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Purpose. Tumour necrosis factor (TNF) superfamilies play important roles in cell proliferation, migration, differentiation, and
apoptosis. We believe that TNF has a huge potential and might cast new insight into antitumour therapies. Therefore, we
established this signature based on TNF superfamilies. Results. A six-gene signature derived from the TNF superfamilies was
established. The Riskscore correlated significantly with the expression of immune checkpoint genes and infiltrating M2
macrophages in the tumour specimen. This signature was also associated with mutations in genes that regulate tumour cell
proliferation. Univariate and multivariate regression analyses further confirmed the Riskscore, TNFRSF11b, and TNFRSF12a as
independent risk factors in The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets. Conclusion. Our signature
could accurately predict the prognosis of lower-grade gliomas (LGG). In addition, this six-gene signature could predict the
immunosuppressive status of LGG and provide evidence that TNF superfamilies had correlations with some critical mutations
that could be effectively targeted now.

1. Introduction

Gliomas are lethal malignant neoplasms of the brain and
other parts of the central nervous systems. In the past,
low-grade gliomas were primarily categorised as World
Health Organization (WHO) grade II diffuse gliomas,
whereas high-grade gliomas were classified as WHO grade
III/IV gliomas. Nevertheless, this histology-based classifica-
tion has been gradually replaced by the novel concept of
lower-grade gliomas (LGGs) consisting of WHO grade II
and III diffuse gliomas. In the United States, the annual
age-adjusted incidence rates of diffuse astrocytoma, anaplas-
tic astrocytoma, and oligodendroglioma were 0.45/100000,
0.42/100000, and 0.23/100000, respectively. The median sur-
vival associated with these three types of gliomas were 36,
18, and 119 months, respectively, and the corresponding
five-year survival rates were 43.1%, 22.7%, and 69.6%,
respectively [1–3].

In recent years, the previously identified molecule
tumour necrosis factor (TNF) has received renewed atten-
tion. This molecule was first found to have a tumour-
inhibiting effect in patients with sarcoma infected with bac-
teria. The TNF family refers to a set of proteins consisting of
29 receptors and 19 ligands. TNF and TNF receptor (TNFR)
superfamilies (TNFSF/TNFRSF) are believed to play impor-
tant roles in cell proliferation, migration, differentiation, sur-
vival, and apoptosis [4]. TNF inhibitors can synergise with
epidermal growth factor receptor (EGFR) or immune check-
point inhibitors to enhance their antitumour capacities.
Consequently, TNF superfamilies are regarded as promising
targets that can be integrated into current therapeutic strat-
egies [5–7]. Currently, several costimulatory receptor ago-
nistic antibodies targeting 4-IBB (TNFRSF9 or CD137) and
OX40 (TNFRSF4) have undergone phase I trials (Clinical-
Trials.gov Identifier: NCT02179918; ClinicalTrials.gov Iden-
tifier: NCT02274155) [8–10].
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The phenotypes of TNF superfamilies in lung cancer
have been reported to be strongly related with patient prog-
nosis [11]. The phenotype of TNF superfamily members
refers to the expression levels of select genes of this super-
family. This specific gene expression profile could predict
the prognosis of some types of malignancies and, accord-
ingly, be deemed as TNF-based phenotypes. We hypothe-
sised that a similar relationship may exist in LGGs.
Considering the major potential of TNF superfamilies to
provide new insights into antitumour therapies, we estab-
lished this signature based on TNFSF/TNFRSF.

2. Materials and Methods

2.1. Clinical Information and RNA Expression Data. We
selected 443, 449, and 108 patients with effective clinical
and follow-up information along with RNA expression data
from the Chinese Glioma Genome Atlas (CGGA), The Can-
cer Genome Atlas (TCGA), and the GSE16011 dataset,
respectively. We also obtained access to data from the REM-
BRANDT cohort, although the clinical information for this
cohort was incomplete. Of note, the CGGA database pro-
vides high-quality functional genomic data resources for
Chinese cases of glioma and facilitated our research
immensely [12].

