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Therapy for rhabdomyosarcoma (RMS) has generally been limited to combinations of 
conventional cytotoxic agents similar to regimens originally developed in the late 1960s. 
Recently, identification of molecular alterations through next-generation sequencing 
of individual tumor specimens has facilitated the use of more targeted therapeutic 
approaches for various malignancies. Such targeted therapies have revolutionized treat-
ment for some cancer types. However, malignancies common in children, thus far, have 
been less amenable to such targeted therapies. This report describes the clinical course 
of an 8-year-old female with embryonal RMS having anaplastic features. This patient 
experienced multiple relapses after receiving various established and experimental ther-
apies. Genomic testing of this RMS subtype revealed mutations in BCOR, ARID1A, and 
SETD2 genes, each of which contributes to epigenetic regulation and interacts with or 
modifies the activity of histone deacetylases (HDAC). Based on these findings, the patient 
was treated with the HDAC inhibitor vorinostat as a single agent. The tumor responded 
transiently followed by subsequent disease progression. We also examined the efficacy 
of vorinostat in a patient-derived xenograft (PDX) model developed using tumor tissue 
obtained from the patient’s most recent tumor resection. The antitumor activity of vori-
nostat observed with the PDX model reflected clinical observations in that obvious areas 
of tumor necrosis were evident following exposure to vorinostat. Histologic sections of 
tumors harvested from PDX tumor-bearing mice treated with vorinostat demonstrated 
induction of necrosis by this agent. We propose that the evaluation of clinical efficacy in 
this type of preclinical model merits further evaluation to determine if PDX models predict 
tumor sensitivity to specific agents and/or combination therapies.
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table 2 | Genetic alterations identified by sequencing.

Gene Mutations

ARID1A D1850fs*4
M1634fs*1

BCOR R546fs*16

SETD2 S2382fs*47
T2513fs*4

table 1 | Summary of relevant clinical history.

Date treatment received

8/2010 Vincristine, actinomycin, and cyclophosphamide (VAC) with XRTa 
therapy

4/2012 VDCb/IEc with Gamma Knife
9/2013 Vinorelbine, temsirolimus, and cyclophosphamide
11/2013 Crizotinib
12/2013 Cabozantinib
2/2014 Eribulin
4/2014 MK1775
4/22/2014 Debulking procedure, tracheostomy placement, XRT (acquisition of 

tumor specimen for DNA sequencing and PDX development)
6/2014 Gemcitabine and docetaxel
8/2014 Vorinostat
1/2015 Neck swelling observed
2/2015 Vorinostat discontinued
4/2015 Death of the patient

aRadiation therapy.
bVincristine, doxorubicin, and cyclophosphamide.
cIfosfamide and etoposide.

2

Cramer et al. Anaplastic eRMS Case and PDX Studies

Frontiers in Oncology | www.frontiersin.org January 2018 | Volume 7 | Article 327

INtRoDUCtIoN

Rhabdomyosarcoma (RMS) is the most common soft-tissue sar-
coma of childhood. This tumor type is characterized by myoblas-
tic differentiation and expression of skeletal muscle markers such 
as desmin, myogenin, and/or MYOD1. Embryonal RMS (eRMS), 
the most common subtype, usually occurs before 10  years of 
age. A secondary subtype, anaplastic eRMS, is characterized 
by enlarged hyperchromatic nuclei and TP53 mutations, and is 
associated with poor outcome (1, 2). Chemotherapy, surgery, 
and/or radiation comprise standard therapy for patients with 
RMS. Chemotherapeutic regimens frequently include vincris-
tine, actinomycin D, cyclophosphamide, and inhibitors of type-1 
topoisomerase or mammalian target of rapamycin (mTOR) (3, 4).

