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A multimodal dataset for coronary 
microvascular disease biomarker 
discovery
Dantong Li   1,2,3,10, Xiaoting Peng1,2,3,10, Lianting Hu1,2,3,10, Jintai Chen4, Xinyang Long1,2,3, 
Xueli Zhang2, Siting Ye5, Xiaohe Bai6, Chao Wu7, Huan Yang1,2,3, Shuai Huang1,2,3, 
Lingcong Kong1,2,3, Entao Liu8, Shuxia Wang8 ✉, Huan Ma2 ✉, Qingshan Geng9 ✉ & 
Huiying Liang1,2,3 ✉

Coronary microvascular disease (CMD), particularly prevalent among women, is associated with 
increased morbidity and mortality, making clinical screening vital for effective management. However, 
limited publicly available screening-level data hinders disease-specific biomarker discovery. To address 
this gap, 80 female angina patients without obstructive coronary artery disease and 40 age-matched 
female controls were prospectively enrolled to curate a new dataset. All participants underwent 
adenosine stress with electrocardiogram (ECG) monitoring across Rest, Stress, and Recovery stages. 
CMD diagnosis was confirmed with the standard clinical criterion, i.e., coronary flow reserve (CFR) < 2.0 
via PET/CT. Using ECG variables from different stages, we developed machine learning models to 
classify CMD, thus validating dataset’s effectiveness in CMD identification. We also validated the 
potential of ECG for differential diagnosis through joint analysis with the published mental stress-
induced myocardial ischemia (MSIMI) dataset, which is based on the same cohort under different stress 
conditions. Disease-specific ECG variable sets were identified. Our findings highlight the value of multi-
stage ECG in CMD screening. We expect this dataset to significantly advance CMD research.

Background & Summary
Nearly half of all patients presenting with angina in the catheterization laboratory are found to have nonobstruc-
tive coronary artery disease (ANOCA), a condition particularly prevalent in women, accounting for approxi-
mately 75% of cases1–3. After excluding noncardiac causes, there is compelling evidence that the chest pain in 
the majority is linked to abnormalities in the coronary circulation, with coronary microvascular disease (CMD) 
being one of the primary contributors4,5.

Clinical screening for CMD is essential for stratifying the management of angina patients, given its associa-
tion with increased morbidity and mortality6. The CORonary MICrovascular Angina (CorMicA) study showed 
that accurate CMD diagnosis and treatment can reduce angina severity by 27% at 12 months post-diagnosis7. 
Moreover, accurate CMD diagnosis can reduce healthcare resource utilization, resulting in cost savings ranging 
from $2,100 to $7,300, benefiting both hospitals and patients.
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Diagnosis of CMD can be made by coronary flow reserve (CFR)obtained by a combined pressure/thermodi-
lution wire or noninvasively by positron emission tomography (PET). However, neither intracoronary testing 
nor PET are ideal for repeated investigations owing to limited access, invasive nature, cost, and radiation expo-
sure6. Thus, the idea of simple, non-invasive biomarkers or screening tools for assessing CMD is particularly 
attractive.

Electrocardiogram (ECG) is a cost-effective tool, which utilization spans from primary healthcare institu-
tions to residential applications, establishing it as the preferred method for the initial assessment of CMD in 
various medical and personal health monitoring environments8–10. However, there are two issues remain: (i) the 
conventional criteria (i.e., ST-segment depressions ≥ 1 mm) showed limited sensitivity for detecting CMD11; (ii) 
patients with similar clinical presentations may have different underlying conditions, such as CMD or mental 
stress-induced myocardial ischemia (MSIMI).Given that the intervention strategies vary depending on the eti-
ology, it is crucial to obtain a preliminary understanding during the screening process.

