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A B S T R A C T   

CT image of COVID-19 is disturbed by impulse noise during transmission and acquisition. Aiming at the problem 
that the early lesions of COVID-19 are not obvious and the density is low, which is easy to confuse with noise. A 
median filtering algorithm based on adaptive two-stage threshold is proposed to improve the accuracy for noise 
detection. In the advanced stage of ground-glass lesion, the density is uneven and the boundary is unclear. It has 
similar gray value to the CT images of suspected COVID-19 cases such as adenovirus pneumonia and mycoplasma 
pneumonia (reticular shadow and strip shadow). Aiming at the problem that the traditional weighted median 
filter has low contrast and fuzzy boundary, an adaptive weighted median filter image denoising method based on 
hybrid genetic algorithm is proposed. The weighted denoising parameters can adaptively change according to the 
detailed information of lung lobes and ground-glass lesions, and it can adaptively match the cross and mutation 
probability of genetic combined with the steady-state regional population density, so as to obtain a more ac-
curate COVID-19 denoised image with relatively few iterations. The simulation results show that the improved 
algorithm under different density of impulse noise is significantly better than other algorithms in peak signal-to- 
noise ratio (PSNR), image enhancement factor (IEF) and mean absolute error (MSE). While protecting the details 
of lesions, it enhances the ability of image denoising.   

1. Introduction 

1.1. Background & problem domain 

Since December 2019, COVID-19 has spread widely around the 
world. According to the data released by the Johns Hopkins University, 
as of September 18, 2020, there were 30065728 confirmed cases in the 
world. The disease is highly infectious and it can cause severe acute 
dyspnea. Studies have shown that computed tomography (CT), as a non- 
invasive imaging method, is of great value in detecting lung lesions in 
patients with COVID-19. Therefore, CT can be used for detection and 
diagnosis of COVID-19. However, CT images will produce high-dose 
radiation in the process of acquisition, which will pose a great threat 
to the patient’s health. Therefore, at present, the damage to the patient’s 
body is usually reduced by decreasing the CT dose. But CT images taken 
with low dose usually have noise. The generation of noise will affect the 
quality of CT images, which will seriously affect the doctor’s diagnosis 
for the patient’s condition. Lung CT images are inevitably disturbed by 

various noises in the process of acquisition, transmission and storage, 
which will cause some random, discrete and isolated pixels on the 
image, that is, image noise will bring bad interference to lesion image 
segmentation and doctors’ judgment of patients’ condition. 

1.2. Review of literature 

At present, nucleic acid detection is the most common method to 
diagnose COVID-19 [1]. This method combines RNA reverse transcrip-
tion and polymerase chain reaction (RT-PCR) to detect the viral RNA 
fragments [2,3], and the diagnosis can be confirmed by the positive 
nucleic acid test. However, the screening of RT-PCR has the problem of 
low sensitivity. Even if the RT-PCR result of suspected patient is nega-
tive, the possibility of SARS-Cov-2 infection cannot be completely ruled 
out [4]. In addition, nucleic acid testing has the disadvantage of time- 
consuming and it requires a special test kits. Therefore, it is necessary 
to further accelerate the detection speed and reduce the cost [5]. 
Through the comparative experimental analysis of CT and RT-PCR, Ai 
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[6] pointed out that the diagnosis based on chest CT image is faster and 
more efficient than RT-PCR. Generally speaking, the lungs of patients 
with COVID-19 have typical imaging features [7], including ground- 
glass opacities (GGO), pulmonary sclerosis, pulmonary fibrosis and 
multiple lesions. In addition, related studies [8] have shown that the 
imaging information can play a vital role in the diagnosis of COVID-19. 
The autonomous diagnosis of COVID-19 based on artificial intelligence 
can minimize the contact between doctors and the virus, which reduces 
the chance of infection [9,10]. However, the manual analysis and 
diagnosis process based on CT images are highly dependent on profes-
sional knowledge [11], and the analysis of CT image features is time- 
consuming, which is difficult to observe hidden lesions in the early 
stage, and it is hard to distinguish other viral pneumonia and bacterial 
pneumonia [12]. The automatic diagnosis of COVID-19 can convert the 
visual image into the deep-level feature information [13,14], which can 
be quantified. It helps to reduce manual operation and improve the ef-
ficiency of accurate quantitative analysis. Standard median filter can 
preferably filter impulse noise. However, the traditional median filter 
takes the median value of the neighborhood pixels, the information 
points in the image may be filtered out and replaced by noise points, 
which will lead to the loss of some details in the image. Therefore, many 
scholars have proposed some improved algorithms. Verma [15] pro-
posed adaptive median filter (AMF) algorithm, which shows good 
filtering performance in low-intensity noise, but when the noise density 
is too high, a large number of noises needs to be filtered, and the filtering 
window will expand. The current pixel and the replaced median may 
lack correlation, resulting in information loss and image blur. Sheela 
[16] proposed the switching median filter (SMF) method. This method 
determines whether each pixel is noisy. Due to the threshold needs to be 
defined in advance when judging the noise, the threshold remains un-
changed in the processing process, the final filtering effect is not very 
ideal. Gupta [17] proposed a discrimination-based dual threshold me-
dian filter (DBF) method to judge whether the pixel is noisy by 
comparing the current pixel with the dual threshold. However, when 
dealing with high-intensity noise, this method is easy to produce ”tailing 
effect”, and the filtering performance is greatly reduced. Ahmed [18] 
proposed an improved discriminant-based asymmetric clipping median 
filter algorithm. This method can obtain good filtering effect under low- 
intensity noise, but under high-intensity, the filtering effect is very poor 
and some details are lost. There are some state-of-the-art methods about 
denoising algorithm reported. Zhao [19] obtains the residual spectrum 
according to logarithmic amplitude spectrum of the image, and then the 
inverse Fourier transform is used to obtain the saliency map. Although 
this method can suppress the image noise, the subtraction operation is 