All patients selected in this study were diagnosed with
WHO grade II/III gliomas based on histological diagnostic
criteria. Demographic and clinical statistics from the afore-
mentioned database are shown in Table 1. Specific data were
downloaded from the official website of TCGA (https://
cancergenome.nih.gov/), CGGA (http://www.cgga.org.cn/),
GSE16011 (https://www.ncbi.nlm.nih.gov/), and REM-
BRANDT (http://www.betastasis.com/glioma/rembrandt/).
The RNA-seq data were all log2-transformed and normal-
ised before our analysis procedure. A gene list of members
belonging to the TNF superfamily retrieved from a previ-
ously published review was applied to our study to identify
the six-gene signature [4]. This research was approved by
the ethics committee of Tiantan Hospital, affiliated with
Capital Medical University.

2.2. Identification of TNFSF/TNFRSF Superfamily Signature.
A total of 48 genes encoding either TNF ligands or receptors
with available gene expression information in the previously
mentioned database were used in our study. We first estab-
lished a LASSO Cox model to predict prognostic effective-
ness using the optimal lambda [13]. TCGA clinical and
RNA-seq data were used as the training set, while the
CGGA, GSE16011, and REMBRANDT data were utilised
for validation.

2.3. Statistical Analysis. SPSS version 25.0 and the R project
were used for statistical analyses. Overall survival was the
main prognostic indicator. It was defined as the interval
between the first diagnosis of grade II/III gliomas and the
death or last follow-up of the patient. We calculated the
Riskscore by employing the LASSO Cox model. Kaplan–
Meier curves and log-rank tests were then used to compare
survival outcomes between the high-risk and low-risk

groups. The median Riskscore was designated as the cut-
off value that discriminated between the high-risk and low-
risk groups. Patients with Riskscore higher and lower than
the cut-off value were classified into the high-risk and low-
risk groups, respectively. We took advantage of the R project
to draw the receiver operating characteristic curves (ROC)
and determine the area under the curve, which examined
the prognostic effectiveness of this six-gene signature [14].
Box-and-scatter figures were plotted with the help of R pack-
age “ggplot2.” The chi-square test, univariate Cox regression,
and multivariate Cox regression analyses were performed
using SPSS 25.0. p ≤ 0:05 was considered statistically signifi-
cant. Gene set enrichment analysis (GSEA) was performed
with GSEA 4.1.0., while Gene Ontology (GO) analysis was
performed online (https://david.ncifcrf.gov/). The common
pathways or processes of GSEA and GO analyses were sin-
gled out to plot the heat map with the aid of R package
“ComplexHeatmap” [15].

To further investigate whether the selected genes in our
signature influenced the tumour microenvironment and
led to immune evasion in LGGs, we calculated the constitu-
tion of immune cell infiltration in each tumour sample with
the aid of CIBERSORT and LM22 signatures (http://
cibersort.stanford.edu/) [16, 17]. After analysing the discrep-
ancies of infiltrated immune cells within tumours between
the high-risk and low-risk groups, the expression of immune
checkpoints was shown with the R package “ggpubr.” The
mutated profiles of TCGA were obtained from The Cancer
Immunome Atlas (https://tcia.at/home) and compared
between high-risk and low-risk groups. The landscape of
gene mutation statuses and the pathway alterations among
LGG samples in TCGA dataset was demonstrated with the
help of the R package “maftools.”