To address the aforementioned issues, we prospectively enrolled 80 female patients with ANOCA and 40 
age-matched healthy female controls (Fig. 1). Subjects were asked to undergo adenosine infusion at a constant 
rate of 140 μg/kg/min for 6 minutes using a syringe pump. ECG recordings were obtained for three distinct 
phases: rest (6 min), stress (6 min), and recovery (6 min) (Fig. 2). Myocardial perfusion was assessed during the 
stress phase using PET/CT imaging with a 13N-ammonia tracer, and CMD was diagnosed with a CFR < 2.0.23 
subjects were excluded due to adenosine intolerance or poor data quality, leaving 97 subjects for analysis. Based 
on ECG data from three distinct stages, we calculated 88 interpretable ECG variables for each stage. These varia-
bles were then used to explore their predictive value for CMD by applying five classical machine learning models.

Furthermore, this same cohort of subjects also underwent mental stress stimulation, with ECG recordings 
captured for modified stages: rest (6 min), stress (12 min), and recovery (6 min) for each stimulus. MSIMI was 
diagnosed using a summed difference score (SDS) ≥ 3 obtained from PET/CT. Following rigorous quality con-
trol, complete data for both adenosine and mental stress stimulations were available for 93 subjects. We then 
assessed the correlation between ECG variables and the diagnostic criteria (CFR for CMD and SDS for MSIMI), 
resulting in the identification of two disease-specific sets of ECG variables12,13. We believe the joint analysis of 
these CMD and MSIMI datasets could further help researchers identify similarities and differences between the 
two conditions, aiding in differential diagnosis12,13.

Notably, our data were derived from the same individuals all stimulations conducted under standardized 
laboratory conditions between 7:00–10:00 AM while participants were fasting, thereby minimizing potential 
confounding factors. We anticipate that this dataset will bridge research gaps related to CMD screening and 
serve as a foundational resource for future related investigations.

Methods
Ethical approval and consent.  The study protocol and procedures, including data sharing, were approved 
by the Ethics Committee at Guangdong Provincial People’s Hospital (Approval No. GDREC2019298H(R3)). Prior 
to enrolment, potential participants receive a verbal explanation of the study’s objectives, methodology, and their 
rights as research subjects. They are provided ample time to deliberate on participation. Written informed consent 
is obtained from all participants before data collection, with explicit assurances that:

•	 Personal identifiers will be anonymized in shared datasets;
•	 Confidentiality of sensitive information is strictly maintained;
•	 Participation is voluntary and may be withdrawn at any stage.

Fig. 1  Participant flow chart of the study.
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Participants.  Women aged 18 to 75 years with chest pain or angina-like symptoms and confirmed coro-
nary artery stenosis of less than 50% via coronary CT angiography were included under the ANOCA criteria. 
Exclusion criteria ruled out those with chest pain stemming from non-cardiac conditions or other severe diseases. 
Age-matched female control subjects were recruited through public notices and online platforms and underwent 
CT coronary angiography to exclude obstructive CAD. Further details can be found in our previously published 
dataset12.

Procedures.  All laboratory tests were performed between 7:00 and 10:00 AM with participants fasting, in 
order to minimize the impact of circadian rhythms and ensure accurate comparison of ECG signals. After a 
6-minute supine rest, participants underwent an adenosine stress test within the diagnostic PET/CT unit. Two 
intravenous lines were used to administer the radiopharmaceutical while maintaining the adenosine infusion. 
Adenosine was infused at a constant rate of 140 μg/kg/min for 6 minutes using a syringe pump. During the first 
2–3 minutes, a ‘bolus-like’ injection of 700–900 MBq of 13NH3 (5 mL) was administered. For patients at risk of 
complications, such as borderline hypotension, a reduced dose of 100–120 μg/kg/min was used. ECG and blood 
pressure were continuously monitored throughout the procedure.

Data acquisition.  ECG data.  ECG monitoring during the adenosine test was carried out continuously 
using a standard 12-lead system (Tim Software, Beijing Co., Beijing, China) with 16-bit precision and a 500 Hz 
sampling frequency.