used in the process of calculating the log amplitude. It not only sup-
presses the noise, but also restrains the detail information, which is not 
conducive to the denoising of the COVID-19 image. The CNN denoising 
method [20] can effectively use the global features of the image to 
significantly improve the denoising effect. The lower the number of CNN 
layers, the more primitive the extracted low-level features, such as color 
and edge lines. However, with the deepening of the network, the fea-
tures extracted by the CNN method become more advanced, and a large 
number of low-level features will be lost. Yan [21] proposed a KSVD 
image denoising algorithm based on K-means and singular value 
decomposition (SVD). This method is based on the bayesian recon-
struction theory, and it uses the K-means clustering to obtain an optimal 
signal sparse representation dictionary set. Through the linear combi-
nation of the dictionary elements, various signals are constructed to 
remove the noise in the CT image. However, dictionary learning brings 
high computational cost, resulting in too long time for image denoising. 
In addition, the KSVD method is also insufficient for denoising of high- 
proportion noisy images. Yahya [22] proposed block-matching and 3D 
filtering (BM3D) algorithm, which has achieved good results in various 
image denoising processes, but it is easy to cause tissue contour blur 
when denoising low-dose CT image. Moreover, there are a lot of pa-
rameters in the BM3D algorithm that need to be set manually, which 
severely limits the effect of the practical application. Gu [23] proposed a 
weighted kernel norm minimization (WNNM) denoising algorithm. This 
method can characterize the difference of image effect according to the 
matrix singular value, given different weights, and it highlights the 
important information for the image. However, this algorithm needs 
time-consuming SVD calculation and iterative approximation, which is 
slow and inefficient. 

1.3. Gaps identified from review 

The above improved algorithms have great improvements in filtering 
performance, but there are still some deficiencies in dealing with image 
detail blur. The lesions of COVID-19 mainly show various forms of 
ground-glass or consolidation shadow. In the early imaging of COVID- 
19, the change of lesions is not obvious, and the density is low, which 
is easy to confuse the early lesions of COVID-19 with noise. On the other 
hand, the lesions of ground-glass in the advanced stage are uneven and it 
have similar gray values to the CT images of suspected COVID-19 cases 
such as adenovirus pneumonia and mycoplasma pneumonia. The 
traditional weighted median filter denoising algorithm has the problems 
of low contrast and fuzzy boundary. 

Fig. 1. Paper structure.  
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1.4. Highlights 

The highlights of this work can be summarized as the following: (i) 
the adaptive two-stage threshold method is proposed, which reduces the 
misjudgment of noise signal points and improves the accuracy of 
detection for COVID-19; (ii) we develop the weighted median filter 
image denoising method based on adaptive hybrid genetic. The 
weighted denoising parameters can adaptively change according to the 
detailed information of lung lobes and ground-glass lesions, it can 
enhance the ability of image denoising while better protecting the de-
tails of the lesions; (iii) the cross and mutation probability of genetic 
algorithm based on the steady-state regional population density is 
advanced, which obtains a more accurate COVID-19 denoised image 
with relatively few iterations; (iv) in order to reduces the CPU time and 
improve the efficiency of the optimal solution, we investigate the 
doppler effect temperature improved simulated annealing algorithm. 

1.5. Paper structure 

The rest of this paper is organized as follows. Section 2 describes the 
multi-level threshold algorithm and its mathematical properties, and we 
present the algorithm of adaptive center weighted median filtering. In 
Section 3, we propose the adaptive hybrid genetic method and the 
advanced simulated annealing algorithm according to these properties. 
In Section 4, we show the simulation experiments for the different kinds 
of COVID-19 CT images. The paper is structured as shown in Fig.1. 

2. Multi-level threshold center weighted adaptive median 
filtering algorithm 

The CT image of early COVID-19 is easily confused by noise. The 
traditional extreme noise points judgment [24–27] can easily cause 
misdiagnosis of COVID-19 lesion signals. For the single threshold 
filtering method, the pixel whose value exceeds the preset threshold will 
be judged as noise [28–30]. Therefore, using a single threshold method 
may increase the probability of error detection for noise. Hence, a me-
dian filtering method based on adaptive multi threshold discrimination 
is proposed. In this method, the noise pixels will be discriminated in a 
relatively narrow interval. Thus, this will improve the accuracy of noise 
detection. 

2.1. Multi-level threshold calculation method 

Calculation of threshold T0: this threshold is the first step of noise 
point detection. The purpose is to find suspected noise points. It can 
calculate the gray value of each pixel, the median gray value of the filter 
window, the gray average value of the four rectangular neighborhood 
windows on the top, bottom, left and right of the point (i, j). The 
calculation of threshold T0 is: 
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The variable n and m represent the length and the width of the filter 
window respectively(the length and width are equal), and f(i,j) repre-
sents the gray value of the current pixel. fmed is the median gray value of 
all pixels in the filter window, and fave is the average gray value of all 
pixels in the filter window. Four neighborhood rectangular windows of 
5 × 2 and 2 × 5 are defined on the top, bottom, left and right directions 
of the point (i,j), and the gray average values corresponding to the four 
neighborhood windows are defined as MU,MD,MLand MR, as shown in 

Fig. 2. Filter window and gray value.  

Fig. 3. Weighting operator based on 5 * 5 image plane.  
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Fig. 4. Flow chart of median filtering based on adaptive threshold and optimized weighting parameters.  

Fig. 5. Adaptive hybrid cross operation.  
Fig. 6. Adaptive hybrid mutation operation.  

