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Abstract
Identifying behavioral mechanisms that underlie observed movement patterns is dif-
ficult when animals employ sophisticated cognitive- based strategies. Such strategies 
may arise when timing of return visits is important, for instance to allow for resource 
renewal or territorial patrolling. We fitted spatially explicit random- walk models to 
GPS movement data of six wolves (Canis lupus; Linnaeus, 1758) from Alberta, Canada 
to investigate the importance of the following: (1) territorial surveillance likely related 
to renewal of scent marks along territorial edges, to reduce intraspecific risk among 
packs, and (2) delay in return to recently hunted areas, which may be related to anti- 
predator responses of prey under varying prey densities. The movement models incor-
porated the spatiotemporal variable “time since last visit,” which acts as a wolf’s 
memory index of its travel history and is integrated into the movement decision along 
with its position in relation to territory boundaries and information on local prey densi-
ties. We used a model selection framework to test hypotheses about the combined 
importance of these variables in wolf movement strategies. Time- dependent move-
ment for territory surveillance was supported by all wolf movement tracks. Wolves 
generally avoided territory edges, but this avoidance was reduced as time since last 
visit increased. Time- dependent prey management was weak except in one wolf. This 
wolf selected locations with longer time since last visit and lower prey density, which 
led to a longer delay in revisiting high prey density sites. Our study shows that we can 
use spatially explicit random walks to identify behavioral strategies that merge envi-
ronmental information and explicit spatiotemporal information on past movements 
(i.e., “when” and “where”) to make movement decisions. The approach allows us to 
better understand cognition- based movement in relation to dynamic environments 
and resources.
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1  | INTRODUCTION

Recent empirical and theoretic work suggests that cognition and mem-
ory are important for animals’ daily movements (Fagan et al., 2013). 
For example, spatial memory and memory of past experience allow 
animals to revisit profitable foraging locations and optimize energy in-
take (Hopkins, 2015; Merkle, Fortin, & Morales, 2014; Nabe- Nielsen, 
Tougaard, Teilmann, Lucke, & Forchhammer, 2013; Riotte- Lambert, 
Benhamou, & Chamaillé- Jammes, 2015; Van Moorter et al., 2009) or 
to travel efficiently to crucial resources such as waterholes (Polansky, 
Kilian, & Wittemyer, 2015). Cognitive abilities are associated with 
metabolic needs (e.g., larger brain size, maintenance of neural struc-
tures) and may entail both constitutive and induced costs in terms 
of fecundity and other fitness components (Burns, Foucaud, & Mery, 
2011). Therefore, we would expect to find cognitive- based move-
ment predominantly under conditions where benefits can outweigh 
costs, that is when resources are heterogeneous in space and time but 
also predictable (Avgar, Deardon, & Fryxell, 2013; Mueller, Fagan, & 
Grimm, 2011), and when resource patch density is low and distances 
between patches are high (Bracis, Gurarie, Van Moorter, & Goodwin, 
2015; Grove, 2013). Despite the growing effort in addressing cogni-
tion in movement studies and the evidence that it can be important, 
unraveling the role of cognition and memory for movement is still in-
herently difficult because these processes can be inferred only indi-
rectly, which requires both creative and state- of- the- art methodology 
(Fagan et al., 2013).

Here, we address whether gray wolves (Canis lupus) integrate spa-
tiotemporal aspects (i.e., the “when” and “where”) of their own travel 
history into their movement decisions. That memory of travel his-
tory is important in wolf movement decisions is reasonable because 
wolves exhibit little daily overlap in use of their territory, especially 
in winter, and it raises the questions as to the underlying mechanism 
(Jedrzejewski, Schmidt, Theuerkauf, Jedrzejewska, & Okarma, 2001). 
We use a novel method of modeling memory- based animal move-
ments (Schlägel & Lewis, 2014) to assess hypotheses (Table 1) related 
to the role of time- dependent territorial and hunting behavior based 
on time since last visiting (TSLV) a location.

Wolves are known to be territorial and to scent mark their terri-
tories to advertise their presence to wolves from other packs (Lewis 
& Murray, 1993; Peters & Mech, 1975; Zub et al., 2003). Scent marks 
can be found across the territory, but usually territory edges are 
marked more heavily, especially when they border neighboring packs 
(Mech & Boitani, 2006; Peters & Mech, 1975; Zub et al., 2003). If fatal 
encounters with individuals from other packs occur close to the terri-
tory edge (Mech, 1994), we would expect avoidance of territory edges 
to be a major driver to wolf movement (risk avoidance; H1). However, 
if scent marks decay and must be renewed regularly, we would expect 
avoidance of territory edges to decline for long TSLV (territory surveil-
lance; H2a, H2b) due to renewing scent marks.

Movement of wolves also may be driven by strategies for efficient 
prey capture. For example, selecting areas of high prey density (prey 
selection; H3) would reduce search time to find and potentially kill a 

TABLE  1 Tested hypotheses regarding drivers of wolf movement. Our main interest lies in testing time- dependent movement strategies 
(H2, H5, and H6) but we included time- independent movement behaviors as possible simpler explanations (H0, H1, H3, and H4). The probability 
of selecting a location is modeled as a logistic weighting function of the spatial attributes time since last visit (TSLV), distance from territory 
edge (edge), and prey density (prey) within a spatially explicit movement model. For hypotheses involving two spatial attributes, we tested both 
a model with additive term in the linear predictor (resulting in a shift of the logistic weighting function) and a model with additional 
multiplicative interaction (changing also the steepness of the logistic weighting function)

Hypothesis Behavior Spatial attributes (model)

Expected relationship with probability of selection

TSLV
Distance 
from edgea Prey density Interaction

No preferences General movement 
tendencies only

H0 – (null) – – – –

Risk avoidance Avoidance of territory edge H1 Edge – Pos – –

Territory 
surveillance

Avoidance of edge, but 
reduced for long TSLV

H2a TSLV + edge Pos Pos –

H2b TSLV + edge + TSLV × edge Posb Posb – Pos

Prey selection Preference for high prey 
density

H3 Prey – – Pos –

Prey selection & 
risk avoidance

Preference for high prey 
density but avoid edge

H4a Edge + prey – Pos Pos –

H4b Edge + prey + edge × prey – Posb Posb Pos

Delayed return Preference for long TSLV H5 TSLV Pos – –

Prey management Preference for long TSLV; 
high prey density induces 
earlier return

H6a TSLV + prey Pos – Pos –

H6b TSLV + prey + TSLV × prey Posb – Posb Pos

aA positive coefficient for this attribute means that the probability of selecting a location increases with its distance from the edge, that is, toward central 
locations.
bDominant effect of the attribute on the probability of selection (a negative coefficient can be compensated for a range of attribute values by a positive 
interaction term).
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prey (Holling, 1959; McPhee, Webb, & Merrill, 2012). However, if prey 
concentrate in buffer zones between wolf territories that act as ref-
uges to prey (Mech, 1994), wolves are faced with making trade- offs in 
finding prey while at the same time avoiding conspecifics from other 
packs (prey selection and risk avoidance; H4a, H4b).