Here, we report the case of a patient who presented with an 
anaplastic eRMS of the left parapharyngeal pterygopalatine fossa. 
At diagnosis, the tumor mass measured 3.9 cm × 3.1 cm × 3.6 cm. 
The patient’s treatment history included multiple chemothera-
peutic regimens, palliative radiation (XRT), and debulking pro-
cedures (Table 1). Responses were transient, and several localized 
relapses were documented during the 4 years of treatment. Tissue 
from final surgical resection on 4/22/2014 was used to establish 
the patient-derived xenograft (PDX) model described in this 
study and to submit for sequencing (Foundation Medicine, 
Cambridge, MA, USA). Sequence analysis identified mutations 
in genes encoding BCOR, ARID1A, and SETD2 (Table 2). These 
mutations would be predicted to increase histone deacetylases 
(HDAC) activity or confer gain of function or constitutive 

activation of HDAC. Therefore, the patient was treated with the 
HDAC inhibitor vorinostat for 6 months.

Treatment with vorinostat was initiated 4 months after 
surgical resection in April 2014. Tumor specimens obtained 
prior to administration of vorinostat provided the opportunity 
to establish a PDX model from this patient’s tumor, and to use 
this model to determine if preclinical data characterizing the 
efficacy of vorinostat reflected the efficacy of this agent in the 
clinic. A goal of the study was to evaluate whether this type 
of model might be used to predict efficacy in the clinic, as an 
approach toward personalized medicine.

baCKGRoUND

There are no published studies describing the utility of vorinostat 
in treating RMS, but several preclinical studies have been pub-
lished. Keshelava et  al. demonstrated that vorinostat had IC50 
values of 0.88–9.77 µM in four RMS cell lines (RD, Rh41, Rh18, 
and Rh30) in vitro, but had little or no effect in five RMS xenograft 
models (Rh30, Rh30R, Rh41, Rh18, and Rh36) (5). A second 
study by Vleeshouwer-Neumann et al. reported that vorinostat 
suppressed the growth of RD, 381 T, and SMS–CTR eRMS cell 
lines and also inhibited the migration of these cells in vitro (6). 
Furthermore, these investigators observed that vorinostat had 
antiproliferative effects in a zebrafish transgenic eRMS model.

tumor DNa sequencing
Sequencing of the 400 genes in the Pediatric Cancer Prone 
Gene Panel was performed by Foundation One (CLIA Certified 
Sequencing Foundation, Cambridge, MA, USA) using DNA 
extracted from formalin-fixed paraffin-embedded (FFPE) tumor 
tissue. Mutations were identified in genes encoding BCOR, 
ARID1A, and SETD2, which are involved in DNA methylation 
and chromatin remodeling and each of which affects HDAC-
associated cell processes (7–9).

BCOR
BCOR (BCL6 corepressor; Polycomb group repressive complex-1 
variant) mediates BCL6 function in diffuse large B-cell lymphoma 
(10, 11). BCOR inhibits histone methylation (H3 Lys-4:H3K4me3 
and Lys-36:H3K36me2), an activity regulated by HDAC (7, 12). 
Studies with mesenchymal stem cells obtained from patients with 
oculofacialcardiodental syndrome (OFDC) indicate that muta-
tions of BCOR enhance mesenchymal stem cell proliferation (7). 
Mutations in this gene are also associated with myelodysplastic 
syndromes, pediatric acute myeloid leukemia, and medulloblas-
toma (13–15).

ARID1A
ARID1A (AT-rich interaction domain 1A) is a member of the 
SWI/SNF family and has helicase and ATPase activities (16). 
ARID1A regulates transcription by altering the structure 
of chromatin (8). ARID1A also contributes to regulation of 
cell-cycle progression and is involved in DNA damage repair  
(17, 18). Mutations in ARID1A have been identified in ovarian, 
endometrial, and uterine tumors (19–22). Inactivating mutations 
in ARID1A suggest that wild-type ARID1A may act as a tumor 
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FIGURe 1 | Magnetic resonance imaging (MRI) taken prior to and during 
vorinostat treatment. Coronal contrast-enhanced T1-weighted MRI images 
from (a) July 2014 and (b) September 2014 showed decrease in size of the 
infratemporal component of the tumor. Craniocaudal measurement showed 
the greatest change, although this component of the tumor had decreased in 
size in other dimensions as well.
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suppressor (23). In vitro studies indicate that ovarian cancer 
cells harboring ARID1A mutations are relatively sensitive to the 
histone methyltransferase EZH2 inhibitor and to nutlin, which 
inhibits MDM2–p53 interaction (24, 25).

