practical implications, they should be tested by empirical experi-

ments.
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fitness, and the Pearson’s correlation between trait value

and fitness (Price 1970; Eqn. 1). If indeed selection for

drug resistance is weaker on drugs that target public

goods than on drugs that target cell-intrinsic traits, that

outcome must be due to a lower value of one or more

of these three components of selection. To test this

hypothesis, we used an in silico evolutionary system

(Adami and Wilke 2004; Pennock 2007) in which all

relevant variables could be quantified and controlled.

The potential molecular targets of therapeutic drugs fall

on a spectrum from molecules that are strictly ‘private’,

because they are intrinsic to the cell that produces them,

to those that at are more ‘public’ in their fitness effects,

because they are shared among cells other than their pro-

ducer. The strength of selection on cells to produce and

maintain a molecular trait depends strongly on where the

specific molecule lies on this spectrum from private to

public. An earlier study quantified the spectrum from pri-

vate to public molecules using a ‘transfer coefficient’ that

combines the diffusion coefficient of the molecule and

the diffusion distance among cells to quantify the trans-

ferability of the molecule among cells (Driscoll and Pep-

per 2010).

In that earlier work (Driscoll and Pepper 2010), and

its extension here, we assume there is some metabolic

cost to the production of any molecular product. Only

producer cells pay this cost, while neighboring cells can

enjoy the benefits of transferable (diffusible) beneficial

products without paying the cost of production. When

benefits of external goods are shared but costs are not,

production is selectively favored only under restrictive

conditions. In particular, mathematical models showed

that production of more private beneficial products,

including cell-intrinsic molecules, is more robustly

favored than is the production of more widely shared

or ‘public’ beneficial products (Driscoll and Pepper

2010). That result has important implications for the

evolution of drug resistance, and we seek to replicate it

here. We predict that when a drug interferes with a

molecular target benefiting pathogen cells, any cell pro-

ducing a mutant form of the product that is impervi-

ous to the drug will be more strongly favored if the

molecular target is more private than if it is widely

shared. Consequently, we also predict that resistance

will evolve more rapidly against drugs targeting ‘private’

molecules and more slowly against drugs targeting ‘pub-

lic’ molecules.

Because social evolution involves feedbacks, spatial het-

erogeneity, and other nonlinear effects, linear analytical

models such as those developed previously (Driscoll and

Pepper 2010) can provide only simplified representations

of expected outcomes. We can improve on their predic-

tive power by building agent-based computational models

that explicitly represent each cell as a computational

agent, and include the spatial relationships among cells

and their external products. Using such a computational

model, we performed simulation experiments as prelimin-

ary tests of the hypothesis that drugs targeting shared cel-

lular products will reduce the evolution of pathogen drug

resistance, as compared to drugs targeting cell-intrinsic

molecules.

Methods

In our computational model, both time and space were

discrete, with space represented as a 2D grid of loca-

tions, each representing the distinct microenvironment

influenced by a cell (approximately 1 square micron),

and characterized by local concentration of a potentially

soluble target molecule produced by pathogen cells. This

solute diffused through space down its concentration

gradient. As a reference diffusion coefficient, we used

1.56 · 10)6 cm2 s)1. While the model was not tuned to

a specific molecule, this diffusion rate is typical of bio-

logically relevant small molecules (Stewart 2003). As

experimental treatments, we ran simulation experiments

using drug targeting molecules with 0, 1, and 2 times

this reference diffusion coefficient. Each pathogen cell

was represented as a computational agent characterized

by its vitality v (propensity to survive and divide) and

by its binary resistance or sensitivity to the drug. Patho-

gen cells were capable of mitosis (with cell heritability

of resistance state) and of death. The stochastic proba-

bility of each of these outcomes per time step was

determined by the cell’s vitality, which was a function

of its access to beneficial cell product in its microenvi-

ronment, and by its level of drug resistance (which was

inherited during division). Cells with lower vitality were

more likely to die (probability = 1)v). Surviving cells

then reproduced with a fixed probability (of 90%) if an

adjacent location was unoccupied. Each daughter cell

inherited half of the vitality of the parent cell, and each

mutated with a fixed probability of 10)3 between the

drug-sensitive and drug-resistant states. Upon division,

one daughter cell moved to inhabit the adjacent, vacant

location, while the other replaced its parent. These sim-

ple physical assumptions of localized reproduction and

localized diffusion made indirect fitness effects a natural

and inescapable consequence, but we did not explicitly

quantify the strength of direct versus indirect fitness

effects in this study.