Prey can exhibit temporary avoidance, heightened vigilance, or 
retreat to safer habitats in areas of recent wolf presence or where 
conspecifics were recently killed by wolves (Berger- Tal & Bar- David, 
2015; Latombe, Fortin, & Parrott, 2014; Liley & Creel, 2008). Contrary 
to predictions by the “risky places hypothesis,” which accounts only 
for varying antipredator behavior across sites with different long- term 
predation risk, observations of elk responses to wolves suggest that 
antipredator behavior adjusts dynamically to the presence of wolves in 
line with the “risky times hypothesis” and the “risk allocation hypoth-
esis” (Creel, Winnie, Christianson, & Liley, 2008; Robinson & Merrill, 
2013). These behavioral responses lower predation success, an effect 
called behavioral depression of prey (Charnov, Orians, & Hyatt, 1976). 
To optimize hunting success, wolves may not only optimize giving- up 
times (Brown, Laundré, & Gurung, 1999; Charnov et al., 1976), but 
also select for longer TSLV (delayed return; H5) to allow time for prey 
behavior to recover (Latombe et al., 2014; Laundré, 2010). This also 
spreads the risk over all hunting sites (Lima, 2002). However, wolves 
may return sooner to areas of high prey density (prey management; 
H6a, H6b) because of success in finding prey (Kunkel & Pletscher, 2001; 
McPhee et al., 2012) and greater variation in recovery times of indi-
vidual prey.

We examined the support for these hypotheses in a model selec-
tion framework using movement data of six GPS- collared wolves in 
winter when denning is less likely to influence movement, and packs 
are likely to be more cohesive (Metz, Vucetich, Smith, Stahler, & 
Peterson, 2011). We contrasted our behaviorally based models with 
a null model that assumed no preferences for spatiotemporal behav-
iors (H0). We fit observed movement trajectories to random walks that 
included behavioral mechanisms via a spatially explicit and dynamic 
resource- selection component (Schlägel & Lewis, 2014). With this, 
we illustrate how to detect an interplay of travel history with current 
movement decisions in movement patterns of free- ranging animals.

2  | MATERIALS AND METHODS

2.1 | Wolf and ungulate prey data

Data were collected during 2004–2009 in a 25,000 km2 area west of 
Rocky Mountain House, Alberta, Canada (52°27′N, 115°45′W). The 
area is part of the central east slopes of the Rocky Mountains, and ter-
rain includes gentle foothills in the eastern parts as well as mountains 
(<3,100 m) toward the west. Much of the landscape is covered by co-
nifer forest (52%), which is interspersed with smaller areas of natural 
lowlands (10%), forestry cut- blocks (6%), stands of deciduous forest 
(3%) with the remaining being largely permanent ice and rock (Webb, 
Hebblewhite, & Merrill, 2008).

During the years 2004–2006, wolves were captured and fitted 
with GPS collars (Lotek 3300Sw and 4400S; for details, see Webb et al., 

2008). The collars were programmed to collect location measurements 
every 2 hr. This led to regular time series of observed movement steps. 
Successful fix attempts for locations were 90% (3300Sw model) and 
82% (4400S model) indicating habitat- induced GPS bias was minimal 
(Frair et al., 2004; Hebblewhite, Percy, & Merrill, 2007). We analyzed 
data of six wolves from different packs whose territories were in the 
eastern part of the study area with low elevation and no mountain val-
leys. The movement data of the six wolves used in the analysis started 
between 3 November and 2 January and spanned until 23 February 
and 14 April, depending on individual, spanning on average 121 days 
(SD 23) and with an average of 1,458 (SD 289) locations/wolf.

The five major ungulate prey species for wolves were white- 
tailed deer (Odocoileus virginiana), mule deer (O. hemionus), elk (Cervus 
elaphus), moose (Alces alces), and feral horses (Equus caballus) and 
comprised 92–96% of the prey biomass within wolf scat (Merrill, un-
published data). To obtain spatially explicit maps of densities, fecal 
pellet groups deposited over winter were counted across 372 tran-
sects (1 km × 2 m) after snow melt. Pellet counts from transects were 
interpolated across the study area using inverse- distance weighting. 
Counts of pellet groups were converted to individual numbers of elk 
and moose based on ratios of number of pellet groups to the esti-
mated number of individuals within 16 wildlife management units ob-
tained through winter aerial surveys. For deer and feral horses, there 
were no aerial surveys so the ratio obtained for moose was adjusted 
for deer and horses based on differences in winter defecation rates of 
the species (McPhee et al., 2012).

To obtain a combined measure of available prey density for 
all four species, we calculated a weighted sum of all prey numbers, 
where weights were based on average ungulate body mass in win-
ter (Knopff, Knopff, Kortello, & Boyce, 2010; see Appendix A1). Prey 
densities (number/30 m2) were aggregated to a spatial resolution of 
300 m × 300 m cells, mainly for computational limitations (see bench-
marks in Appendix A3); however, wolves likely can detect prey within 
this distance (Basille et al., 2015; Kuijper et al., 2014). Wolf movement 
trajectories were considered accordingly on this spatial grid of cells, 
using the coordinates of the cell centers. Each location of a wolf was 
attributed to the grid cell in which it fell.

2.2 | Spatial information and travel history

Relocation data were analyzed using statistical movement models de-
veloped by Schlägel and Lewis (2014). These models are spatially ex-
plicit random walks in which spatial information influences movement 
decisions. The random walk is performed on a discrete grid of cells in 
correspondence to the prey density data. To test the hypothesized ex-
planations of wolf movement behavior (Table 1), three types of spatial 
attributes were considered. First, the combined prey density measure 
(prey) was normalized over the territory (see next paragraph) of each 
wolf. Second, for each territory, the minimum distance of each loca-
tion from the territory edge (edge) was calculated. Distance from edge 
is zero at the territory edge and increases for locations more centered 
within the territory. Third, time since last visit (TSLV) was based on an 
individual’s own travel history. TSLV was defined to specify at each 
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time step, and for each location, the time (measured in time steps) 
since the animal had last been to the location, that is, grid cell. TSLV 
is a dynamic attribute of a grid cell that changes according to the in-
dividual’s movement. TSLV increases for locations that the individual 
stays away from and is reset to 1 whenever the individual visits a loca-
tion. Locations were considered visited when they lay within a buffer 
zone of the straight- line path between two locations. The buffer zone 
included four grid cells, corresponding to approximately 1,200 m (see 
Appendix A1 for an explanation and justification). To initialize TSLV, 
we started the wolf at the first telemetry location and used an initial 
phase of 300 time steps, representing 25 days, which was excluded 
from further analysis. Before inclusion in the weighting function, all 
TSLV values were log- transformed because values had a wide range 
across the territory, with few very large values. For further informa-
tion on TSLV, see Appendix A1.

A territory was defined for each wolf based on a Brownian bridge 
kernel estimate of the individual’s utilization distribution obtained 
with R package “adehabitatHR” (Calenge, 2006; Horne, Garton, Krone, 
& Lewis, 2007). For this estimation, we used all locations including the 
first 300 steps for initializing TSLV. The purpose of the territory was 
twofold. We used it to estimate the “edge” of the territory, close to 
which the mortality risk due to aggressive encounters with other wolf 
packs may be higher. We also used the edge as a reflective boundary in 

the movement model to avoid an artificial avoidance of areas with long 
TSLV that were not visited during our study period for possibly exter-
nal reasons (e.g., other pack activity). Therefore, the territory included 
all locations within the 99.9% quantile of the estimated utilization dis-
tribution (Figure 1), which was the area that contained all locations 
possibly relevant for an individual during the study period.