S. Guo et al.                                                                                                                                                                                                                                      



Biomedical Signal Processing and Control 75 (2022) 103552

5

Fig.2. The value calculation formula is: 

MU =

∑− 1

k=− 2

∑2

l=− 2
f
(

i + k, j + l
)

5 × 2
(2)  

MD =

∑2

k=− 2

∑− 1

l=− 2
f
(

i + k, j + l
)

5 × 2
(3)  

ML =

∑2

k=1

∑2

l=− 2
f
(

i + k, j + l
)

5 × 2
(4)  

ML =

∑2

k=− 2

∑2

l=1
f
(

i + k, j + l
)

5 × 2
(5)  

Calculation of the second threshold T1: this threshold is the second step 
for noise point detection. When the point is determined to be a suspected 
noise point, the average gray value of all pixels in the filter window is 
calculated. If the gray value of the point is significantly different from 
the average value, it can be determined that the current point is a noise 
point and needs to be replaced by the median value. Through the further 
accurate judgment for the suspected noise point by the second threshold 
T1, the calculation of T1 is: 

T1 = φp =

(

F1 +F2

)

×
Npn

n × n
(6)  

The variable φ is the regulatory factor of threshold T1,φ = F1 + F2, the 
expression of f1 and f2 is: 
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p is the image noise density, the expression is p =
Npn
n×n ; Npn represents the 

number of noise points in the window. The threshold T1 increases with 
the increase of noise density, and the threshold value is related to the 
noise density, so as to realize the adaptive selection of the threshold in 
the same image under different noise density. 

2.2. Adaptive weighted median filter algorithm 

The lesions of ground-glass in the advanced COVID-19 show non- 
uniformity, which is similar to the CT images of COVID-19 suspected 
cases such as adenovirus pneumonia and mycoplasma pneumonia. 
Aiming at the problems of low contrast and fuzzy boundary in the 
traditional median filter denoising algorithm, a weighted median filter 
image denoising method based on adaptive hybrid genetic algorithm is 
proposed, so that the weighted denoising parameters can adapt to the 
changes according to the details of lung lobes and ground-glass lesions. 
Based on the steady-state regional population density, the cross and the 
mutation probability of genetic is adaptively matched to obtain a more 
accurate denoised CT image of COVID-19 with relatively few iterations. 
The calculation of the center weighted filtering [31–34] is: 

f (i, j)CWM = median
{

w
(

i, j
)
× f
(

i, j
)
, f
(
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)⃒
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⃒f
(
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)
∈ No

p(i,j)

}
(9)  

w(i, j) × f(i, j) represents the gray value when the weight of f(i,j) is w(i,j), 
f(i, j)CWM is the center weighted median gray value, f(i,j) represents the 
gray value of pixel p(i,j), No

p(i,j) represents the hollow neighborhood of 
pixel p(i,j), and f(r,s) represents the gray value corresponding to all 
pixels in No

p(i,j). The improved weight of the center weighted filtering is: 

w(i, j) = α1w1(i, j)+ α2w2(i, j) (10)  

α1 and α2 are weight parameters, which is optimized by the adaptive 

Fig. 7. Flow chart of adaptive genetic operator strategy.  
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hybrid genetic algorithm. The weighted sub coefficient w1(i, j) is set in 
the weighted coefficient w(i,j), w1(i, j) is used to characterize the simi-
larity between the current pixel and the median pixel fmed(representing 
uncontaminated point). The smaller the similarity value, the greater the 
correlation. The calculation of the weighted sub coefficient w1(i, j) is: 

w1

⎛

⎜
⎜
⎜
⎝

i, j

⎞

⎟
⎟
⎟
⎠

=

1
1+max{Tmean ,(f (i− r,j− r)− fmed )

2}
∑

(i− r,j− r)∈Wr

1
1+max{Tmean ,(f (i− r,j− r)− fmed )

2}

(11)  

Tmean represents the average value for the square of the difference be-
tween each pixel value and its average value, which is calculated as 
following: 

Tmean =

∑

(i− r,j− r)∈Wr

(f (i − r, j − r) − fmean)
2

Nr
(12)  

Nr is the total number of window pixels and fmean is the average value of 
all pixels in the current window. A weighted sub coefficient w2(i, j) is set 
in the weighted coefficient w(i,j), and w2(i, j) is used to characterize the 
similarity between the current pixel and the nearest noise point. Ac-
cording to the pixel space distance value, a distance correlation function 
Q(i,j) is designed to characterize the correlation between the current 
pixel and the noise points. The weighted coefficient w2(i, j) should meet 
the following conditions:①w2(i, j) is a non-decreasing function with Q(i, 
j), that is, the greater the Q(i,j), the greater the weight value to be 
added;②w2(i, j)When Q(i,j) is small, w(i,j) should increase slightly, and 
when Q(i,j) is large, w(i,j) should increase greatly, that is, w(i,j) is 
positively correlated with Q(i,j). Setting the current pixel as f(i,j), and f 
(s,t) is the noise point pixel nearest to the current pixel. Combined with 
the weighted distance and its normalization, the following weighted 
function is obtained, which meets positive correlation and the require-
ment of human vision. Setting the weighted function is: 

Fig. 8. CT image of early COVID-19 (a) impulse (40%) noise; (b) original CT image; (c) denoised image by TDMF; (d) denoised image by MMF; (e) denoised image by 
SMF; (f) denoised image by DBACMF; (g) denoised image by CWMF; (h) denoised image by AMF; (i) denoised image by TWMF. 

Table 1 
Comparison of TWMF with different methods for CT image of early COVID-19.  

Denoising 
method 

MSE/ 
dB 

PSNR/ 
dB 

IEF        

TDMF 288.5 23.5 129.4        
MMF 256.3 24.0 131.6        
SMF 166.7 26.3 135.6        
DBACMF 154.6 26.8 139.5        
CWMF 130.3 27.0 142.7        
AMF 112.8 27.6 145.4        
TWMF 81.6 29.0 173.7         
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Fig. 13. Early COVID-19 with different noise density: (a) comparison of the MSE; (b) comparison of the IEF. Advanced COVID-19 with different noise density: (a) 
comparison of the MSE; (b) comparison of the IEF. Adenovirus pneumonia with different noise density: (a) comparison of the MSE; (b) comparison of the IEF. Early 
COVID-19 with non-symptom by different noise density: (a) comparison of the MSE; (b) comparison of the IEF. Advanced COVID-19 with non-symptom by different 
noise density: (a) comparison of the MSE; (b) comparison of the IEF. . 