3. Results

3.1. Demographic Statistics and Clinical Features of the
Grade II/III Patient Cohort. A total of 449 patients with
low-grade gliomas (LGG, WHO II/III gliomas), which con-
sisted of 251 men and 198 women, were selected from
TCGA database. The corresponding numbers of patients
from the CGGA database were 251 and 192, respectively.
In TCGA, CGGA, and GSE16011, patients younger than
45 years old were found more likely to develop LGGs
(WHO II/III gliomas). The number of patients with grade
II and grade III gliomas was 213 and 236, 188 and 255, 23
and 85, and 72 and 71 in TCGA, CGGA, GSE16011, and
REMBRANDT cohorts, respectively. Isocitrate dehydroge-
nase (IDH) mutation status, 1p/19q codeletion status, and
grade were also introduced in our study for further analysis
of the signature. The median overall survival (OS) and range
of OS values were 87.394 months and 0.033–211.027 months
in TCGA cohort, 83.700 months and 1.7–167.6 months in
the CGGA cohort, 41.640 months and 0.24–248.16 months
in the GSE16011 cohort, and 42.60 months and 0.2–
251.733 months in the REMBRANDT cohort. The 1-, 2-,
and 5-year survival rates in TCGA, CGGA, GSE16011, and
REMBRANDT cohorts are shown in Table 1, along with
other detailed information.
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3.2. Six-Gene Signature Establishment. Other than the widely
known pro-inflammatory properties, the antitumour
responses of this superfamily have not been fully under-
stood. We propose that the expression of TNFSF/TNFRSF
and the survival outcomes of grade II/III patients are con-
nected. To verify this interaction, we used the LASSO Cox
model to establish a signature that could predict prognosis.
Using this model, we confirmed a six-gene signature (Sup-
plementary Table 1). We used the product of each patient’s
gene expression and the coefficient from the LASSO Cox
model as the Riskscore, and the formula is as follows:

Riskscore = 0:128514092429542 × CD70ð Þ
+ −0:061112802949453 × EDAð Þ
+ 0:463397817144414 × TNFRSF11Bð Þ
+ 0:279587869990881 × TNFRSF12Að Þ
+ 0:0154761687424339 × TNFRSF14ð Þ
+ −0:029856055076389 × TNFRSF25ð Þ:

ð1Þ

Patients were divided into high- and low-risk group
according to the median Riskscore (cut-off value) in these
public databases. The number of patients in the low- and

high-risk groups was 224 and 225, 221 and 222, 54 and 54,
and 71 and 72 in TCGA, CGGA, GSE16011, and
REMBRANDT cohorts, respectively. We then performed
Kaplan–Meier survival analysis in TCGA cohort, and patients
in the high-risk group had worse prognostic outcomes than
those in the low-risk group (p < 0:0001). The CGGA,
GSE16011, and REMBRANDT cohorts were used as
validation datasets. Similarly, patients in the low-risk group
had better prognoses than those in the high-risk group in the
validation cohorts. Therefore, patients with higher Riskscore
were at a higher risk and thus had poorer survival outcomes.
We could intuitively observe the differences in survival
outcomes between the low- and high-risk groups determined
by the cut-off value through the Kaplan–Meier curve
displayed (Figures 1(a)–1(d)). ROC curves and nomograms
were plotted to examine the predictive effectiveness of this
signature (Figures 2(a)–2(d); Supplementary Figure 1a, 1b, c, d).

3.3. Analysis of the Risk Factors of LGG Patients. To analyse
the risk factors that affected the OS of LGG patients, we per-
formed univariate and multivariate Cox regression analyses
in TCGA, CGGA, and GSE16011 datasets. First, we con-
ducted a univariate analysis and found that age, IDH muta-
tion status, 1p/19q codeletion status, MGMT promoter

Table 1: Demographic statistics and clinical features of grade II/III patient cohort.

Character TCGA (n = 449) CGGA (n = 443) GSE16011 (n = 108) REMBRANDT (n = 143)
Age

<45 262 [58.4%] 297 [67.0%] 60 [55.6%] —

≥45 187 [41.6%] 145 [32.7%] 48 [44.4%] —

NA 0 [0%] 1 [0.3%] 0 [0%] 143 [100%]

Sex

Male 251 [55.9%] 251 [56.7%] — 65 [45.5%]

Female 198 [44.1%] 192 [43.3%] — 41 [28.6%]

NA 0 [0%] 0 [0%] 108 [100%] 37 [25.9%]

WHO classification

WHO II 213 [47.4%] 188 [42.4%] 23 [21.3%] 72 [50.3%]

WHO III 236 [52.6%] 255 [57.6%] 85 [78.7%] 71 [49.7%]

IDH mutation status

Wildtype 84 [18.7%] 96 [21.7%] 40 [37.0%] —

Mutant 363 [80.8%] 306 [69.1%] 47 [43.5%] —

NA 2 [0.5%] 41 [9.2%] 21 [19.5%] 143 [100%]