2.3 | Movement model

In the models, two aspects affect the probability for a movement step 
between times t − 1 and t from location xt−1 to xt. First, a movement 
kernel k describes general tendencies regarding speed and directional 
persistence. Here, the kernel is composed of a Weibull distribution for 
step lengths and a uniform distribution for bearings (Appendix A1). 
Second, given a probability distribution for a step based on the kernel 
k, a weighting function w adjusts these probabilities based on prefer-
ences for the three spatial attributes, which are encoded in the vector 
. Because the model is spatially explicit, each location x has its own 
values of the spatial attributes, that is t(x)= (prey(x),edge(x),TSLV(x)). 
The overall step choice probability is given by

(1)p(xt�xt−1)=
k(xt;xt−1)w(t(xt))∑
z∈Ω k(z;xt−1)w(t(z))

.

F I G U R E  1 Maps of winter movements 
of six individual wolves during 10–
20 weeks. Colors reflect standardized 
prey density. Prey density is a combined 
measure of densities of the main ungulate 
prey species (deer, elk, moose, feral horse). 
Black circles are wolf locations with black 
lines indicating the straight- line steps 
between locations. Depicted are only 
“relocating” steps used for the anysis and 
exclude non- relocating steps such as when 
handling prey and resting (number of 
relocating steps was 177–332)
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We recall that locations represent discrete 300 × 300- m cells in 
space. The sum in the denominator is a normalization constant over a 
large enough area Ω around the current location such that the proba-
bility of stepping outside this area is negligible. The radius of the area 
Ω (ranging 30–44 cells, i.e., 9.0–13.2 km) was chosen to be larger than 
the longest step taken by the wolf. Steps outside the territory have 
probability zero.

The weighting function is modeled after a resource selection prob-
ability function (Lele, Merrill, Keim, & Boyce, 2013), giving the binomial 
probability of selecting a location x based on the attributes of the loca-
tion, t(x). Here, we used a logistic form,

The predictor term f(t(x),α,β,γ) contains additive and multiplica-
tive combinations of the spatial attributes, according to our hypoth-
eses (Table 1). For the no preference model, the weighting function 
is constant over space, that is, f(t(x),α,β,γ)=0, and only the kernel 

k influences movement. In the models risk avoidance, prey selec-
tion, and delayed return, the weighting function includes one spa-
tial attribute, and the predictor term f(t(x),α,β,γ) is simply given by 
α+βtslv ⋅TSLVt(x), α+βedge ⋅edge(x), or α+βprey ⋅prey(x), for each model, 
respectively. The parameter α is the intercept of the predictor term. 
For a sigmoidal logistic function, it determines the position of the in-
flection point of the curve, that is, where the function reaches the 
value 0.5. For hypotheses that involved two spatial attributes, two 
models were considered, one with additive term only and one with 
additional multiplicative interaction. For the model prey selection and 
risk avoidance, the additive term is α+βedge ⋅edge(x)+βprey ⋅prey(x) 
(H4a, H4b) and the multiplicative term is γe,p ⋅edge(x) ⋅prey(x) (H4b). The 
models territory surveillance and prey management were built analo-
gously, with interaction parameters γt,e and γt,p, respectively. The pa-
rameters α, βtslv, βedge, βprey, γe,p, γt,e, γt,p determine the direction and 
strength of preferences.

Following Aarts, Fieberg, and Matthiopoulos (2012), the weighting 
function w(t(x)) is a function of geographical space, x, via the spa-
tial attributes t(x) at a location x. It can alternatively be viewed as 
a weighting function over environmental space, , where attribute 
values  range over the three different spatial attributes TSLV, prey, 
and edge. This latter perspective allows an interpretation of the ef-
fects of spatial attributes on movement decisions similar to a classi-
cal step- selection analysis (Fortin et al., 2005). When considering the 
weighting function in environmental space, w( ), as a function of one 
variable, for example, w(TSLV), it is a sigmoidal curve. Additional addi-
tive terms of the other attributes (having β coefficients) shift the curve, 
whereas multiplicative terms (having γ coefficients) additionally influ-
ence the nonlinearity or shape of the curve. A shift in the curve means 
that the switch from an avoidance (small probability of selection) to 
a preference (high probability of selection) of a location happens at a 
different value of the spatial attribute. If the steepness of the curve 
increases (decreases), the switch happens more (less) abruptly.

2.4 | Statistical analysis

Movement data were analyzed individually for each wolf, comparing 
the fit of 10 models (Table 1). Wolves express different behavioral 
modes, such as handling a kill, resting away from a kill site, or relocat-
ing to a new location (Franke, Caelli, Kuzyk, & Hudson, 2006; Merrill 
et al., 2010). Because our goal was to understand the effect of TSLV 
with respect to the territory surveillance and revisiting areas of vary-
ing prey densities, we used only relocating movement steps for model 
fitting. Relocating steps were considered those that spanned at least 
five cells (1,500 m) in our discretized space (Franke et al., 2006; see 
Appendix A1 for details). However, non- relocating steps were omit-
ted only after calculating TSLV for the entire time series ensuring ap-
propriate values of TSLV that represented the correct times based on 
the full path. The final data comprised 244, 322, 181, 177, 251, and 
276 steps for individuals w83, w220, w230, w233, w284, and w285, 
respectively.

Maximum- likelihood estimates of the model parameters were 
obtained by numerically optimizing the model’s likelihood function 

(2)w(t(x))=
1

1+e−f(t(x),α,β,γ)
.

TABLE  2 Parameter estimates, together with standard errors (SE) 
of the kernel k describing general movement tendencies (i.e., step 
length). The parameters are the shape (λ) and scale (σ) of the Weibull 
distribution used to model step length. The last column gives the 
mean of the resulting Weibull distribution. For each wolf, we show 
the parameter estimates from the best model compared to the null 
model. The null model consistently overestimates general tendencies 
for step length

λ SE (λ) σ SE (σ) Meana

w83

Null 2.45 0.12 14.39 0.42 12.76

Best 2.04 0.14 13.24 0.14 11.73

w200

Null 2.23 0.09 12.94 0.36 11.46

Best 1.82 0.10 11.41 0.10 10.14

w230

Null 2.62 0.14 10.97 0.34 9.75

Best 
(edge)

2.02 0.17 9.47 0.17 8.39

Best 
(prey)

2.04 0.17 9.50 0.17 8.41

w233

Null 2.20 0.12 13.19 0.50 11.68

Best 1.77 0.14 11.46 0.14 10.20

w284

Null 1.90 0.08 15.61 0.59 13.86

Best 1.47 0.45 13.21 0.45 11.95

w285

Null 2.21 0.09 12.52 0.38 11.09

Best 1.84 0.27 11.17 0.27 9.92

aBecause the analysis operated on 300 × 300 m cells, the mean values 
translate into meters via multiplication by 300, for example, a mean of 10 
translates into a mean step length of 3 km ± 300 m.
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using a Nelder–Mead algorithm implemented in R (R Core Team 2015, 
Appendix A1). Model selection was performed via Akaike information 
criterion (AIC). We used the small sample criterion AICc because ratios 
of available steps to number of parameters for the most complex model 
were ≤40 (Burnham & Anderson, 2002). Within nested models, more 
complex models were selected when AICc differences were larger than 
2. We based this on the rule of thumb given by Burnham and Anderson 
(2002) that AIC differences of 2 or smaller indicate substantial support 
for a model. Adhering to the principle of parsimony, we therefore only 
selected a more complex model when its ΔAICc was larger than 2 com-
pared to the next simpler model. Parameter estimates of the weighting 
function were analyzed for their effects on movement decisions using 
the representation of the weighting function in environmental space, 
w( ) (Aarts et al., 2012).