Table 6 
Comparison of TWMF with different methods for CT image of early COVID-19 with different noise density.  

Noise Index TWMF TDMF MMF SMF DBACMF CWMF AMF   

10% MSE/IEF 59.3/190.5 245.7/145.5 174.8/148.6 115.3/156.7 121.6/161.8 101.8/168.6 97.6/172.4   
20% MSE/IEF 64.6/184.4 254.9/137.1 201.3/144.8 125.1/152.8 131.9/154.1 116.2/156.8 103.7/160.8   
30% MSE/IEF 75.3/180.7 273.7/133.8 222.9/134.1 155.6/145.8 144.9/144.6 123.5/148.4 106.9/155.5   
40% MSE/IEF 81.6/173.7 288.5/129.4 256.3/131.6 166.7/135.6 154.6/139.5 130.3/142.7 112.8/145.4   
50% MSE/IEF 87.6/168.3 301.4/126.8 266.7/126.5 184.9/132.4 176.2/132.7 136.7/138.8 123.2/141.6   
60% MSE/IEF 98.9/162.6 323.9/121.2 280.7/122.2 195.9/126.5 180.7/128.5 143.2/133.5 131.4/135.8   
70% MSE/IEF 107.2/158.7 341.9/116.3 301.8/117.6 207.2/120.5 189.2/125.7 153.6/129.2 139.3/130.7    
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Where, c is the distance constant, which is related to the size of the filter 
window, c = 1

(n×n+1)/2. Therefore, the c value of 5x5 detection window 
used in this paper is c = 1

(5×5+1)/2 = 1
13.Through the optimal combination 

for (α1,α2), the relatively optimal denoising effect in the spatial domain 
can be obtained. The pixel weighted coefficient is represented as shown 
in Fig.3. 

2.3. Improvement steps 

Step 1: find out the maximum gray value fmax and minimum gray 
value fmin in the filter window, which is compared with the current pixel 

Fig. 9. CT image of advanced COVID-19 (a) impulse (40%) noise; (b) original CT image; (c) denoised image by TDMF; (d) denoised image by MMF; (e) denoised 
image by SMF; (f) denoised image by DBACMF; (g) denoised image by CWMF; (h) denoised image by AMF; (i) denoised image by TWMF. 

Table 2 
Comparison of TWMF with different methods for CT image of advanced COVID- 
19  

Denoising method MSE/dB PSNR/dB IEF     

TDMF 324.4 23.0 127.1     
MMF 274.7 23.7 138.0     
SMF 198.7 25.2 142.9     
DBACMF 174.8 25.7 148.5     
CWMF 149.4 26.4 152.8     
AMF 123.7 27.2 159.5     
TWMF 87.1 28.7 172.4      

Table 7 
Comparison of TWMF with different methods for CT image of advanced COVID-19 with different noise density  

Noise Index TWMF TDMF MMF SMF DBACMF CWMF AMF     

10% MSE/IEF 60.1/193.3 130.5/147.7 123.5/152.6 115.3/158.6 108.5/163.3 102.2/165.6 93.5/170.3     
20% MSE/IEF 72.5/182.5 201.7/140.7 173.4/145.8 140.4/150.8 136.7/158.2 127.3/159.9 104.8/166.3     
30% MSE/IEF 80.7/176.5 276.3/135.6 224.3/140.6 174.3/146.9 159.9/153.2 136.3/154.2 114.2/162.9     
40% MSE/IEF 87.1/172.4 324.4/127.1 274.7/138.0 198.7/142.9 174.8/148.5 149.4/152.8 123.7/159.5     
50% MSE/IEF 94.4/166.7 350.7/122.5 302.8/133.3 222.3/135.5 201.9/140.3 162.4/146.7 142.5/151.9     
60% MSE/IEF 100.5/160.8 376.8/118.8 341.2/128.9 254.3/131.8 225.5/135.7 198.3/140.6 168.2/146.8     
70% MSE/IEF 108.5/150.9 399.4/112.6 362.2/120.7 296.3/125.3 253.3/128.9 234.8/132.1 201.3/140.0      
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f(i,j). If fmax-T0<f(i,j)<fmax or fmin<f(i,j)<fmin+T0, this point may be a 
noise point, and skip to step 2. Step 2: calculate the average gray value 
fave of all pixels in the filter window. Step 3: set the second threshold T1, 
if 
⃒
⃒f(i, j) − fave

⃒
⃒-T1>0, replace the weighted median value with the cur-

rent point and repeat the above steps. The algorithm flow chart is shown 
in Fig.4. 

3. Parameters optimization of weighted median filter based on 
adaptive hybrid genetic algorithm 

The principle of the adaptive hybrid genetic optimization is as 
following: (i) Initializing the search space of Xi(α1,α2), leading the ge-
netic operators to search with rmXi = Xj +φ(Δx) to obtain the new so-
lution rmVi(α1,α2); (ii) Using the parameter factors α1 and α2 to carry 

Fig. 10. CT image of adenovirus pneumonia (suspected cases of COVID-19) (a) impulse (40%) noise; (b) original CT image; (c) denoised image by TDMF; (d) 
denoised image by MMF; (e) denoised image by SMF; (f) denoised image by DBACMF; (g) denoised image by CWMF; (h) denoised image by AMF; (i) denoised image 
by TWMF. 