SETD2
SETD2 (SET domain containing 2) is a histone methyl transferase 
that methylates Lys36 of histone H3 (H3K36Me3) (9, 26). Loss-
of-function mutations of this gene promote renal cancer progres-
sion and decrease expression of H3K36Me3 in clear cell renal 
cell carcinoma (27). SETD2–H3K36Me3 pathway alterations are 
associated with development of leukemia (28).

HDaC
Histone deacetylases regulate the ratio of acetylated and deacety-
lated histones, and are associated with gene silencing by modifica-
tion of chromatin structure (29, 30). Alterations in HDAC genes 
and/or HDAC expression are related to multiple human patholo-
gies including cancer (31–35). For example, increased HDAC1 
and HDAC2 expression is reported in colon cancer cells compared 
with non-oncogenic adenoma cells, and decreased expression of 
HDAC1 arrests the growth of this tumor cell type (36, 37).

Each of the epigenetic alterations described above has been 
reported to contribute to tumor phenotypes (9, 13, 15, 27, 28, 38, 
39), and each of the three proteins encoded by genes identified as 
harboring mutations contributes directly or indirectly to HDAC-
associated functions. The HDAC inhibitor vorinostat (suberoy-
lanilide hydroxamic acid, SAHA) is approved for refractory T-cell 
lymphoma and is being evaluated in multiple clinical trials for other 
types of cancers (40). Based on the patient’s tumor characteristics, 
the FDA-approved status of vorinostat, the known maximum 
tolerated dose in pediatric patients, and preclinical information in 
the literature, the patient was treated with vorinostat.

Vorinostat (suberoylanilide Hydroxamic 
acid, an HDaC Inhibitor)
Vorinostat was approved in the USA in 2006 for the treatment of 
cutaneous T-cell lymphoma (CTCL) in patients with progressive 
or recurrent disease (41). A Phase-I COG clinical trial demon-
strated that vorinostat was well tolerated at 230  mg/m2/day in 
children with recurrent solid tumors (42). Vorinostat inhibits 
the activity of HDACs 1 and 2, thereby increasing the ratio of 
deactylated/acetylated histones and suppressing tumor cell pro-
liferation in vitro and in vivo. Current literature suggests that the 
likely mechanism of this suppression is that HDAC deacetylation 
selectively activates transcription of genes that induce cell dif-
ferentiation and/or apoptosis (43, 44).

DIsCUssIoN

ethics statement
Protocols involving human subjects were approved by the 
Institutional Review Board (IRB) of the University of Alabama at 
Birmingham (Birmingham, AL, USA). Written informed assent 
and consent were obtained from the patient and her family to 
use tumor specimens for research purposes. Written informed 

consent was also obtained from the patient’s parent agreeing to 
publication of the report.

Clinical Course associated with  
Vorinostat treatment
Treatment consisted of 28-day cycles at 200  mg/day (42). 
Approximately 4 weeks after the initiation of treatment, magnetic 
resonance imaging (MRI) of brain, orbit, and neck revealed a 
reduction of the tumor mass centered at the left infratemporal 
fossa from 8.9 cm × 4.9 cm × 6.5 cm to 8.2 cm × 4.7 × 6.0 cm 
(Figure 1). The dose of vorinostat was increased to 300 mg/day 
3  days/week and 200  mg/day 4  days/week. Within 2 weeks of 
dose escalation, the patient developed severe thrombocytopenia 
associated with nasopharyngeal hemorrhage requiring packed red 
blood cell resuscitation. The dose was then de-escalated to 200 mg/
day. Over the next 16 weeks, MRIs documented stabilization of the 
infratemporal fossa tumor mass, with sustained necrosis. While 
receiving vorinostat, the patient showed symptomatic improve-
ment and was weaned from patient-controlled analgesia. Following 
this transient response, the patient developed neck swelling due 
to tumor progression and tumor rupture traversing the skin. Two 
months after the 6-month regimen of single-agent vorinostat had 
been discontinued, the patient succumbed to her disease.