3  | RESULTS

3.1 | General movement tendencies

Based on the best- fit model, mean displacements over 2- hr time inter-
vals (relocating steps only), calculated from parameters of the Weibull 
distribution for step lengths in the movement kernel k, ranged from 
2,500 to 3,600 m (±300 m due to the spatial discretization) for the six 
wolves (Table 2). When comparing this with estimates based on the 
null model, there is a consistent trend. Estimates of both the shape 
(λ) and scale (σ) of the Weibull distribution were smaller for the best- 
fit model, which included selection for spatial attributes, than for the 
null model (Table 2). The null model distribution corresponds to the 
“empirical kernel” used in classic step- selection analyses to sample 
“control” steps (Fortin et al., 2005). Here, this would have consistently 
overestimated step length by approximately 300–570 m per 2- hr 
step.

3.2 | Selection for spatial attributes

For all six wolves, the territory surveillance model with interaction 
of TSLV and distance from territory edge (H2b) had minimum AICc 

(Table 3). For one individual, w230, the same minimum AICc was 
reached by the prey management model with additive terms of TSLV 
and prey (H6a). The territory surveillance and prey management hy-
potheses are not mutually exclusive, and therefore both could be 
supported by the data without contradiction. Because this suggested 
the importance of both territory surveillance and prey management, 
we also tested a combined model with these terms (TSLV + edge + 
prey + TSLV × edge + TSLV × prey) in the weighting function. For 
w230, this became the best model, and for w284 the model per-
formed similarly well as the territory surveillance model but was nei-
ther significantly better nor parsimonious (Table A1 in Appendix A2).

Parameter estimates of the weighting function for the territory 
surveillance model (H2b) of all wolves were consistent with our pre-
dictions. All multiplicative coefficients (γt,e) were positive and their 
confidence intervals did not overlap zero, while most of the additive 
coefficients (βedge, βtslv) had confidence intervals that overlapped zero 
(Table 4). The overall effect of TSLV and edge on the probability of 
selection (modeled by the weighting function) was dominated by the 
multiplicative coefficient γt,e and was therefore positive. The overall 
selection coefficient for edge, given TSLV, was βedge+γt,e log (TSLV). As 
TSLV increased, this became positive already at TSLV = 2 (4 hr) in all 
cases. Similarly, the overall selection coefficient for TSLV, given edge, 
was βtslv+γt,e ⋅edge. As edge increased, starting from 0, this became 
positive at edge = 1 or 2 (corresponding to approximately 300–900 m 
from the edge) in all cases. As a result, there was strong evidence for 
wolves avoiding territorial boundaries, and as TSLV increased, wolf 
avoidance of the edge declined (Figures 2 and A2). When locations 
had not been visited for more than approximately 7 days, the weight-
ing function approached a function nearly constant at one, which 
means that edge and central locations were selected with the same 
probability.

Movement patterns of wolf w230 also supported the prey man-
agement model (H6a), where parameter estimates and the resulting 
weighting function only partly agreed with our expectations in rela-
tion to the prey management hypothesis (Table 4). Consistent with our 
prediction, the selection coefficient βtslv was positive, and therefore 
the wolf selected for longer TSLV, indicating that returns to previously 

ΔAICc

w83 w220 w230 w233 w284 w285

H0 Null 59.7 66.4 57.9 63.4 125.9 58.0

H1 Edge 45.2 66.6 55.6 49.7 76.6 38.2

H2a TSLV + edge 17.6 6.5 7.9 27.7 53.4 23.6

H2b TSLV + edge + TSLV × edge 0 0 0 0 0 0

H3 Prey 63.0 60.7 57.8 67.3 129.9 59.0

H4a Edge + prey 45.6 67.7 44.7 43.3 72.5 33.1

H4b Edge + prey + edge × prey 47.7 69.6 43.5 41.6 74.3 35.1

H5 TSLV 16.1 5.8 5.8 36.3 51.8 22.7

H6a TSLV + prey 18.0 5.9 0 30.2 52.7 23.2

H6b TSLV + prey + TSLV × prey 18.0 6.0 2.1 32.0 53.7 22.7

TABLE  3 Model selection results for 
the six wolves. Presented are AICc 
differences, ΔAICc,i = AICc,i – AICc,min for 
each model i. Best models are highlighted 
in bold. For all individuals, the best model 
includes TSLV and distance from territory 
edge with multiplicative interaction, 
supporting the territory surveillance 
hypothesis. For individual w230, the first 
rank is shared with the model that includes 
additive terms of TSLV and prey density, 
supporting the prey management 
hypothesis
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visited locations were delayed (Table 4, Figure 3b). However, the co-
efficient βedge was negative and the wolf selected for locations with 
lower prey density (Table 4, Figure 3a). As a result, the inflection point 
of the sigmoidal curve from low selection of recently visited sites to 
high selection of sites with longer absence was shifted to a higher 
value of TSLV, which led to a longer delay in revisiting sites when prey 
density was high (Figure 3b). Likewise, the selection for lower prey 
density was shifted to the right for increasing values of TSLV, which 
resulted in nearly equal selection for all prey densities after 5 days of 
absence (Figure 3a).

When considering the combined territory surveillance and prey 
management model for wolf w230, all estimated selection coefficients 
(all β and γ coefficients) had large confidence intervals that overlapped 
zero (Table A2). When we plotted the weighting function based on 
these estimates nonetheless, it was constant at one over most of the 
range of the spatial attributes, with only two exceptions (Figure A3). 
First, abrupt declines to zero selection occurred for locations that had 
been visited during the last 2- hr- time step, which simply may indi-
cate persistent movement. Second, the estimates predicted a decline 
to zero selection for the lowest prey density very close to the edge, 
and this effect vanished already slightly further inside the territory. 

Considering also the large and zero- overlapping confidence intervals, 
these effects may be over- fits to spurious effects at the most extreme 
ends of the attribute values.