Table 3 
Comparison of TWMF with different methods for CT image of adenovirus 
pneumonia  

Denoising 
method 

MSE/ 
dB 

PSNR/ 
dB 

IEF        

TDMF 289.7 23.5 131.2        
MMF 247.8 24.2 137.5        
SMF 198.2 25.2 142.6        
DBACMF 156.9 26.2 149.9        
CWMF 145.0 26.5 148.1        
AMF 123.3 27.2 151.7        
TWMF 83.6 28.9 172.5         

Table 8 
Comparison of TWMF with different methods for CT image of adenovirus pneumonia with different noise density  

Noise Index TWMF TDMF MMF SMF DBACMF CWMF AMF 

10% MSE/IEF 58.1/194.4 124.5/148.8 117.4/150.7 108.5/53.8 100.7/159.8 96.4/164.7 88.2/168.4 
20% MSE/IEF 65.4/186.7 186.4/142.8 165.4/145.8 148.5/148.3 123.4/156.8 114.4/158.7 101.6/162.7 
30% MSE/IEF 72.4/179.8 226.5/137.9 211.8/141.5 176.8/44.6 144.6/151.5 129.5/153.8 116.4/156.9 
40% MSE/IEF 83.6/172.5 289.7/131.2 247.8/137.5 198.2/42.6 156.9/149.9 145.0/148.1 123.3/151.7 
50% MSE/IEF 89.2/164.5 321.6/125.4 277.5/132.6 221.5/37.6 178.5/141.6 179.5/144.3 138.6/148.7 
60% MSE/IEF 97.4/158.7 356.8/119.0 307.3/126.7 287.8/131.5 204.4/136.7 198.5/138.6 154.3/142.3 
70% MSE/IEF 105.5/150.6 388.6/116.4 344.5/121.9 324.4/125.3 236.4/131.7 226.8/135.3 178.6/137.7  
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out the optimal weighted median filter; (iii) Calculating the value of 
PSNR as the fitness of the genetic algorithm; (iv) Using simulated 
annealing to cover the solution with high fitness over the low fitness as 
the current optimal solution. In this way, the cycle stops until the 
termination condition is established to obtain the optimal solution 
rmXk(α1, α2) corresponding to the highest fitness. 

3.1. Improved operator strategy of adaptive hybrid genetic 

In this paper, an adaptive hybrid genetic operator is proposed. In 
addition to retaining the ”excellent” individuals in the parents to the 
next generation, individuals with close to average fitness in the parents 
should also be considered. If the fitness value of the offspring generation 
extracted in the ”steady-state region” is higher than the average and 
close to the upper bound, it indicates that such parent individuals 
contain excellent gene patterns, it should be retained to the next gen-
eration. The diameter D = fmax − fmin of the population is defined. The 
expression of the distance from the individual fitness value to the 

average value is d =

⃒
⃒
⃒f − favg

⃒
⃒
⃒. The neighborhood radius is defined as δ =

D
M(M is the population number). If the number of populations in the 
steady-state region is N, the density of populations in the steady-state 
region is ρ = N

M. We use the population density ρ to correct the cross-
over and mutation probability (Eqs. 19 and 20). The adaptive hybrid 
crossover probability can be expressed as: 

Fig. 11. CT image of early COVID-19 with non-symptom (a) impulse (40%) noise; (b) original CT image; (c) denoised image by TDMF; (d) denoised image by MMF; 
(e) denoised image by SMF; (f) denoised image by DBACMF; (g) denoised image by CWMF; (h) denoised image by AMF; (i) denoised image by TWMF. 

Table 4 
Comparison of TWMF with different methods for CT image of early COVID-19 
with non-symptom  

Denoising method MSE/dB PSNR/dB IEF   

TDMF 292.7 23.5 132.2   
MMF 248.8 24.2 138.9   
SMF 232.3 24.5 140.8   
DBACMF 214.8 24.9 143.4   
CWMF 178.5 25.6 146.7   
AMF 149.2 26.4 149.6   
TWMF 92.8 28.5 179.2    
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Table 9 
Comparison of TWMF with different methods for early COVID-19 with non-symptom by different noise density  

Noise Index TWMF TDMF MMF SMF DBACMF CWMF AMF 

10% MSE/IEF 72.1/200.4 107.6/159.4 104.5/163.4 103.4/168.5 101.5/173.7 97.2/175.4 95.2/178.5 
20% MSE/IEF 80.6/192.9 164.7/150.4 155.7/152.8 157.4/160.8 156.4/161.6 121.5/162.6 112.3/165.5 
30% MSE/IEF 85.5/185.4 225.3/143.7 202.4/145.7 199.3/150.6 188.4/150.7 154.6/153.4 128.7/156.6 
40% MSE/IEF 92.8/179.2 292.7/132.2 248.8/138.9 232.3/140.8 214.8/143.4 178.5/146.7 149.2/149.6 
50% MSE/IEF 98.3/172.7 328.4/125.7 286.5/132.7 267.5/132.8 243.2/135.7 206.4/138.6 175.4/142.8 
60% MSE/IEF 104.5/167.4 376.4/118.6 312.4/125.6 301.3/125.7 288.9/128.4 235.3/132.7 202.5/136.6 
70% MSE/IEF 112.7/159.4 404.4/110.5 355.7/116.3 342.8/118.3 312.6/120.4 265.5/126.8 248.3/128.6  

Fig. 12. CT image of advanced COVID-19 with non-symptom (a) impulse (40%) noise; (b) original CT image; (c) denoised image by TDMF; (d) denoised image by 
MMF; (e) denoised image by SMF; (f) denoised image by DBACMF; (g) denoised image by CWMF; (h) denoised image by AMF; (i) denoised image by TWMF. 

Table 5 
Comparison of TWMF with different methods for CT image of advanced COVID- 
19 with non-symptom.  

Denoising method MSE/dB PSNR/dB IEF   

TDMF 285.7 23.6 121.6   
MMF 261.7 24.0 129.4   
SMF 233.3 25.1 137.7   
DBACMF 196.5 25.2 142.1   
CWMF 156.6 26.2 154.8   
AMF 149.4 26.4 168.5   
TWMF 89.2 28.6 181.8    
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Pc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
k1
(
fmax − f /

)

fmax − favg
, f /⩾favg, ρ⩽δ

(

1 − ρ
)

k1
(
fmax − f /

)

fmax − favg
, f /⩾favg, ρ > δ

ρk2, f / < favg, ρ⩽δ
(
1 − ρ

)
k2, f / < favg, ρ > δ

(15)  

The adaptive hybrid mutation probability can be expressed as: 

Pm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

̅̅̅
1
n

l

√

ρ, ρ⩽δ
(

1 − ρ
)√

l
1
n
, ρ > δ

(16)  

k1 and k2 are coefficients and k1, k1 ⩽1.The adaptive hybrid cross 
operation is shown in Fig.5, the adaptive hybrid mutation operation is 
shown in Fig.6. 

