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Abstract

The performance of density based clustering algorithms may be greatly influenced by the

chosen parameter values, and achieving optimal or near optimal results very much depends

on empirical knowledge obtained from previous experiments. To address this limitation, we

propose a novel density based clustering algorithm called the Density Propagation based

Adaptive Multi-density clustering (DPAM) algorithm. DPAM can adaptively cluster spatial

data. In order to avoid manual intervention when choosing parameters of density clustering

and still achieve high performance, DPAM performs clustering in three stages: (1) generate

the micro-clusters graph, (2) density propagation with redefinition of between-class margin

and intra-class cohesion, and (3) calculate regional density. Experimental results demon-

strated that DPAM could achieve better performance than several state-of-the-art density

clustering algorithms in most of the tested cases, the ability of no parameters needing to be

adjusted enables the proposed algorithm to achieve promising performance.

Introduction

Clustering has been a promising technique in data mining and pattern recognition [1–3]. One

important goal of clustering is to find potential data structures without supervision informa-

tion. In density based clustering algorithms, a density threshold (which often represents radius

of searching circle and size of grids) is usually used to build a search framework, and the final

results depend on the local or global density threshold settings. Density based clustering algo-

rithm follows the hypothesis that the high-density regions are always surrounded by low-den-

sity connected sets. DBSCAN, OPTICS, DENCLUE, CLIQUE all belong to this kind of

algorithms [4–7], which use thresholds to find clusters. In addition to the above algorithms,

recently Rodriguez and Laio proposed a novel fast density clustering algorithm by searching

density peaks (DP) [8], and they adopted a global threshold to calculate the local density of

each point. However, manual intervention and domain knowledge is still required to obtain

an appropriate threshold in DP, and a user may require a significant amount of time to learn

how to configure parameters properly [9]. Based on the above consideration, in this research,

we propose an adaptive density clustering method to address the above issue.
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To determine appropriate parameter values for clustering algorithms, a number of

approaches have been used, for instance, swarm-inspired algorithms and genetic algorithms

[10–13]. The swarm algorithms can be used to find the optimal parameters, and examples of

swarm algorithms include particle swarm optimization (PSO) and fireworks algorithm [14,

15]. However, the parameter search process needs prior knowledge to calculate fitness func-

tions in these algorithms, and it is challenging to design proper fitness functions. For unsuper-

vised clustering tasks without ground-truth labels, the swarm optimization algorithms and

genetic algorithms are not straightforward to perform parameter search. In addition, the cho-

sen parameter values may be invalid when clustering new datasets with different characteris-

tics. This necessitates an adaptive approach which can automatically achieve density

clustering. Thus, in this research we will develop a robust and fast adaptive clustering strategy

from a new perspective of density propagation.

The significant contributions of this research are twofold. First, the definitions of between-

class margin and within-class cohesion of multi-density structure are proposed for achieving

density propagation. Second, the DPAM algorithm is proposed to automatically extract poten-

tial spatial data structure without manual adjustment of parameter values.

The rest of this paper is organized as follows: in Section 2, related work about density clus-

tering is reviewed. In Section 3, the proposed DPAM algorithm is described in details. Experi-

mental results and associated analysis on publicly available datasets commonly used for

evaluating clustering algorithms are reported in Section 4. The paper ends with conclusions in

Section 5.

Related work

In this section, we review the related work of density clustering algorithms. Most density based

clustering algorithms are based on the same assumption: the dense regions of objects sur-

rounded by low-density regions clusters. Based on this assumption, many methods such as

DBSCAN, OPTICS, DENCLUE, CLIQUE and STING are proposed [16]. These algorithms

calculate local density according to a given distance metric, which contains the minimum

number of neighborhood at least. DBSCAN is a typical density based clustering algorithm, and

in DBSCAN the density of every point is associated with the number of points within a thresh-

old radius circle. OPTICS aims to overcome the shortcomings of DBSCAN by ordering points

to identify the cluster structure. The data space can be quantized into a finite number of cells

to form a grid structure. There also exist some grid density clustering algorithms: STING uses

grids to store statistical information by the wavelet transform method; CLIQUE employs grids

to high dimensional data clustering [17, 18]. However, all these algorithms require users to set

parameter values manually and this may lead to fluctuating clustering performance.