4  | DISCUSSION

We investigated how the time since last visiting a location influ-
enced movement decisions in relation to territory surveillance and 
prey management. Our models are statistical in the sense that they 
define a probability distribution for observed movements but mecha-
nistic in that they describe a behavioral movement process. This is 
in contrast to classic resource (or step) selection analyses that treat 
movement steps as independent data points and sample control loca-
tions (or steps) before estimating selection coefficients (Forester, Im, 
& Rathouz, 2009; Fortin et al., 2005). The advantage of our method 
is that parameters of general movement tendencies and spatially 
explicit preferences are estimated simultaneously without assuming 
that the two aspects are independent (see also Avgar, Potts, Lewis, 
& Boyce, 2016), which produces consistently lower estimates of the 
step length distribution than if independent, a priori estimates for step 

α βtslv βedge βprey γe,p γt,e γt,p

Territorial surveillance: TSLV + edge + TSLV × edge

w83

Est. −2.15 −0.043a −0.014a – – 0.56 –

SE 0.86 0.20 0.091 – – 0.19 –

w220

Est. −2.41 0.47 0.039 – – 0.23 –

SE 0.53 0.15 0.042 – – 0.082 –

w230

Est. −2.97 0.49 −0.016a – – 0.82 –

SE 0.80 0.18 0.11 – – 0.31 –

w233

Est. −3.88 0.19 0.13 – – 0.33 –

SE 0.74 0.15 0.054 – – 0.10 –

w284

Est. −3.74 −0.36a 0.033 – – 0.28 –

SE 0.82 0.23 0.053 – – 0.06 –

w285

Est. −1.92 −0.045a 0.021 – – 0.58 –

SE 0.59 0.18 0.056 – – 0.22 –

Prey management: TSLV + prey

w230

Est. −3.96 2.66 – −1.54 – – –

SE 0.96 0.98 – 0.67 – – –

aNegative coefficients for the additive term still resulted in a mostly positive relationship due to the 
positive interaction coefficient because the overall selection coefficient for TSLV, given edge, is 
βtslv + γt,e ⋅edge. Vice versa, the overall selection coefficient for edge, given TSLV, is βedge + γt,e ⋅TSLV.

TABLE  4 Parameter estimates (Est.) and 
standard error (SE) of the best- fit logistic 
weighting function w based on spatial 
attributes TSLV, distance from territory 
edge (edge), and prey density (prey). 
Parameters β are selection coefficients of 
additive terms (shifting w), and parameters 
γ describe the multiplicative interaction of 
two attributes (changing shape of w 
nonlinearly). Parameter α is the intercept of 
the linear predictor and determines the 
position of the inflection point of the 
logistic weighting function where it reaches 
0.5. Two best model estimates are given 
for wolf 230 because they had equal 
support. Estimates for which Wald- type 
95% confidence intervals do not overlap 
zero are highlighted in italics
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length would have been used. An additional advantage to this ap-
proach that we did not use in this analysis is incorporating directional 
autocorrelation of movement in the movement kernel k (Schlägel & 
Lewis, 2014). In our case, we did not use this approach because our 
time series spanned only several weeks, and because we eliminated 
non- relocating behaviors such as handling a kill, resting away from a 
kill site, or revisiting kill sites (Franke et al., 2006; Merrill et al., 2010). 
Using autocorrelated bearings would have decreased the number of 
steps available for the analysis even further, because more than two 
successive location measurements would have been needed to define 
the probability of a step.

Adjusting returns after previous visitation is important when time is 
required to replenish high food abundance or quality (Bar- David et al., 
2009; Davies & Houston, 1981; Janmaat, Byrne, & Zuberbühler, 2006; 
Van Moorter et al., 2009). We found support for an additional type of 
resource depletion that we hypothesize is related to decay of scent 
markings. First, there was a general tendency of wolves to avoid loca-
tions close to the territory edge, which has been reported elsewhere 
as a means to elude intraspecific interference along the edge of their 
territories (Carbyn, 1983; Mech & Harper, 2002). Second, the probabil-
ity of wolves revisiting these areas increased in time suggesting wolves 
were responding to a decay in scent marks, which are needed for ter-
ritorial maintenance (Peters & Mech, 1975; Zub et al., 2003). Scent 
marks contain pheromones and chemical signals that elicit responses 
from other individuals and can prevent direct, aggressive encounters 

(Mech, 1994). They are thought to be an effective means of advertise-
ment because the scent remains in the environment for some time 
and is readily detected even at night (Feldhamer, Drickamer, Vessey, 
& Merritt, 2004). Peterson (1974) found on Isle Royale that wolves 
reversed direction of travel and retreated when they encountered a 
foreign scent mark along the edge of their territory. Ausband, Mitchell, 
Bassing, and White (2013) also reported that wolves will avoid areas 
where humans place wolf scats if they are regularly maintained. 
Indeed, the consistency in territorial surveillance among all six wolves 
indicates there is strong motivation for rotational movements to revisit 
the territory edge for territory maintenance (Jedrzejewski et al., 2001).

In contrast, we found less support for prey density influencing 
wolf movements and for movements being consistent with behavioral 
depression of prey. One of the six wolves showed some evidence of 
its movements being influenced by prey density, but even this wolf 
did not select for areas of high prey density as was reported for this 
area (McPhee et al., 2012). The difference between studies may exist 
because of the analysis scale. McPhee et al. (2012) reported that at 
the large- scale wolves selected hunt paths with higher prey than the 
overall territory, but at the scale of the hunt path landscape features 

F IGURE  2 Weighting function for the territory surveillance model 
(H2b) based on parameter estimates from individual w220. This model 
was best for all wolves. The weighting function gives the probability 
of selecting a location based on spatial attributes, here depicted 
as function of distance from territory edge (edge) in environmental 
space where distance from the edge was measured in discrete cells 
(300 × 300 m) for varying values of time since last visit (TSLV). The 
increasing sigmoidal curve indicates that locations closer to the edge 
are avoided. With increasing TSLV, the curve is shifted to the left 
due to the positive coefficient (βtslv) and becomes steeper due to the 
positive interaction parameter (γt,e), indicating that the avoidance of 
edge locations vanishes. Graphs for the other individuals show similar 
patterns Fig. A2
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rather than prey density influenced movements. In our approach, we 
focused on selection along the hunt path and found that the wolf se-
lected areas of low rather than high density. In addition, we analyzed 
“relocating” movements and did not include short steps. Wolves pos-
sibly slow down in high prey density areas, which could have led to a 
removal of short steps in high prey density areas in our analysis. The 
movements of the wolf with an effect of prey density also showed 
evidence of prey management, where a predator delays a revisit to an 
area because a visit evokes prey behaviors that make them less vul-
nerable (Charnov et al., 1976; Jedrzejewski et al., 2001; Kotler, 1992; 
Laporte, Muhly, Pitt, Alexander, & Musiani, 2010). We had expected 
that wolves would revisit sites with high density sooner because 
there could be higher variation among individual prey relaxing post- 
encounter anti- predator behaviors and predisposing them to wolf at-
tacks; however, when locations had been visited recently, selection by 
wolf w230 was highest for areas of low prey density perhaps because 
low densities are associated with increased vulnerability if group sizes 
are small (Bergmann et al., 2006; Hebblewhite & Pletscher, 2002; 
Kuzyk, Kneteman, & Schmiegelow, 2004).

From a modeling point of view, we were able to test the influence 
of time since last visit separately for territory maintenance and for for-
aging behaviors; however, an integration of the two behaviors within 
one model was more difficult. For wolf w230, the combined model fit 
better than the territory surveillance and the prey management model 
alone. But parameter estimates of the weighting function in the com-
bined model suggested an over- fit to spurious effects of the spatial 
attributes at their most extreme values. A possible explanation is that 
wolves make decisions in a way that our logistic weighting function 
was unable to represent. The logistic function could track earlier or 
later returns to locations based on distance to edge or prey density. 
However, wolves may assimilate territorial and foraging behaviors in 
a different nonlinear way (Rothley, Schmitz, & Cohon, 1997). We sug-
gest further research along this line, possibly by modifying the form of 
weighting function in our modeling framework.