Table 10 
Comparison of TWMF with different methods for advanced COVID-19 with non-symptom by different noise density  

Noise Index TWMF TDMF MMF SMF DBACMF CWMF AMF 

10% MSE/IEF 60.1/207.3 124.6/148.9 114.1/152.5 105.5/158.4 94.2/169.4 89.5/177.7 80.3/192.5 
20% MSE/IEF 73.3/196.6 187.4/138.5 175.3/143.7 168.2/150.6 150.5/158.9 126.9/168.4 113.2/185.6 
30% MSE/IEF 82.6/188.8 234.4/129.7 228.4/135.8 190.2/142.7 174.2/149.5 140.3/160.5 129.3/177.7 
40% MSE/IEF 89.2/181.8 285.7/121.6 261.7/129.4 233.3/137.7 196.5/142.1 156.6/154.8 149.4/168.5 
50% MSE/IEF 96.4/172.8 325.2/116.5 315.2/122.7 305.6/128.4 245.3/135.6 211.1/142.2 186.2/155.8 
60% MSE/IEF 103.4/162.8 359.7/112.3 345.5/117.9 327.7/122.2 288.3/129.7 256.5/133.8 215.1/143.4 
70% MSE/IEF 114.3/150.1 398.6/108.8 382.2/112.4 366.5/118.9 334.7/124.1 298.4/128.2 264.2/135.0  

Fig. 14. Fitness evolution curve of denoising parameters optimization for different CT images. (a) CT image of early COVID-19; (b) CT image of advanced COVID-19; 
(c) CT image with non-symptom of early COVID-19; (d) CT image with non-symptom of advanced COVID-19; (d) CT image of adenovirus pneumonia. 
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3.2. Improved simulated annealing algorithm 

Derek [35] proposed metropolis simulated annealing algorithm cri-
terion. This paper further improves the cooling function and designs an 
expression similar to the doppler effect temperature decline curve: 

T = T2αk( cos
(
π
/(

2
(
1 − k

/
K
))))

+cos(π/(2T0(1 − k/K)))
(17)  

The traditional exponential simulated annealing is difficult to reach the 
low temperature state when the number of iterations is small; the rapid 
simulated annealing drops to the low temperature state prematurely, 
making the subsequent iterative solution unchanged. The ”doppler” 
curve takes the advantages of the two algorithms and eliminates their 
defects. It not only tends to the low temperature unurgency, but also 

Table 11 
Time processing of CT image denoised under different methods  

CT image AHG +
ESA 

OAG +
RSA 

TAG +
ESA 

AHG þ
DESA  

Early COVID-19 3.46 3.52 4.76 2.66  
Advanced COVID-19 3.78 3.82 4.91 2.83  

Non-symptom of early 
COVID-19 

3.71 3.76 4.88 2.81  

Non-symptom of 
advanced COVID-19 

3.79 3.86 4.96 2.87  

Adenovirus pneumonia 3.90 3.94 5.03 2.97   

Fig. 15. CT image of early COVID-19 (a) original CT image; (b) impulse (40%) noise; (c) denoised image by TWSC; (d) denoised image by KSVD; (e) denoised image 
by ATIF; (f) denoised image by WNNM; (g) denoised image by BM3D; (h) denoised image by SAINT; (i) denoised image by DAAM; (j) denoised image by TNRD; (k) 
denoised image by DnCNN; (l) denoised image by TWMF. 
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continuously ”tempering and heating up” in the second half of anneal-
ing, so that the algorithm has multiple opportunities to jump out of the 
local optimum during the optimization process, making it easier to find 
out the global optimal solution. K is the total number of iterations, and k 
is the current number of iterations. The flow chart of the adaptive hybrid 
genetic combined with the doppler effect simulated annealing algorithm 
is shown in Fig.7. 

4. Experimental results 

4.1. Parameters setting 

Aiming at the different kinds of COVID-19 CT images including early 
COVID-19, advanced COVID-19, early COVID-19 with non-symptom, 
advanced COVID-19 with non-symptom, adenovirus pneumonia added 
into the density 40% of the impulse noise are tested by the Intel E8200 
CPU 2.5 GHz, RAM 8G, Matlab 2016a.Two dimensional median filter 
(TDMF) [36], multiple median filter (MMF) [37], switching median 
filter (SMF) [38], discriminant-based asymmetric cropping median filter 
(DBACMF) [39], center weighted median filter (CWMF) [40], adaptive 
median filter (AMF) [15], adaptive threshold and optimized weighted 
median filter (paper method, TWMF) are used for simulation compari-
son tests. Then, impulse noise with different density 
(10%,20%,30%,40%,50%,60%,70%) is selected to add noise in the 
tested images, and finally the above methods are used for simulation 
tests in turn. The experimental parameters are set as: k1 = 0.6,k2 = 0.7,
T2 = 150,α = 0.8, K = 100, M = 200. 

4.2. Evaluation indexs 

In order to objectively test the denoising effect of each method, mean 
square error (MSE), peak signal-to-noise ratio (PSNR) and image 
enhancement factor (IEF) are used to calculate the denoised image. The 
lower the MSE, the better the denoised image quality; the higher the 
peak signal-to-noise ratio and image enhancement factor, the better the 
denoising effect. The expression of MSE is: 

MSE =
1

M × N

∑M

i=1

∑N

j=1
[f (i, j) − f̂ (i, j)]2 (18)  

The expression of PSNR is: 

PSNR = 10 × lg
(

2552

MSE

)

(19)  

The expression of IEF is: 

IEF =

∑M

i=1

∑N

j=1
[x(i, j) − f̂ (i, j)]2

∑M

i=1

∑N

j=1
[f (i, j) − f̂ (i, j)]2

(20)  

f(i,j) represents the denoised pixel, ̂f (i, j) represents the input pixel with 
impulse noise, x(i,j) represents the original pixel, M and N represents the 
length and width of the image respectively, the picture size is 512*512. 