DP is an outstanding density clustering algorithm [8], and it adjusts the density hypothesis:

it assumes that the low density areas cover centers of clusters, and the centers are far away

from each other. In the DP algorithm, an important parameter dc (the percent of all data points

similarities) representing the global density should be specified by users empirically, and it is a

critical parameter which fundamentally affects the algorithm performance and the cluster cen-

ters produced by decision graph [19]. However, it may be very challenging to obtain satisfac-

tory results in DP without prior knowledge.

In general, all of the above algorithms are dependent on the choice of thresholds, such as

the density size or grid size. To use these algorithms, users often need to adjust parameter val-

ues gradually according to situations specific to different datasets in order to achieve better

clustering results.

Density propagation clustering algorithm
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Density propagation based adaptive multi-density clustering

(DPAM)

A single natural cluster can be composed of a set of micro-clusters, each of which includes a

smaller number of points with a higher local density. We propose the concept of regional den-

sity to measure the distributions of points in each micro-cluster in Section 3.3. The proposed

DPAM is based on the following assumption: the smaller the difference of regional density

among different micro-cluster is, the better the clustering results are.

The points of different regional density constitute multi-density spatial data, and it is easier

to cluster the micro-clusters than the original data. Hence a fast adaptive density clustering

algorithm based on density propagation is proposed, which is better suited for clustering the

obviously multi-density spatial data. DPAM mainly considers data of obvious boundaries

except for links between clusters.

DPAM is a three-stage clustering algorithm: Stage 1 is establishing undirected graph (Sec-

tion 3.1); Stage 2 is merging micro-clusters (Section 3.2); and Stage 3 is the final clustering

(Section 3.3). DPAM does not depend on specific parameters to achieve accurate and robust

results. We now describe these three stages in detail.

Generate micro-clusters graph

The first stage of DPAM is to initially build sub-graphs of all micro-clusters to make sure that

one micro-cluster only has one kind of label. There are several different methods for generat-

ing sub-graphs, such as k nearest neighbor graph and �- neighbors (� means the minimum

number of data points that a sub-cluster contains) [20], but these methods cannot obtain pure

labels within a single micro-cluster. We choose the affinity propagation (AP) clustering algo-

rithm to guarantee that the points in the same micro-cluster has the same label [21]. AP tends

to cluster local neighbor points to form micro-clusters [22]. Parameter preference (P) in the

AP algorithm is an important value which can be varied to produce different clusters with dif-

ferent numbers of points [23]. The smaller the value of P, the bigger the final number of the

clusters is [24], and the more likely every cluster will contain the same label. We use the char-

acteristics of AP that easily distinguishes local dense points and dynamically divides the global

structures to produce micro-clusters. We denote a data set of n points by X = {X1, . . ., Xi, . . .

Xj, . . . Xn}, and the similarity matrix S(i, j) is calculated by Euclidean distance as in Eq (1) [25],

then we use Eq (2) to reset P resulting in a smaller number of clusters. In Eq (2) the default

value of θ is 0.1 in order to produce more micro-clusters. We will show in Section 4.1 that the

default value of θ is effective for all data sets tested in this research and it does not need to be

modified, and the default value is just to obtain the pure label in a single micro-cluster as

much as possible.

Sði; jÞ ¼ kXi � Xj k ð1Þ

P ¼ yminðSði; jÞÞ ð2Þ

Using the AP algorithm with the newly defined P that can effectively recognizes small local

clusters, we are now able to obtain many micro-clusters. Every micro-cluster has only one

kind of label, and these micro-clusters will constitute the final better clusters. Thus, the cluster-

ing task is transformed to grouping all these micro-clusters.

Density propagation clustering algorithm
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Density propagation

DPAM uses the between-class margin (which measures distance between two micro-clusters)

and within-class cohesion (which describes compactness within a single micro-cluster) mea-

sure to determine whether the two clusters can be merged into one. This idea is called density

propagation. First all data are assigned to different N micro-clusters C = {C1, . . ., Ck, . . . Cl, . . .

CN}. From the local density perspective, the closer two micro-clusters are, the more likely they

may belong to the same class. Thus we use Eq (3) to represent the between-class margin (BM),

which describes connectivity between two micro-clusters Ck and Cl:

BM ¼ min
i2Ck;j2Cl ;k6¼l

fSði; jÞg ð3Þ

The within-class cohesion (WC) defined in Eq (4) describes the compactness of a micro-

cluster. WC implies the maximum distance of any two points within a sub-cluster, and it mea-

sures the degree of closeness for a micro-clusters Ck.