Our model discretizes both space and time, which has implications 
for the generality of our results. In our random- walk model, we implic-
itly assume that temporal scales of the underlying behavioral process 
and our data (2- hourly) match. This is a common problem when fitting 
discrete- time movement models to data for statistical inference, lead-
ing to parameter estimates that are tied to the scale of the analysis 
and that may not necessarily agree with the “true” parameter values at 
the scale of the behavioral process (Schlägel & Lewis, 2016). Despite 
this, we believe our results qualitatively reflect the wolves’ behavior, 
also because we used a logistic form of the weighting function in-
stead of an exponential form; the former having performed better in a 
simulation- based analysis of the robustness of resource- selection type 
movement models (Schlägel & Lewis, 2016).

In general, impact of spatial resolution is less clearly understood. In 
our analysis, we used a relatively coarse discretization of 300 × 300 m 
cells. Using a finer discretization would have increased computational 
burden because the bottleneck during likelihood function optimiza-
tion was the computation of the normalization constant in the step 
probability (eqn 1). This constant requires multiplication of kernel and 

weighting function for all locations within an area that the individual 
may possibly move to based on the current location (and this con-
stant has to be computed for every data point in the time series). For a 
finer spatial resolution, the same area would consist of more locations, 
which would (nonlinearly) increase the amount of calculations neces-
sary. With increasing computational power, or by further streamlining 
the code, it may be possible to reduce current runtime (1–2 days for 
our six wolves using multiple CPUs). However, we considered the dis-
cretization sufficient because of the design of TSLV in our model. For 
calculating TSLV, we used a buffer of about 1.2 km around the straight 
line between consecutive GPS fixes because wolf passage affects prey 
behavior beyond the actual movement path (Latombe et al., 2014; 
Liley & Creel, 2008). Therefore, for the sake of TSLV, a finer spatial 
discretization would not have increased the resolution biologically. 
Ideally, the size of the buffer would be integrated as a free parameter 
that is estimated during model fitting, in which case it could vary for 
different models (e.g., prey management and territory surveillance). In 
our analysis, we fixed the buffer size to keep model complexity at a 
reasonable level given the limited time series length of our data.

The approach in this paper provides a step forward in the ongoing 
attempt to incorporate cognition and memory in movement analyses 
(Avgar et al., 2015; Börger, Dalziel, & Fryxell, 2008; Fagan et al., 2013; 
Oliveira- Santos, Forester, Piovezan, Tomas, & Fernandez, 2016). Our 
method goes beyond previous approaches that investigate traplining 
(Ohashi, Leslie, & Thomson, 2008) or periodicity in recursive move-
ment patterns (Bar- David et al., 2009; English et al., 2014; Giotto, 
Gerard, Ziv, Bouskila, & Bar- David, 2015). In our models, time since 
last visit to locations is a spatially explicit feature that influences move-
ment decisions in combination with information on territory geometry 
and prey densities. This allowed us to investigate behaviorally complex 
movement strategies in wolves, and we demonstrated that time since 
last visit influenced future movement decisions in relation to territory 
surveillance and prey management. Our approach can similarly be 
used to study the effect of time since last visit in other contexts of 
resource renewal (e.g., D’Souza, Patankar, Arthur, Marbà, & Alcoverro, 
2015; Janmaat et al., 2006).

Despite some progress in studying cognitive aspects of animal 
movement, few studies have quantified the temporal and spatial 
scales at which individuals are aware of and respond to non- local 
information. Reported time spans during which ungulates shift their 
habitat selection after wolf presence range from 1 day (Creel, Winnie, 
Maxwell, Hamlin, & Creel, 2005) to up to 10 days (Latombe et al., 
2014). In contrast, Avgar et al. (2015) found indication of no mem-
ory decay in a space- use analysis of woodland caribou. In our study, 
wolf w230 showed a varying response to prey density within approx-
imately 5 days since last visit, after which the probability of selection 
leveled off at one for all locations. Similarly, after approximately 7 days 
of absence, wolf movement decisions became irrespective of distance 
from territory edge. These estimates are roughly in line with the scales 
reported by Latombe et al. (2014). In a predator–prey system where 
predators win the behavioral response race (Sih, 2005) we may ex-
pect predators’ response times to be larger than the prey’s response, 
and vice versa. We need more studies that track predators and prey 
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simultaneously and analyze the temporal scales of awareness for both 
predators and prey to elucidate this further. Simultaneous tracking 
studies have the additional advantage that temporal scales of data can 
be matched. As discussed above, we should expect parameter esti-
mates from resource- selection type analyses to be scale dependent. 
Unless we use truly robust models, comparisons of cognitive aware-
ness are best to be attempted when models make the same assump-
tions about the scales of the behavioral processes.

In our analysis, we used a fixed buffer size for modeling the spatial 
extent at which locations were considered “visited” for the purpose of 
calculating TSLV. A possible extension of our model would treat the 
buffer size as a free parameter to be estimated during model fitting. 
With this, it would be possible to also gauge the spatial scale at which 
individuals experience their environment for this specific purpose.

Using information on elapsed times (“how long ago?”) can be 
part of episodic- like memory in animals, a complex form of mem-
ory on the what, when, and where of events, which has been 
demonstrated in experiments in birds, rodents, and apes (Clayton 
& Dickinson, 1998; Martin- Ordas, Haun, Colmenares, & Call, 2010; 
Roberts et al., 2008). Wolves may store and retrieve information on 
elapsed times in internal memory (Jacobs, Allen, Nguyen, & Fortin, 
2013; Lew, 2011), but wolves may also use externalized memory in 
the form of their own scent marks (Peters & Mech, 1975), as has 
been argued for neurologically simple amoebae (Reid, Beekman, 
Latty, & Dussutour, 2013). However, whereas scent marks need to 
be encountered to retrieve information on previous visits, internal 
memory allows more efficient integration of information for goal- 
oriented movement (Asensio & Brockelman, 2011; Polansky et al., 
2015). Therefore, including goal- oriented movement rules in a mod-
eling framework such as ours would further elucidate the impor-
tance of internal memory.
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APPENDIX A1

COMBINED PREY DATA

To calculate the combined prey density measure, we calculated a 
weighted sum of prey numbers of all four species. That is, our measure 
of prey density was

where N is the number of individuals of the prey species indicated in 
the subscript, and w is a weight between 0 and 1 to adjust for the size 
of the prey. The weights were based on ungulate bodymass in winter 
(Knopff et al. 2010), for simplicity averaged over female and males,

To make the weights unitless, we converted them to a number be-
tween 0 and 1 by dividing the value of each species by the sum of all,