1p/19q codeletion status

Noncodeletion 300 [66.8%] 273 [61.6%] 40 [37.0%] —

Codeletion 149 [33.2%] 131 [29.6%] 38 [35.2%] —

NA 0 [0%] 39 [8.8%] 30 [27.8%] 143 [100%]

Overall survival (months)

Median 87.394 83.700 41.640 42.60

Range 0.033-211.027 1.7-167.6 0.24-248.16 0.2-251.733

Survival rates (years)

1 0.93 0.88 0.82 0.77

2 0.86 0.76 0.62 0.60

5 0.67 0.56 0.40 0.39

“-” symbol indicates that the statistics were unavailable in the corresponding database. NA: not available.
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status, grade, and Riskscore had significant correlations with
OS in TCGA cohort (Supplementary Table 2). All these
factors with the exception of age and MGMT promoter
status were also significantly associated with OS in the

CGGA cohort (Supplementary Table 3). In the GSE16011
cohort, age, EGFR status, 1p/19q codeletion status,
Karnofsky performance score, and Riskscore were clearly
related to OS (Supplementary Table 3).
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Figure 1: Kaplan–Meier survival curve showing overall survival of lower-grade gliomas (LGGs) in high-risk and low-risk groups. (a)
Kaplan–Meier survival curve of the TCGA cohort. (b) Kaplan–Meier survival curve of the CGGA cohort. (c) Kaplan–Meier survival
curve of the GSE16011 cohort. (d) Kaplan–Meier survival curve of the REMBRANDT cohort.
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Figure 2: Time-dependent receiver operating characteristic curve of six-gene signature in the TCGA (a), CGGA (b), GSE16011 (c), and
REMBRANDT (d) database.
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We next added these univariates into a multivariate
regression analysis program and found that age, IDH muta-
tion status, 1p/19q codeletion status, grade, and Riskscore sig-
nificantly affected the OS of grade II/III patients in TCGA
dataset (Supplementary Table 2). IDH mutation status, 1p/
19q codeletion status, grade, and Riskscore significantly
influenced survival outcomes in the CGGA dataset
(Supplementary Table 3), and age, 1p/19q codeletion status,
and Riskscore significantly influenced survival outcomes in
the GSE16011 dataset (Supplementary Table 4). The
Riskscore was an independent risk factor for OS in TCGA,
CGGA, and GSE16011 cohorts. In addition, we verified that
TNFRSF12A significantly influenced the OS of patients
through multivariate Cox regression analysis in TCGA and
CGGA cohorts (Figure 3, Supplementary Tables 2, 3, and 4).

3.4. Exploration of the Biological Processes and Pathways
That Correlated with the Riskscore. Since the Riskscore was
identified as an independent risk factor through multivariate
Cox regression analysis, we needed to further determine the
underlying biological processes and pathways. First, two gene
sets from TCGA and CGGA RNA expression datasets that sep-
arately had linear correlations with the Riskscore were selected
for GO analysis. The correlated genes are listed in the supple-
mentary materials. Identical processes and pathways in TCGA
and CGGA databases were chosen: “apoptotic process,” “angio-
genesis,” “epithelial to mesenchymal transition,” “positive regu-
lation of I-κB kinase/NF-κB signalling,” “positive regulation of
cell proliferation,” “immune response,” “cell adhesion,” and
“cell migration.”Heatmaps of TCGA and CGGA datasets were
also plotted, and they clearly showed that as the Riskscore
increased, the expression of the genes involved in the aforemen-
tioned pathways increased as well (Figures 4(a) and 4(b)). The
results of the GO analysis in the GSE16011 and REMBRANDT
are shown in the supplementary materials (Supplementary
Figure 2a, 2b). We also performed GSEA in the high- and
low-Riskscore groups on the basis of the cut-off value
referring to the median Riskscore. GSEA demonstrated that
the common pathways linked with a high Riskscore in both
TCGA and CGGA cohorts were “angiogenesis,” “apoptosis,”
“epithelial-mesenchymal transition,” “inflammatory response,”
“P53 pathway,” “PI3K AKT MTOR signalling pathway,”
“KRAS signalling up pathway,” and “TNF-α signalling via
NF-κB” (Supplementary Figure 3a, 3b). The results of GSEA
of the GSE16011 dataset and REMBRANDT databases are
displayed in supplementary materials as well (Supplementary
Figure 3c, 3d).