WC ¼ max
i2Ck;j2Ck

fSði; jÞg ð4Þ

Formula (5) is the decision function for deciding whether Ck and Cl can be combined into

the same cluster. If the distance of one point of Ck and the next among Cl is smaller than WC
of Ck, we merge the two micro-clusters Ck and Cl into a common cluster, then we set k = l,
which means all points in Ck will be labelled as l. In this way, all the labels of these micro-clus-

ters will be modified by such density propagation mechanism.

( k ¼ l; BM � WC < 0

k 6¼ l; others
ð5Þ

In this stage, the connective neighbor micro-clusters will be merged into the same clusters.

The local decision method has its disadvantage: when one micro-cluster is comparatively far

away from another, local density propagation will not work, and they cannot become a cluster.

Thus we propose the concept of regional density to complete the final clustering from the

global perspective. This will be described in Section 3.3.

Calculate regional density

The high quality clusters are surrounded by neighbors with lower local density and they are at

a relatively large distance and have higher local density [26]. Often, each sub-cluster has

boundary points around it to form a region, so we propose the concept of regional density

(RD) to detect micro-clusters which have high density, and then the sparse points are assigned

to their nearest high density clusters. RD is influenced by two factors: the linear density of a

single micro-cluster (LD) as defined in Eq (6) and the number of points within a single micro-

cluster (NS). RD is the product of LD and the global proportion of NS (NS/n) as shown in Eqs

(6) and (7):

LDCk
¼

Pn
i¼1;iþ12Ck ;iþ1�n;i2Ck

Sði; iþ 1Þ

NS
ð6Þ

RDCk
¼

Pn
i¼1;iþ12Ck;iþ1�n;i2Ck

Sði; iþ 1Þ

n
ð7Þ
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Essentially, density propagation is to identify locally compact clusters, and ultimately we

would like to obtain results with strong between-class margin and within-class cohesion. A

micro-cluster with a high RD value has higher density. The smaller the gaps of regional density

among different micro-clusters are, the better the clustering results we can get. So we use the

variance to measure regional density gaps of different sub-clusters and minimize the variance

of RD among sub-clusters through density propagation. The process of minimizing the vari-

ance of RD is to achieve more robust clustering results, as shown in Formula (8).

minVar ðRDÞ; ð8Þ

where RD represents regional densities of all micro-cluster, RD = {RDC1
, � � �, RDCN

}, N is the

number of micro-clusters. We solve the above model by merging low density regions into

their nearest higher density micro-clusters so as to update RD. We then calculate the variance

of RD with the updated RD values. We repeat this process until the variance of RD cannot be

further reduced. Eventually, results that fit our hypothesis will be obtained. The detailed steps

of solving Formula (8) are shown in Algorithm 1.

Algorithm 1: The Detailed Steps of Solving Formula (8)

repeat
1. Calculate RD for every micro-cluster;
2. Calculate variance of all RDs
3. Merge the micro-cluster Ck with low RD into their nearest high RD

micro-cluster Cl;
until Variance of all RDs no longer decreases

The detailed procedure of DPAM

The DPAM algorithm begins with micro-clusters graphs produced by AP, which is a better

generation method. Afterwards we calculate the distance of every two points, and we use

between-class margin (BM) and within-class cohesion (WC) to evaluate which two micro-clus-

ters can be merged into a new cluster. But there may still exist some sparse density regions, so

we merge them into their nearest high density clusters according to the density assumptions.

The detailed procedure of the proposed DPAM algorithm is shown in Algorithm 2.

Algorithm 2: The Detailed Steps of the DPAM algorithm

Require: Data set, Preference P.
Ensure: The clustered label results Y for X.
1: Clustering by Affinity Propagation;
2: repeat
3: Calculate BM and WC based on Eqs (3) and (4), respectively;
4: Propagate labels Y of micro-clusters according to the decision

function given by Formula (5);
5: until every label of micro-cluster is reset
6: Solve Model (8) by Algorithm 1;
7: Return Y

In conclusion, the time complexity of the DPAM is O(n2), which is not higher than

DBSCAN and DP Clustering.

Experimental results and discussion

In this section we report the performance of DPAM. We experimented with publicly available

data, and the clustering performance evaluation tasks include: (1) whether DPAM can produce

Density propagation clustering algorithm
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correct clustering results for low dimensional data, (2) performance comparison with other

density clustering algorithms, and (3) whether DPAM is robust on high-dimensional data.