Our experiments were conducted on a 51 · 51 rectan-

gular grid containing 2601 discrete locations. Thus, the

population size of pathogen cells was also capped at a

maximum of 2601.
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Model scheduling

Simulations progressed in discrete time steps corresponding

to 40 min, the approximate generation time of Pseudomonas

aeruginosa growing at the body temperature of a human

host (El’Garch et al. 2007). The order in which cells were

updated was randomized within each time step. During

updating, each cell released its molecular product into its

own microenvironment. The product of nonresistant cells

was then degraded according to drug concentration. The

cell then updated its vitality as a function of local concen-

tration of the beneficial product. Next, the cell had a sto-

chastic chance of dying, dependent on is current vitality.

If it survived, it had a stochastic chance of dividing. See

Fig. 1 for a flowchart representation of this scheduling.

Data collection began as soon as the first stochastic

mutation in drug resistance arose in the population, cre-

ating genetic variation for selection to act upon. The sim-

ulation run then continued for another 1000 time steps

before summary statistics were compiled.

Instance variables of cells

Vitality

The vitality change in an individual cell in each time step

depended upon the concentration of the external product

experienced by the cell and also on the cell’s previous

fitness value. The fitness change for a single time step

followed a logistic function: Dv = [p] (1)v), where v is

vitality and [p] is local product concentration. Survival

probability per time step was directly proportional to vital-

ity. While realized fitness (reproduction) of an individual

cell was stochastic and was also affected by space availabil-

ity, our term ‘vitality’ refers to a variable indicating relative

fitness based on the biochemical status of the cell.

Instance variables of locations

Each location in space carried a specified concentration of

both drug-sensitive and drug-resistant cell products. The

flux of each product between two adjacent locations per

time step was a function of the concentration gradient

between them and the specified transfer coefficient. We

used values of 0, 0.5, and 1.0 times the reference diffusion

coefficient of 3.12 · 10)6 cm2 s)1. These correspond to a

drug target that is cell-intrinsic and not shared (T = 0)

and to two biologically plausible levels of transferability

in the molecule used as a drug target.

Initialization

At the outset of each simulation run, each location

contained a single drug-sensitive cell with vitality (v)

randomly drawn from a uniform distribution between 0

and 1.

System parameters

The experimentally manipulated variable of interest was

the transfer coefficient of the molecule targeted by the

drug. Because lower drug dosage is conducive to the evo-

lution of drug resistance, we conducted each virtual

experiment with a range of doses, including the reference

100% ‘full dose’ with maximal effect, as well as 75% and

50% of this dose.

Results

In the simulation results, the final frequency of drug

resistance among pathogen cells (after evolution) was

lower when the drug targeted a pathogen public good,

rather than an intrinsic cell traits (Fig. 2). For each drug

dosage tested, the final frequency of drug-resistant cells

was significantly lower for drugs targeting the most ‘pub-

lic’ molecule (transfer coefficient = 1) than for drugs tar-

geting less-shared molecules. Comparing a transfer

coefficient value of 1 vs either 0.5 or 0 (with drug dose

set at 1.0), the mean frequency of drug-resistant cells was

significantly lower when the drug target was highly shared

(one-tailed t-test with unequal variances, P < 0.0001 for

each comparison).

To clarify the mechanistic basis for this result, we quan-

tified each of the three factors determining the rate of

evolution of drug resistance. We found that for a drug

targeting a more shared or ‘public’ molecule, variation

among cells was higher, both in their in their level of

resistance and in their vitality, or fitness (results not

shown). However, selection was weaker despite this higher

variance. This was because when the transfer coefficient
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Figure 1 A graphical representation of the flow of events for each

cell during each time step within the computational model. Dashed

lines denote stochastic steps not always taken.
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was higher, the correlation between resistance and cell

vitality was substantially lower (Fig. 3). For each of three

comparisons between transfer coefficient values of 0, 0.5,

and 1.0 (with drug dose set at 1.0), the mean correlation

coefficient was significantly lower when the transfer coeffi-

cient was higher (one-tailed t-test with unequal variances,

P < 0.0001 for each comparison).

When pathogens were treated with a drug targeting a

shared rather than a cell-intrinsic molecule, the reduced

evolution of drug resistance resulted in a smaller final

population of pathogen cells (Fig. 4). Comparing a drug

target with a transfer coefficient of 1 against values of

either 0 or 0.5 (with a drug dose of 1.0), the final patho-

gen population was significantly smaller when the drug

targeted a more ‘public’ molecule (one-tailed t-test with

unequal variances, P < 0.0001 for each comparison).