4.3. Denoising simulation experiments 

Using the paper method and the comparison methods to do denoising 
simulations on the CT image of early COVID-19, and further comparing 
and analyzing the MSE, PSNR and IEF under different denoising 
methods. The comparative CT image denoising simulations of early 
COVID-19 are shown in Fig.8. The evaluation index values are shown in 
Table 1. 

From the change trend of the data in the Table 1, compared with the 
comparative denoising methods, TWMF has increased the value of PSNR 
by about 5.5 dB, the value of MSE has been greatly reduced, the value of 
IEF has been increased by about 42 dB. It can be seen that the denoising 
effect for the CT image of early COVID-19 under TWMF is the best. There 
is no obvious change in the CT image of early COVID-19, the number of 
the lesion is small and the density is low. The traditional CT image 
denoising algorithms have the higher value of MSE and the lower value 
of IEF. It is easy to cause the CT image of early COVID-19 to be confused 
with noise, and it is easy to cause mistake diagnosis for patients with 
early COVID-19. The TWMF method improves the denoising accuracy 
for the CT image of early COVID-19. The CT image of early COVID-19 is 
simulated by denoising tests with different density (10%–70%) of im-
pulse noise. The comparison for the MSE and IEF among different 
denoising methods by different density of the impulse noise is shown in 
Fig.13(a)(b). The evaluation index values are shown in Table 6. 

When the value of MSE is smaller and the value of IEF is larger, it 
means that the denoised image is closer to the original image. It can be 
seen from the Fig.13(a)(b) that with the increase of the impulse noisy 
density, the PSNR is gradually reduced and the MES is gradually 
increased under different denoising methods. Compared with the 
different traditional denoising methods, the IEF of TWMF is still the 
largest, and the MSE of TWMF is still the smallest. In conclusion, 
compared with the traditional denoising methods, the improved median 
filter denoising algorithm in this paper increases the IEF and reduces the 
MSE for CT image of early COVID-19 to a certain extent with different 
noise density. It significantly improves the denoised effect. Using the 
TWMF and the comparison methods to do denoising simulations on the 
CT image of advanced COVID-19. The comparative CT image denoising 
simulations of advanced COVID-19 are shown in Fig.9. The evaluation 
index values are shown in Table 2. 

From the change trend of the data in the Table 2, compared with the 
comparative denoising methods, TWMF has increased the value of PSNR 
by about 5.7 dB, the value of MSE has been greatly reduced, the value of 
IEF has been increased by about 45 dB. It can be seen that the denoising 
effect for the CT image of advanced COVID-19 under TWMF is best. The 
advanced stage of COVID-19 is characterized by increased number of 
lesions and increased density. The TWMF method improves the 
denoising accuracy for the CT image of advanced COVID-19 and it re-
duces the misdiagnosis rate for the advanced lesions. The CT image of 
advanced COVID-19 is simulated by denoising tests with different den-
sity(10%–70%) of impulse noise. The comparison for the MSE and IEF 
among different denoising methods with different density of the impulse 
noise is shown in Fig.13(c)(d).The evaluation index values are shown in 
Table 7. 

It can be seen from the Fig.13(c)(d) and Table 7 that with the in-
crease of the impulse noisy density, the IEF is gradually reduced and the 
MES is gradually increased under different denoising methods. 
Compared with the different traditional denoising methods, the IEF of 
TWMF is still the largest, and the MSE of TWMF is still the smallest. In 
conclusion, the TWMF significantly improves the denoised effect for CT 
image of advanced COVID-19 to a certain extent with different noisy 
density. Using the TWMF and the comparison methods to do denoising 

Table 12 
Comparison of TWMF with denoising SOTA methods for CT image of early 
COVID-19  

Denoising method MSE/dB PSNR/dB IEF 

TWSC 108.5 27.8 152.5 
KSVD 106.5 27.8 154.7 
ATIF 103.3 27.9 156.3 

WNNM 100.8 27.9 158.8 
BM3D 98.3 28.0 160.2 
SAINT 97.8 28.0 162.5 
DAAM 96.2 28.1 163.0 
TNRD 95.9 28.2 164.4 

DnCNN 94.2 28.3 165.1 
TWMF 81.6 29.0 173.7  
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simulations on the CT image of adenovirus pneumonia (suspected cases 
of COVID-19). The comparative CT image denoising simulations of 
adenovirus pneumonia are shown in Fig.10. The evaluation index values 
are shown in Table 3. 

From the change trend of the data in the Table 3, compared with the 
comparative denoising methods, TWMF has increased the value of PSNR 
by about 5.4 dB, the value of MSE has been greatly reduced, the value of 
IEF has been increased by about 41 dB. It can be seen that the denoising 
effect for the CT image of adenovirus pneumonia under TWMF is the 
best. The CT image of adenovirus pneumonia is patchy, small nodular 
ground-glass shadow, and then developing into consolidation shadow, 
bronchial wall thickening, visible mesh or strip shadow. The TWMF 
improves the denoising accuracy for the CT image of adenovirus pneu-
monia and reduces the misdiagnosis rate for the lesions. The CT image of 
adenovirus pneumonia are simulated by denoising tests with different 
density (10%–70%) of impulse noise. The comparison for the MSE and 
IEF among different methods with different density of the impulse noise 
is shown in Fig.13(e)(f). The evaluation index values are shown in 
Table 8. 