All the experiments are carried out with the same default parameter values and the same

data. Eleven datasets are used in the experiments, as shown in Table 1, datasets Jain, Spiral and

Flame are taken from http://cs.joensuu.fi/sipu/datasets/, dataset Dount is artificial, and it can

be downloaded from https://github.com/mlyizhang/DPAM.git. Datasets breast, ionosphere,

iris, sonar, vehicle, liver and wine can be downloaded from (http://archive.ics.uci.edu/ml/

datasets.html).

To evaluate the clustering results, we adopt the commonly used evaluation index F-measure

(FM), as defined below: for a pair of points Xi and Xj, they are represented as TP if they have

the same class and the same cluster. They are represented as FP if they have different class

labels but are grouped into the same cluster. They are represented as FN if they have the same

class label but are grouped into different clusters.

precision ¼
#TP

#TPþ#FP
ð9Þ

Recall ¼
#TP

#TP þ#FN
ð10Þ

FM ¼
2 � Precision � Recall
Precisionþ Recall

ð11Þ

In Eqs (8) and (9), # represents the number of the corresponding quantity.

Sensitivity analysis of micro-clusters generation

The first and important step of DPAM is generation of micro-clusters as described in Section

3.1. There is a parameter θ in this stage, and we give a default value θ = 0.1, but it never changes

when new data sets are used.

To illustrate the effectiveness of this, we make an experiment on four datasets: one can see

the influence of parameters θ on the clustering results for the four datasets in Fig 1: when θ
becomes bigger, a single cluster produced by AP may more likely contain different labels, the

performance of DPAM decreases. The default value of θ will ensure the generation of many

Table 1. The features of datasets.

Datasets Number of samples Dimensions Number of classes

Jain 373 2 2

Spiral 312 2 3

Flame 240 2 2

Donut 600 2 2

breast 277 9 2

ionosphere 351 34 2

iris 150 4 3

sonar 208 60 2

vehicle 846 18 7

liver 345 6 2

wine 178 13 3

https://doi.org/10.1371/journal.pone.0198948.t001

Density propagation clustering algorithm
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high quality sub-clusters, and θ = 0.1 makes sure that we are more likely to obtain pure labels

in a single micro-cluster when clustering different datasets. This unchanged parameter can

work effectively for all the data sets tested in this work, so we hold this default value in all

experiments to prove the effectiveness of the adaptive DPAM algorithm.

The synthetic datasets

We firstly verify the effectiveness of the DPAM algorithm on two dimensional datasets. The

three steps of DPAM are shown in Table 2 and Figs 2*5. DPAM does not need parameter

adjustment and empirical knowledge, which is the greatest advantage of our method. But for

the Flame dataset, in which there exist some links or relatively high-density points between

clusters, the performance of our method is not as good as that of other datasets. For the Spiral

Fig 1. Influence of parameters on clustering results in four datasets.

https://doi.org/10.1371/journal.pone.0198948.g001

Table 2. The three steps of DPAM on synthetic datasets.

Datasets FM of Stage 1 FM of Stage 2 FM of Stage 3

Jain 0.2164 0.9831 1

Spiral 0.2369 1 1

Flame 0.2226 0.8117 0.9463

Donut 0.1749 1 1

https://doi.org/10.1371/journal.pone.0198948.t002
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and Donut datasets, the points are relatively evenly distributed, so good performance can be

achieved even in the first two stages.

To further demonstrate the effectiveness of our algorithm, we compare it with other density

clustering algorithms and report the results in Figs 6*9 and Table 3. The parameters of

DBSCAN and DP are turned through trial and error to obtain the best results. DBSCAN has

two parameters: MinPts and Eps, and different results are produced by different values. DP

Clustering has just one parameter dc, but its decision phase of cluster centers still needs to be

Fig 2. The three steps of DPAM on dataset Jain. (A) Stage 1, (B) Stage 2, (C) Stage 3.

https://doi.org/10.1371/journal.pone.0198948.g002

Fig 3. The three steps of DPAM on dataset Spiral. (A) Stage 1, (B) Stage 2, (C) Stage 3.

https://doi.org/10.1371/journal.pone.0198948.g003

Fig 4. The three steps of DPAM on dataset Flame. (A) Stage 1, (B) Stage 2, (C) Stage 3.