TIME SINCE LAST VISIT

We defined the variable TSLV to specify at each time step t, and for 
each location x, the time, measured in time steps, since the animal had 
last been to the location, denoted by mt(x). For example, if between 
times t−1 and t the animal moved from location xt−1 to xt, we consid-
ered all locations on the path from xt−1 to xt as most recently visited 
and and set their value of TSLV at time t to be 1. That is, we defined 
mt(z) = 1 for all locations z that lie on the path between xt−1 and xt. For 
the calculation of TSLV, we defined the path to be the straight line 
between two locations. Because it is unlikely that an individual moves 
in a straight line, we also considered locations within a certain distance 
of the line as visited (for the purpose of calculating TSLV). For these 
locations, TSLV was also set to 1. Because we aimed to understand 
the influence of the travel history in relation to prey, we took into ac-
count at which distances wolf presence influences prey behavior. 
Studies on elk–wolf relationships found that wolf presence can affect 
elk behavior, such as group size, vigilance, and movement rates, at 
distances of 1–5 km (Liley & Creel 2008; Proffitt et al. 2009). Here, we 
used discretized space with landscape cells of size 300 × 300 m. We 
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defined a buffer around a cell using the rectilinear distance measure 
(more colloquially also referred to as Manhattan distance)

where x and y are two locations on the grid with easting (x- axis) and 
northing (y- axis) coordinates xeast, yeast and xnorth, ynorth, respectively. 
The coordinates were taken from the center of each cell. With this 
distance measure, the buffer becomes a diamond- shaped area around 
the center cell. If we define a buffer of size δ around the location x, the 
corners of the buffer area are those cells that are δ cells away from x in 
exact northern, eastern, southern, and western directions. For the cal-
culation of TSLV, we used a buffer of size of four cells. We calculated 
the buffer for each cell that is intersected by the straight line of a step 
(Fig. A1,a). A distance of four cells in the discretized space corresponds 
to 1.2 km in continuous space. Using a buffer around the straight line 
between two locations was a simple way of accounting for the fact 
that we did not observe all locations that an animal visited on its path. 
A more sophisticated approach would be to implement, for example, a 
Brownian bridge for the estimated path between two successive loca-
tions (Horne et al. 2007). One could even go further and expand a 
Brownian bridge model to include the more complex movement 
mechanisms studied here.

For all other locations that were not considered visited, TSLV in-
creased by 1 at every time step. That is, we set mt(z) = mt−1(z) + 1 for 
locations z not visited during times t−1 and t. This led to a map with 
values of TSLV similar to a map with environmental attributes, but 
which changed at every time step. TSLV increased in areas that the 
individual stayed away from and was reset to 1 whenever an 

individual visited a location, that is, when it came sufficiently close to 
the location (Fig. A1,b). The dynamic map was updated at the end of 
each movement step, and therefore, the weighting function w at time 
t was based on TSLV at time t−1.

Given TSLV for some point in time, it is straightforward to update it 
for all following time steps based on the animal’s movement path. To 
obtain an initial map of TSLV, we separated movement trajectories into 
two segments. We used the first 300 movement steps to initialize 
TSLV and used the rest of the trajectory for statistical inference. The 
time that corresponded to the beginning of the second part of the tra-
jectory was set to be t = 1. We calculated TSLV at t = 1 for all locations 
that were visited during the initialization phase. For locations that 
were not visited, we set TSLV to the length of the initialization phase.

The trajectories contained missed observations. If at a time step t 
the corresponding location was missing, we updated TSLV by increas-
ing TSLV for all locations by 1. We did not reset any value to 1 because 
there was no current path available. However, we accounted for this 
later at the next available time step. At that time, we reset TSLV to 1 
for the entire path since the last available location. Because at least 
two time intervals had passed since the last location, we increased the 
buffer size for these longer steps by 2.

MOVEMENT KERNEL

The general movement kernel k is the density function of a random 
walk in discretized two- dimensional space. For this, we sampled a 
continuous- space density at discrete points (representing the center 

d (x,y)= ||xeast−ynorth
||+ ||xnorth− ynorth

|| ,

F I G .  A 1 Depiction of the dynamic map TSLV. (a) TSLV is reset to 1 for locations within a buffer area (blue) around the straight- line path 
(black line) between current and previous location (black cells). (b) Example for the dynamic map TSLV at one particular time step, here depicted 
for wolf w220. The current location is marked with a black triangle, and the last 20 time steps are depicted by black dots and black lines. The 
recent path of the wolf has low values of TSLV (white to light yellow), and areas with long absence have high values of TSLV (red). (c) All steps 
(marked by crosses) that are possible as “relocating” steps, when relocating steps are chosen to have step length ≥5 cells (~1500 m). The red 
circle represents locations that are within 1000 m of the current location. Steps of this length (or shorter) would naturally end at a location with 
TSLV = 1.
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location of each cell in the landscape). The normalization constant in 
the step probability given in the manuscript assures that step proba-
bilities are properly normalized over the discretized space. We used a 
Weibull distribution for step lengths and assumed a uniform distribu-
tion for bearings. A major reason for using simply a uniform distribu-
tion for bearings was to retain as many steps as possible. In a correlated 
random walk, bearings are autocorrelated, and therefore, three suc-
cessive location measurements are needed to define the probability 
for one movement step. With missing measurements in the time se-
ries, this would decrease the number of available steps. For example, 
for wolf w233 with 177 steps available for analysis, this would remove 
21 of those steps, despite a reasonable fix rate of 84%. Given that 
using autocorrelated bearings would also add a parameter, this would 
reduce the ratio of available data points and number of parameters to 
17 (from 22).

Thus, the kernel is given by

where λ and σ are the shape and scale parameter of the Weibull 
distribution, respectively. The factor 1/|| x−y || is due to a change from 
polar coordinates (using step lengths and bearings to define a step) to 
Euclidean spatial coordinates.

RELOCATING STEPS

We only analyzed steps with a minimum length. Franke et al. (2006) 
used a hidden Markov model to identify the three major modes “bed-
ding,” “localized activity,” and “relocating” in wolf behavior. They found 
that the relocating mode was characterized by steps with length above 
200 m, with the majority of steps between 500 and 2500 m. These 
distances were obtained using movement data with hourly location 
measurements and therefore were not immediately transferrable to 
our study with 2- hourly movement data. Roughly, steps at a rate of 
500 m per hour may be converted to 1000 m per 2 hr although it is 
known that measurements of travel distance are influenced by sam-
pling rate, and the longer the time interval between location measure-
ments the larger the risk of underestimating true travel distance (Pépin 
et al. 2004; Rowcliffe et al. 2012). Still, with these considerations, it 
seemed appropriate to set the threshold for defining relocating steps 
at about 1000 m. If movement was straight in east- west or north- 
south direction, 1000 m corresponded to about three cells in the dis-
cretized space. Another point to consider for the threshold was the use 
of the buffer for TSLV. If a step was within the buffer size of the last 
visited location, the step naturally ended at a location with TSLV = 1 
(Fig. A1,c). In contrast, if a step was larger than the buffer size, which 
was four cells (~1200 m), it could end at a location with TSLV = 1, espe-
cially when the animal backtracked. However, there was also a chance 
that the step ended in a location outside the buffer of the previous 
step with TSLV > 1. To avoid an artificial bias toward smaller values of 
TSLV for small steps, we defined the minimum step length to be five 
cells, corresponding roughly to 1,500 m in continuous space (Fig. A1,c).