It can be seen from the Fig.13(e)(f) and Table 8 that with the increase 
of the impulse noisy density, the IEF is gradually reduced and the MES is 
gradually increased under different denoising methods. Compared with 
the different traditional denoising methods, the IEF of TWMF is still the 
largest, and the MSE of TWMF is still the smallest. In conclusion, the 
TWMF method significantly improves the denoised effect for CT image 
of adenovirus pneumonia to a certain extent with different noisy density. 
Using the TWMF and the comparison methods to do denoising simula-
tions on the CT image with non-symptom of early COVID-19. The 
comparative CT image denoising simulations are shown in Fig.11. The 
evaluation index values are shown in Table 4. 

From the change trend of the data in the Table 4, compared with the 
comparative denoising methods, TWMF has increased the value of PSNR 
by about 5 dB, the value of MSE has been greatly reduced, the value of 
IEF has been increased by about 47 dB. It can be seen that the denoising 
effect for the CT image of early COVID-19 with non-symptom under 
TWMF is the best. The CT image of early COVID-19 with non-symptom 
are simulated by denoising test with different density (10%–70%) of 
impulse noise. The comparison for the MSE and IEF among different 
denoising methods with different density of the impulse noise is shown 
in Fig.13(g)(h). The evaluation index values are shown in Table 9. 

It can be seen from the Fig.13(g)(h) and Table 9 that with the in-
crease of the impulse noisy density, the IEF is gradually reduced and the 
MES is gradually increased under different denoising methods. 
Compared with the different traditional denoising methods, the IEF of 
TWMF is still the largest, and the MSE of TWMF is still the smallest. In 
conclusion, the TWMF significantly improves the denoised effect for CT 
image of early COVID-19 with non-symptom to a certain extent by 
different noisy density. Using the TWMF and the comparison methods to 
do denoising simulations on the CT image of advanced COVID-19 with 
non-symptom. The comparative CT image denoising simulations of 
advanced COVID-19 with non-symptom are shown in Fig.12. The eval-
uation index values are shown in Table 5. 

From the change trend of the data in the Table 5, compared with the 
comparative denoising methods, TWMF has increased the value of PSNR 
by about 5.0 dB, the value of MSE has been greatly reduced, the value of 
IEF has been increased by about 60 dB. It can be seen that the denoising 
effect for the CT image of advanced COVID-19 with non-symptom under 
TWMF is the best. The CT image of advanced COVID-19 with non- 
symptom is simulated by denoising test with different density (10%– 
70%) of impulse noise. The comparison for the MSE and IEF among 
different denoising methods with different density of the impulse noise 
is shown in Fig.13(i)(j).The evaluation index values are shown in 
Table 10. 

It can be seen from the Fig.13(i)(j) and Table 10 that with the in-
crease of the impulse noisy density, the IEF is gradually reduced and the 
MES is gradually increased under different denoising methods. 

Compared with the different traditional denoising methods, the IEF of 
TWMF is still the largest, and the MSE of TWMF is still the smallest. In 
conclusion, the paper method significantly improves the denoised effect 
for CT image of advanced COVID-19 with non-symptom to a certain 
extent by different noisy density. Aiming at the different kinds of 
COVID-19 CT imagesadaptive hybrid genetic combined with exponen-
tial simulated annealing [41] (AHG + ESA) orthogonal adaptive genetic 
[42] combined with rapid simulated annealing [43] (OAG + RSA) 
traditional adaptive genetic [44] combined with exponential simulated 
annealing (TAG + ESA) adaptive hybrid genetic combined with doppler 
effect simulated annealing (AHG + DESA, paper method) are used for 
simulation comparison tests of denoising parameters optimization. The 
fitness evolution curve for different COVID-19 CT images are shown in 
Fig.14. The evaluation index values of time processing under different 
methods are shown in Table 11. 

It can be seen from the Fig.14 and Table 11 that with the increase of 
the number of iterations, the standard deviation of the objective func-
tion value is gradually reduced and the processing time is gradually 
increased under different parameters optimization methods. Compared 
with the different comparison methods, the number of iterations of “HG 
+ DESA” is still the smallest, and the processing time of “AHG + DESA” 
is still the fastest. In conclusion, the paper method (AHG + DESA) 
significantly improves the denoised effect for different kinds of COVID- 
19 CT images of parameters optimization. 

4.4. Comparison to state-of-the-art methods 

We compared the TWMF with 9 state-of-the-art approaches 
including TWSC [45], KSVD [21], activity-tuned image filtering(ATIF) 
[19], WNNM [23], BM3D [22], SAINT [46], DAAM [47], TNRD [48], 
DnCNN [20] to do denoising simulations on the CT image of early 
COVID-19, and further comparing and analyzing the MSE, PSNR and IEF 
under different denoising methods. The comparative CT image denois-
ing simulations of early COVID-19 are shown in Fig.15. The evaluation 
index values are shown in Table 12. From the change trend of the data in 
the Table 12, compared with the comparative denoising methods, 
TWMF has increased the value of PSNR by about 1.2 dB, the value of 
MSE has been reduced by about 27 dB, the value of IEF has been 
increased by about 21 dB. It can be seen that the denoising effect for the 
CT image of early COVID-19 under TWMF is the best. The early stage of 
COVID-19 is characterized by less number of lesions and less density. 
The TWMF method improves the denoising accuracy for the CT image of 
early COVID-19 and reduces the missed diagnosis for the early lesions. 

5. Conclusion 

In this paper, a median filtering method based on multi-level 
threshold and parameters optimization is proposed. In this method, 
the pixels in the horizontal and vertical directions of the pixels to be 
processed, the multi-level threshold for detecting impulse noise is 
selected by comprehensive estimation, because the threshold changes 
with the movement of the window, which reflects the adaptability of 
threshold selection. In this paper, the algorithm gives different weight 
values to each pixel according to the gray distance between the pixel and 
the central pixel and the spatial distance between the pixel and the noise 
point to filter out the noise. The adaptive hybrid genetic algorithm 
combined with the doppler effect simulated annealing algorithm is used 
to determine the weight value of the improved median filter. The 
simulation results show that this method has greater advantages in 
denoising ability than other filtering methods of the iteration and the 
processing time, and the performance of detail protection is also greatly 
improved. 
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