Patients with gliomas of all grades were divided into
IDH-wildtype and IDH-mutant groups and tested in TCGA,
CGGA, and GSE16011 cohorts. We found that patients
without IDH mutations had higher Riskscore within TCGA,
CGGA, and GSE16011 cohorts (Figures 5(a)–5(c)). Similar
analyses were conducted within a subset of grade II/III glio-
mas. The patients in TCGA, CGGA, and GSE16011 data-
bases were distributed into four groups based on the
transcriptome subtype: classical, mesenchymal, neural, and
proneural. Those categorised in the classical and mesenchy-
mal subtypes had a significantly higher Riskscore than those
in the other two subtypes (Figures 5(d)–5(g)).

3.5. Immune Cell Infiltration and Immune Checkpoint
Expression. To investigate whether there was a connection
between our signature and immune response procedures,
we performed CIBERSORT with LM22 to determine the
proportion of 22 different immune cells in each sample from
TCGA and CGGA databases. Notably, more M2-
macrophages were found in the high-risk group than in
the low-risk group (Figures 6(a) and 6(b)).

Since members of the TNF superfamilies are known to
be correlated with the expression of immune checkpoint
molecules, we performed a linear correlation analysis
between Riskscore and the expression of six canonical bio-
markers, including PD-1, PD-L1, CTLA4, TIM3, LAG3,
and TGFB1, in TCGA and CGGA cohorts separately. We
found that all these markers showed linear correlations with
the Riskscore in TCGA cohort, as did PD-1, PD-L1, CTLA4,
TIM-3, and TGFB1 in the CGGA database (Supplementary
Table 5, 6). Later, we performed a comparison of these
biomarkers between the high-risk and low-risk groups in
TCGA and CGGA datasets. In both TCGA and CGGA
cohorts, we found that the total expression of these six
genes in the high-risk group was higher than that in the
low-risk group (Figures 6(c) and 6(d)).

3.6. Mutated Profile of the High- and Low-Risk Groups in
TCGA Dataset. The top 10 types of mutated genes and
related pathways were different in the high-risk and low-
risk groups (Figures 7(a) and 7(b)). The frequencies of these
mutations in the corresponding groups varied as well. The
occurrence of IDH1 mutation in the low-risk group versus
high-risk group was 93% vs. 59% (p < 0:0001); TP53, 39%
vs. 51% (p = 0:011); CIC, 37% vs. 4% (p < 0:0001); ATRX,
30% vs. 38% (p = 0:076); FUBP1, 16% vs. 3% (p < 0:0001);
EGFR, 0% vs. 11% (p < 0:0001); PTEN, 0% vs. 9%
(p < 0:0001); TTN, 6% vs. 18% (p < 0:0001); PIK3CA, 7%
vs. 8% (p = 0:597); and NF-1, 3% vs. 9% (p = 0:010)
(Figures 7(c) and 7(d)). The fraction of samples affected by
the RTK-RAS pathway alterations was significantly different
between the low-risk and high-risk groups. Meanwhile, the
PI3K and TP53 pathway showed a tendency of having a
higher activated status in the high-risk group (RTK-RAS:
14.5% vs. 36.7%, p < 0:0001; PI3K: 13.6% vs. 24.4%, p =
0:004; TP53: 40% vs. 51.6%, p = 0:015, Figures 7(e) and 7(f)).

4. Discussion

Gliomas are recalcitrant malignant neoplasms. Even patients
who underwent maximum-safe resections followed by high-
dose chemotherapy and radiotherapy do not show signifi-
cant prolongation of the OS and PFS. The tumours and
the surrounding immunosuppressive microenvironment
collectively led to drug resistance, tumour progression, and
recurrence of gliomas. The appearance of an exhausted phe-
notype of cytotoxic T-lymphocytes (CTLs), recruitment of
tumour-associated macrophages, and myeloid-derived sup-
pressor cells are critical characteristics of an immunosup-
pressive microenvironment. One of the most important
mechanisms underlying these findings is the overexpression
of immune checkpoints. Some literatures found that