Using only steps with a minimum length, strictly speaking we would 
have to adjust the movement kernel k by truncating the Weibull distri-
bution at the minimum step length. This would lead to a slightly lower 
estimated mean step length for all models. Given the fairly large mean 
step lengths, we did not consider this problematic. In addition, we did 
not implement the truncated Weibull because our aim was to restrict 
the analysis to steps that can be attributed to a “relocating” behavioral 
mode. Ideally, a distinction of behavioral modes is performed by other 
means, for example, using a hidden Markov model (McClintock et al. 
2012), in which case “relocating” steps could have also smaller step 
length. We did not embed our model into a hidden Markov model, 
because based on our restricted time series length, we could not in-
crease model complexity arbitrarily. However, for data sets with 
longer time series length, for example, due to higher temporal resolu-
tion, we recommend more sophisticated approaches to data 
segmentation.

LIKELIHOOD 
FUNCTION AND OPTIMIZATION

The likelihood function of the model is

for all available steps from xti−1 to xti with ∥xti−1 −xti ∥≥5. During model 
fitting, we conditioned the likelihood on the first location of each seg-
ment of successively available locations.

Note that nonrelocating steps were omitted after calculating TSLV 
for the entire time series. Therefore, steps used for the final analysis 
had appropriate values of TSLV, representing correct times based on 
the full path.

We optimized the likelihood function using a Nelder–Mead algo-
rithm implemented in R (R Core Team 2015). To find the find global 
maximum, we optimized the likelihood function starting at various 
points in parameter space. From these results, we chose the parame-
ter with the highest likelihood value and used them as starting point 
for the final optimization. We used an estimate of the Hessian matrix 
of the log- likelihood at the optimal parameter values to obtain stand-
ard errors of the maximum- likelihood estimates.
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APPENDIX A2

T A B L E  A 1 . Model selection results when the models with time- dependent effect for both distance from edge and prey density (last two 
rows) were included. Presented are AICc differences, ΔAICc,i = AICc,i − AICc,min for each model i. Best models are highlighted in bold. For 
individual w230 the most complex model becomes best, however parameter estimates suggest that the model is an over- fit to spurious effects 
of extreme values of the spatial attributes (Table A2, Fig. A3).

ΔAICc

w83 w220 w230 w233 w284 w285

null 59.7 66.4 60.3 63.4 126.3 58.0

edge 45.2 66.6 58.0 49.7 77.0 38.2

TSLV+edge 17.6 6.5 10.3 27.7 53.8 23.6

TSLV+edge+TSLV*edge 0 0 2.4 0 0.4 0

prey 63.0 60.7 60.2 67.3 130.4 59.0

edge+prey 45.6 67.7 47.1 43.3 72.9 33.1

edge+prey+edge*prey 47.7 69.6 45.9 41.6 74.7 35.1

TSLV 16.1 5.8 8.2 36.3 52.2 22.7

TSLV+prey 18.0 5.9 2.4 30.2 53.1 23.2

TSLV+prey+TSLV*prey 18.0 6.0 4.5 32.0 54.1 22.7

TSLV+edge+prey 19.6 7.3 4.4 29.1 54.0 24.1

TSLV+edge+prey+ 
TSLV*edge+TSLV*prey

2.1 2.1 0 1.9 0 0.9

T A B L E  A 2 . Parameter estimates for the model with interaction of both distance from edge and prey density with TSLV. Standard errors for 
the selection and interaction coefficients are all larger than the estimates themselves, leading to large Wald- type confidence intervals that 
overlap zero, indicating high uncertainty in the estimates.

α βtslv βedge βprey γedge γprey

w230

 Est. −3.57 2.49 −0.07 −1.3 1.64 3.43

 SE 1.73 2.93 0.13 1.56 2.44 5.22

https://www.R-project.org/
https://www.R-project.org/
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F I G .  A 2 Weighting function for the territory surveillance model (H2b) with minimum AICc using the estimated parameters. Panels correspond 
to individual wolves. The weighting function gives the probability of selecting a location based on spatial attributes, here depicted as function 
of distance from territory edge (in environmental space). Distance from the edge is measured in discrete cells (300 × 300 m). For all wolves, the 
increasing direction of the sigmoidal curve indicates that locations closer to the edge are avoided. With increasing time since last visit (TSLV), the 
curve is shifted to the left due to the positive coefficient (βtslv) and becomes steeper due to the positive interaction parameter (γt,e), indicating 
that the avoidance of edge locations decreases. The weighting functions for the different wolves show the same general pattern and only vary 
slightly. This variation is likely due to individual variation of the wolves’ behavior and territories (see also Fig. 1).
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F I G .  A 3 Weighting function for the joint model TSLV+edge+prey+TSLV×edge+TSLV×prey with parameter estimates from individual w230. 
The weighting function gives the probability of selecting a location based on spatial attributes, here depicted as function in environmental 
space of the three spatial attributes time since last visit (TSLV) (a and b), prey density (c and d), and distance from territory edge (e and f). TSLV is 
measured in time steps; prey density (number per cell) is standardized over the territory; distance from edge is measured in cells (300 × 300 m). 
a and c: Distance from edge is fixed at 2 (approx. 600–900 m from edge). b and d: Distance is fixed at 5 (approx. 1.8–2.1 km from edge). e and f: 
Prey density is fixed at −1 (below average) and 1 (above average), respectively. The weighting function was nearly constant at 1 across most of 
the ranges of spatial attributes, with only two notable exceptions. First, abrupt declines to zero selection occurred for locations that had been 
visited during the last 2- h- time step (all panels), which simply may indicate persistent movement. Second, the estimates predict a decline to zero 
selection for very low prey density close to the edge (a and c), but this effect vanished already slightly further inside the territory (b and d). Thus, 
effects were predicted only at the most extreme ends of the attribute values. Furthermore, standard errors of parameter estimates were large 
such that Wald- type confidence intervals of the parameters would overlap zero (Table A2).
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APPENDIX A3

Runtime benchmarks

Here, we provide an overview of the computational load of the model 
fitting. The measurements provided here result from test runs on a PC 
with Intel Core i5 2.3 GHz processor. We used data of wolf 220. Model 
fitting required optimization of the likelihood function over a multidi-
mensional parameter space. For the null model, there were only two 
parameters to estimate, while the most complex model contained 
eight parameters (those presented in Table A2, plus σ and λ). One eval-
uation of the likelihood function required approximately 0.54 seconds. 
Most of this runtime can be attributed to computation of the normali-
zation constant (denominator) in eqn 1. During the optimization rou-
tine, the likelihood function has to be evaluated many times. The 
amount of calls to the likelihood function necessary until the 

optimization routing converges varies depending on which model is 
fitted. During our test runs, the null model required up to 93 calls to 
the function; the territory surveillance model (H2b) required up to 
1147 calls; the most complex model required up to 2000 calls (which 
we had set as maximum number of iterations in the optim function in 
R). To find a global maximum in multidimensional parameter space, it is 
customary to perform the optimization multiple times with varying 
starting values. We used 20 starting values and used the resulting op-
timum for the final optimization. Thus, if we use 1000 iterations until 
convergence as a baseline, one model fit requires approximately 
190 minutes. We had 10 models (Table 1), not counting the additional 
runs with the most complex model (Table A1), and six wolves, resulting 
in an approximate runtime of 8 days. Note that the actual runtime, 
however, can be shortened by running the analysis simultaneously on 
multiple CPUs.