PET/CT data.  Following a CT scan for PET attenuation correction, PET data acquisition was conducted using 
13NH3 as the tracer. All PET/CT examinations were performed on a single clinical scanner (Biograph HI-REZ 
16, Siemens Medical Solution) in accordance with a standardized acquisition protocol and international PET/
CT guidelines.

Data labelling and processing.  ECG data.  The ECG recordings were categorized into Rest (6 min), 
Stress (6 min), and Recovery (6 min) phases, corresponding to the start and end times of the adenosine infusion. 
These recordings were manually segmented and could be analysed individually or as a whole.

We also provided labels for pharmacologically induced myocardial ischemia (PSIMI) based on ECG data. 
The diagnosis of myocardial ischemia was determined through a consensus among three senior cardiologists, 
each with over a decade of clinical experience, using the standard criterion of ST depression greater than 0.1 mV. 
The final diagnosis was collectively agreed upon by the cardiologists. The MedEx MECG-200 ECG analysis 
system was employed to filter the signals and analyse the heart’s electrical activity. Patient IDs, ages, and data 
acquisition dates were obtained from the hospital’s health record database.

To eliminate noise from power line interference, baseline wander, and muscle contraction, we applied two 
median filters (200 ms and 600 ms) in combination with the Daubechies wavelet at a level 6 decomposition 
tree. After noise was removed, wave peaks were detected, and both morphological features and HRV indices 
were extracted using NeuroKit2, an open-source Python package suitable for both novice and advanced users. 
Comprehensive installation instructions for Python and NeuroKit2 can be found at https://github.com/neu-
ropsychology/NeuroKit. For details on MSIMI data collection and labeling, please refer to our previously pub-
lished work12.

PET/CT data.  PET data were collected in list mode and analysed by two experienced readers in accordance 
with the American Society of Nuclear Cardiology guidelines. Prior to analysis, the PET images were thoroughly 

Fig. 2  The overview of data acquisition.
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inspected for any patient movement, attenuation issues, reconstruction artifacts, or low count density. Perfusion 
was assessed using QGS + QPS Automatic Quantification software, Version 2013.1, from Cedars-Sinai Medical 
Center, Los Angeles, USA.

Blood flow was measured in the left anterior descending artery (LAD), right coronary artery (RCA), left 
circumflex artery (LCX), as well as the total blood flow across all coronary arteries (FLOW-TOT) during both 
rest and stress conditions using PET/CT. Coronary flow reserve (CFR) was subsequently calculated as follows:

=
−
−

CFR
FLOW TOT
FLOW TOTRest

Stress

A CFR of less than 2.0 was established as the diagnostic threshold for CMD. Corresponding to the ECG 
data, we also provided PSIMI labels based on PET/CT findings. An SDS of 4 or higher is typically used as the 
criterion for diagnosing PSIMI. For details on MSIMI data collection and labeling, please refer to our previously 
published work12.

Data Records
The dataset is available for download from the Science Data Bank, as referenced in citation number14.

Dataset overview.  The dataset’s foundational information, such as disease definition, ECG channel descrip-
tion, diagnostic criteria, disease labels for CMD as well as MSIMI (see in our previously published dataset12), 
were organized into individual JSON-formatted files15. Figure 3 shows the directory tree for our repository and 
previews of the meta-data while Fig. 4 illustrate the shared and unique data within MSIMI and PSIMI dataset.

Dataset description.  The ECG data for each participant during each stage was saved in a ‘csv’-formatted 
file. The data for each subject (number: 001, 002, …) was stored as a first-level directory and was identical with 
the ones in previously published dataset for MSIMI12. The naming convention adopted for these files adhered to 
a specific pattern:

Sub-xxx_baseline-data(or experimental-data or null)datatype(petct_rest_indicators. et al.)where ‘xxx’ stands 
for the subject number (001, 002, …, 020).

Fig. 3  Directory tree for the repository with previews.

https://doi.org/10.1038/s41597-025-05022-8


5Scientific Data |          (2025) 12:990  | https://doi.org/10.1038/s41597-025-05022-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

The labels, including CMD (-), and CMD(+), were provided in sub-xxx disease.json. For specific diagnostic 
criteria, please refer to diagnostic-criteria.json (as seen in the PET/CT data section).