Discussion

Our results support the proposal that evolved drug resis-

tance in pathogens can be reduced by using agents direc-

ted against external products rather than cell-intrinsic

molecules. Furthermore, as there is a spectrum from pri-

vate to public external products (Pepper 2008), the most

robust targets for therapeutic intervention are those that

are most widely shared (as quantified by a high transfer

coefficient).

The reduced tendency for evolution of resistance

against such drugs is attributable to the reduced correla-

tion between resistance and cellular fitness (Fig. 3). Our

focus here on cell-level fitness contrasts with earlier the-

ory that used the approach of multilevel selection and

explicitly recognized the role of selection among trait

groups defined by their shared microenvironment of dif-

fusible products (Andre and Godelle 2005; Pepper 2008).

These two approaches are not mutually exclusive, and it

is expected that they should arrive at the same conclu-

sions. It is well understood in social evolution theory that

trait-group selection is not a distinct process from either

selection for inclusive fitness or selection for the neigh-

bor-modulated fitness considered here. Rather, it is sim-

ply an alternative accounting system (West et al. 2007).

Partitioning selection into direct versus indirect (neigh-

bor-modulated) components is neither more nor less
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Figure 3 Simulation results: Correlation across cells between drug

resistance and cell fitness (vitality). Correlation values were averaged

over 1000 cell generations. A value of zero for transfer coefficient

represents a cell-intrinsic drug target. Markers show means, and bars

show standard errors across 10 simulation runs with different seed

values for the pseudorandom number generator. Results are shown

for three different drug concentrations.
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Figure 4 Simulation results: Mean size of total pathogen population,

averaged over last 1000 cell generations. A value of zero for transfer

coefficient represents a cell-intrinsic drug target. Markers show

means, and bars show standard errors across 10 simulation runs with

different seed values for the pseudorandom number generator. (Some

error bars are too small to be visible.) Results are shown for three dif-

ferent drug concentrations.
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Figure 2 Simulation results: Frequency of the drug resistance muta-

tion averaged over last 1000 cell generations. Each marker represents

the mean for a different drug concentration. High transfer coefficients

correspond to drug targets that are more ‘public’ or more widely

shared among cells. A value of zero corresponds to a cell-intrinsic

drug target. Markers show the mean, and bars show the standard

error across 10 simulation runs with different seed values for the

pseudorandom number generator.
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correct than partitioning it into within-group versus

between-group components. Indeed, it is well established

that the two mathematical frameworks are formally

equivalent and interconvertible (Hamilton 1975; Wade

1985; Pepper 2007). Averaging cell fitness across trait

groups, as we do here, does not imply a different process

from trait-group selection, nor should it lead to different

conclusions if performed correctly (Okasha 2004).

The current results are consistent with those of a math-

ematical model that focused on the evolution of drug

resistance in bacteria and found an advantage for drugs

blocking bacterial cooperation, especially communication

(Andre and Godelle 2005). They are also consistent with

those of more general mathematical models (Pepper

2008).

Our current results have rather wide applicability to

pathogens, including both infectious diseases and cancers.

Our conclusions will be valid in any case where the key

model assumptions are met: that individual cells vary in

drug resistance and that this trait is heritable; that avail-

able drugs do not achieve perfectly efficacy, killing all cells

instantly; and that some fitness-enhancing molecules pro-

duced by pathogen cells have shared fitness benefits.

Examples of such public goods produced by bacterial

pathogens include quorum-sensing molecules, sidero-

phores, extracellular polymeric matrix, and exotoxins; for

cancer cells, examples include growth and invasion fac-

tors, angiogenesis factors, and immune suppression fac-

tors (Pepper 2008). We note that this study addressed

only robustness against evolved resistance and that drug

efficacy is a separate consideration.

We have mostly focused on the potential for targeting

public goods as a way to prevent the future evolution of

resistance to new drugs. However, it may also be possible

to robustly block existing mechanisms of resistance to

older antibacterials, thereby bringing them back into

effectiveness. It was recently shown that bacterial resis-

tance to antibiotics can be mediated as a population-level

trait by the secreted signaling molecule indole, which pro-

tects any bacterial cells receiving it against the effects of

antibiotics (Lee et al. 2010). Because indole is a shared

cellular product, we predict that therapeutics targeting it

not only could block antibiotic resistance in the short

term but also would themselves be robust against evolved

resistance in the longer term.

The principles revealed here apply to the development

of vaccines as well as drugs. The same principles govern

the adaptive evolutionary response of microbes to any

molecularly targeted fitness challenge, whether pharmaco-

logical or immunological. Thus, to avoid immune escape

by pathogens, any public goods they rely on should be

preferred targets for the design of vaccines as well as

drugs (Pepper 2008).
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