Response to Vorinostat of Mice bearing 
patient-Derived Xenografts
Ethics Statement
Protocols involving animal use were approved by the Institutional 
Animal Care and Use Committee (IACUC) of the University of 
Alabama at Birmingham (Birmingham, AL, USA).

A tumor specimen harvested 4 months prior to initiating 
vorinostat therapy was implanted subcutaneously into immuno-
compromised mice (SCID) within 1 h of tumor resection. When 
the tumor volume of the donor mouse reached ~800–1,000 mm3, 
the tumor was harvested, divided, and transplanted into a cohort 
of mice for evaluation of vorinostat efficacy. When tumor volume 
reached ~300  mm3, tumor-bearing mice were randomized into 
two groups (N = 10/group) and received 50 mg/kg vorinostat or 
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vehicle (vehicle control) intraperitoneally daily for 21 days. This 
dose is equivalent to a clinical dose of ~200  mg (45). Tumors 
were measured with Vernier calipers (Fowler/Slyvac, Newtown, 
MA, USA) twice weekly, and tumor volumes calculated using 
the equation v  =  (π/6)d3. Twenty-four hours after completion 
of treatment, mice were euthanized, and tumor tissue was har-
vested and archived as both formalin fixed paraffin embedded 
(FFPE) and snap frozen in liquid nitrogen. Tumor volumes were 
compared by two-way analysis of variance (ANOVA) followed by 
Bonferroni posttest (GraphPad Prism 5.0). Values presented equal 
mean ± SEM.

As shown in Figure  2A, the 21-day treatment of vorinostat 
did not inhibit anaplastic eRMS tumor growth in the PDX model. 
Immunostaining for the proliferation marker Ki67 (Figure  2B) 
showed no difference between drug- and vehicle-treated groups. 
However, interestingly, vorinostat-treated tumors had obvious 
necrotic regions compared with vehicle controls, as determined by 
histopathologic analysis (LNC; Figure 2C). Although there were 
no differences in tumor volumes between vorinostat-treated and 
vehicle control-treated groups by the end of the 21-day treatment 
study, we observed that vorinostat-treated mice had “softened” 
tumors starting on day 7, which we regarded as consequent to 

FIGURe 2 | Monotherapy of vorinostat which did not suppress tumor growth in a patient-derived xenograft model (COA/UAB-15), but did induce tumor necrosis. 
(a) When tumor volumes reached ~300 mm3, 50 mg/kg vorinostat or vehicle was administered once a day to tumor-bearing mice (N = 10/group) for 21 days. (b) 
Immunohistological analysis for the proliferation marker Ki67 showed no difference in growth fraction between vorinostat- and vehicle-treated mice group. (C) H&E 
staining of formalin-fixed paraffin-embedded tissue prepared from tumor harvested from vehicle-treated or vorinostat-treated mice 24 h after the last day of 
treatment. Red arrows indicate examples of necrotic areas.
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CoNClUDING ReMaRKs

In this study, we report evaluation of the efficacy of vorinostat, 
a non-standard treatment, for a patient with anaplastic eRMS 
and in a parallel preclinical study using a PDX model developed 
from resected tumor tissue. The patient was treated with the 
HDAC inhibitor vorinostat, based on the mutational status of 
her recurrent chemorefractory tumor. Clinically, vorinostat 
treatment induced a transient tumor regression, followed by 
tumor progression (increase in tumor volume at primary site). 
Necrotic areas of the tumor following vorinostat treatment were 
documented by MRI (Figure  1). The preclinical evaluation of 
vorinostat efficacy using the PDX model reflected clinical obser-
vations with respect to induction of tumor necrosis. Notably, this 
is the first report demonstrating that vorinostat induces necrosis 
in vivo (Figure 2C). We propose that more successful treatment 
for solid tumors lies in understanding the molecular and genetic 
characteristics that confer specific malignant phenotypes, and in 
the use of well-characterized preclinical models for evaluating 
novel agents with potential efficacy.
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