Source data.  We categorized the source data based on the recorded stages (before, during or after the aden-
osine stress) of the subject. One can locate the baseline data for all subjects in the current dataset as well as the 
MSIMI dataset. We pre-processed the raw ECG data, saving it as ‘.dat’ files named after the subject number and 
stages. The PET/CT data consisted of structural information extracted using the software (QGS + QPS Automatic 
Quantification, Version 2013.1, Cedars-Sinai Medical Center, Los Angeles, USA).

Technical Validation
Disease classification.  We conducted a detailed literature review to identify 88 ECG-based variables, 
including ECG morphology and heart rate variability (HRV) variables, which are listed in Table S1. The ECG 
recordings were extracted and segmented into three specific stages according to the timeline of the adenosine 
stress: Rest, Stress, and Recovery. For each stage, 88 ECG variables were calculated independently, resulting in a 
total of 264 variables. Additionally, 88 ECG variables were derived from the complete ECG data records. These 
variables from different stages, were used to develop five classic machine learning models—K-Neighbors, Logistic 
Regression, Random Forest, SVM, and XGBoost—to differentiate CMD (+) (Table 1). CFR < 2.0 obtained from 
PET/CT was used as diagnosis criteria. The average accuracy of the models was calculated across different sets 
using leave-one-out cross-validation. The models’ accuracy varied based on the ECG variables from different 
stages, suggesting that ECG signals differ across stages and that ECG variables from recovery stage might poten-
tially contribute to CMD diagnosis.

ECG variables comparison between CMD and MSIMI.  A total of 264 ECG variables across three 
stages were calculated for both CMD and MSIMI. Statistical analyses were performed using t-tests to compare 
CMD (+) vs. CMD (−) and MSIMI (+) vs. MSIMI (−) (Table S2, with full details provided in the attach-
ment). We further evaluated the correlations between ECG variables and diagnostic criteria separately (CFR 
for CMD and SDS for MSIMI). The results indicated that most ECG variables were correlated with both CFR 
and SDS (Table S3). However, HRV variables in the time domain (e.g., MeanNN, SDANN2, CVSD, SDSD, 
MedianNN) and entropy-based variables (e.g., SampEn, MSEn, CMSEn, RCMSEn) were specifically correlated 
with CFR, suggesting their potential as biomarkers for differential diagnosis during initial screening of these 
two conditions.

Usage Notes
This dataset has multiple potential uses for mental stress evaluation and daily ischemia detection. The hereby 
presented dataset and processing tools are provided for public use and may be used with proper citation to the 
current paper.

Fig. 4  Overview of MSIMI and PSIMI Datasets.
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Code availability
For technical validation, we utilized publicly available code without any restrictions. Specifically, we employed 
the following functions/scripts:

• �nk.ecg_peaks.py from the NeuroKit2 package to identify R-peaks in an ECG signal (https://github.com/
neuropsychology/NeuroKit).

• �find_peaks.py from the SciPy package to identify R-peaks in an ECG signal (https://docs.scipy.org/doc/
scipy/reference/generated/scipy.signal.find_peaks.html).

• �nk.ecg_delineate.py from the NeuroKit2 package to delineate the QRS complex for morphology features 
(https://neuropsychology.github.io/NeuroKit/_modules/neurokit2/ecg/ecg_delineate.html#ecg_delineate).

• �nk.hrv.py from the NeuroKit2 package to compute Heart Rate Variability (https://neuropsychology.github.io/ 
NeuroKit/_modules/neurokit2/hrv/hrv.html#hrv).

• �linear_model.LogisticRegression, svm.SVC, ensemble.RandomForestClassifier, neighbors.KNeighbors 
Classifier, and XGBClassifier from the Scikit-learn package for classification (https://scikit-learn.org/stable/).
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