https://doi.org/10.1371/journal.pone.0198948.g004
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Fig 6. The clustering results of DBSCAN, DP Clustering and DPAM using Jain dataset. (A) DBSCAN (MinPts = 2.9, Eps = 20), (B) DP (percent = 40), (C) DPAM.

https://doi.org/10.1371/journal.pone.0198948.g006

Fig 5. The three steps of DPAM on dataset Donut. (A) Stage 1, (B) Stage 2, (C) Stage 3.

https://doi.org/10.1371/journal.pone.0198948.g005

Fig 7. The clustering results of DBSCAN, DP Clustering and DPAM using Spiral dataset. (A) DBSCAN (MinPts = 2.5, Eps = 2), (B) DP (percent = 5), (C) DPAM.

https://doi.org/10.1371/journal.pone.0198948.g007
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chosen, and sometimes it is difficult to choose how many center points (number of center rep-

resents cluster number).

For datasets Jain and Spiral, three algorithms all obtain best results. For datasets Flame,

results of DPAM are close to the best. For dataset Dount, DPAM obtains correct results, DP

cannot identify it. We take more time than others when algorithms run once, but it may take a

long time to learn how to select appropriate parameter values for DBSCAN and DP. Thus

DPAM needs less learning time and obtains good results.

Fig 8. The clustering results of DBSCAN, DP Clustering and DPAM using Flame dataset. (A) DBSCAN (MinPts = 1, Eps = 6), (B) DP (percent = 5), (C) DPAM.

https://doi.org/10.1371/journal.pone.0198948.g008

Fig 9. The clustering results of DBSCAN, DP Clustering and DPAM using Donut dataset. (A) DBSCAN (MinPts = 1, Eps = 2), (B) DP (percent = 5), (C) DPAM.

https://doi.org/10.1371/journal.pone.0198948.g009

Table 3. Comparison of 3 clustering algorithms on synthetic datasets.

Algorithms Jain Spiral Flame Donut

FM Time(s) FM Time(s) FM Time(s) FM Time(s)

DBSCAN 1.0000 0.3460 1.0000 0.1975 0.9659 0.1157 1.0000 0.2498

DPClustering 1.0000 0.4820 1.0000 0.4055 1.0000 0.4189 0.5469 0.3998

DPAM 1.0000 0.5107 1.0000 0.3191 0.9463 0.2220 1.0000 1.4701

https://doi.org/10.1371/journal.pone.0198948.t003
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The UCI datasets

For assessing the robustness of DPAM, we conduct experiments on high-dimensional datasets

compared with K-means and affinity propagation (AP) as shown in Fig 10. We set parameter k
equal to the real class number in K-means. DPAM achieves better performance than k-means

and AP. Although the performance of DPAM is just a bit lower than AP in Wine datasets,

while Wine is clustered into 3 groups by DPAM, AP groups Wine into 6 clusters. Obviously,

DPAM performs better than AP, because the actual number of classes in Wine is 3.

From the above experimental results, one can see that our method has distinct advantage of

effectively and straightforwardly dealing with low-dimensional multi-density spatial data and

high-dimensional data requiring no parameter adjustment and no human intervention. Users

may require no domain knowledge. However, we also point out its current limitation: DPAM

may not well recognize the linked points between clusters. For example, DPAM does not work

well with the Flame dataset, but DP Clustering can achieve good results on the Flame dataset

by adjusting the parameter dc. This means further investigation is needed to improve DPAM

and make it applicable to a wider range of density spatial data.

Conclusions and future work

In this research we present a new approach to adaptively obtain optimal density clustering

results. Density propagation based adaptive density clustering adopts a three-stage strategy to

clustering low-dimensional density spatial data, and it also perform well on high-dimensional

Fig 10. The clustering results of k-means, DPAM and AP with FM.

https://doi.org/10.1371/journal.pone.0198948.g010
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data. We report the promising performance of our approach for clustering different datasets

and experimental results indicate that our approach overcomes the limitations of some exist-

ing clustering algorithms.

We also point out the limitation of our approach and the potential improvement upon it.

When dealing with data with complex structure, such as the linked spatial data, we still need

further investigation on how to improve the performance of our proposed density clustering

algorithms. Finally, we will also consider applying DPAM to more real-world problems,

including material characterization and selection in manufacturing.
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