6 BioMed Research International



immune checkpoint molecules correlated to the prognosis of
gliomas [18, 19]. However, according to a phase III Check-
Mate 143 trial (ClinicalTrials.gov Identifier: NCT02017717),
the anti‐PD‐1 antibody nivolumab did not show promising

effects on prolonging the OS of patients with recurrent glio-
blastoma [20]. Duan et al. reported that the paucity of
CD30L (TNFRSF8) expression could upregulate the expres-
sion of PD-1 on CD8+ T cells, resulting in the progression
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Figure 3: These forest maps intuitively showed the protective or risk factors of univariate and multivariate Cox analysis in the TCGA,
CGGA, and GSE16011 cohort. (a) Univariate Cox analysis in the TCGA cohort. (b) Multivariate Cox analysis in the TCGA cohort. (c)
Univariate Cox analysis in the CGGA cohort. (d) Multivariate Cox analysis in the CGGA cohort. (e) Univariate Cox analysis in the
GSE16011 cohort. (f) Multivariate Cox analysis in the GSE16011 cohort.
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of gliomas [7]. This indicated that TNF might be correlated
with immune checkpoints and, in turn, influenced the curative
effect of immune checkpoint inhibitors. In addition, TNF has
been hypothesised to enhance immunoreactivity as a costimu-

lated receptor and overcome the limited application of
immune checkpoint inhibitors because of peripheral tolerance
and immunosuppression. Immune checkpoint inhibitors can
activate nonspecific T cells and cause autoimmune responses.
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Figure 4: Gene Ontology analysis demonstrating the biological processes related to Riskscore in the TCGA (a) and CGGA (b) databases.
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Jiang et al. reported that oncolytic adenovirus combined with
the immune costimulator OX40 ligand (OX40L, TNFSF4)
could enable immune cells to accurately recognise tumour-
associated antigens and reduce the adverse effects caused by
the activation of irrelevant T cells [21].

Because of the antitumour therapy potential of TNFs, we
took advantage of the LASSO model consisting of six genes
(CD70, EDA, TNFRSF11B, TNFRSF12A, TNFRSF14, and
TNFRSF25); we constructed this signature filtered out from
TNFSF/TNFRSF. CD70, also known as TNFSF7 or the
CD27 ligand, can combine with its receptor, CD27, and acti-
vate downstream responses, including the NF-κB and Jun
amino-terminal kinase pathways. At present, it is believed
that CD70 is responsible for the immune evasion mecha-
nism, which is similar to the effect of B7-CD28 families
[22]. This may be another potential target for future immu-
notherapy. The preliminary antitumour capacity and good
tolerability of ARGX-110, a type of anti-CD70 antibody,
was demonstrated in a phase I study [23]. Yang et al. found
that CD70 can drive tumour progression and cause immu-
nosuppression in gliomas [24]. To be brief, high expression
level of CD70 might indicate poor prognosis of gliomas.

Ectodysplasin A (EDA) has two isoforms, EDA-A1 and
EDA-A2. The NF-κB pathway is activated once EDA-A1
binds to EDAR, accompanied by the recruitment of TRAF1,
TRAF3, and TRAF6. In patients with colorectal carcinoma
and breast cancer, the EDA-A2-XEDAR interactions could
induce the death of tumour cells, parallel with the decline
in XEDAR expression [25–27]. Whether an analogous effect
will emerge within diffuse gliomas is unknown and needs to
be verified in further studies.

TNFRSF11B, also known as osteoprotegerin (OPG), is
secreted mainly by osteoblast lineage cells. Researchers have
found that OPG blocked the interaction between
TNFRSF11A (RANK) and receptor activator of nuclear fac-
tor kappa-B ligand (RANKL) by acting as a decoy receptor
[28]. It is acknowledged widely that the binding of RANK
and RANKL activates the NF-κB pathway, which plays an
important role in the stem-like cell maintaining process, cel-
lular proliferation and invasion, epithelial to mesenchymal
transition process, and resistance to chemotherapy and
radiotherapy in glioblastoma [29]. In addition, Kim et al.
found that RANKL could reactivate the astrocytes, promote
the cellular invasion, and might reshape the tumour micro-
environment in gliomas [30]. From this perspective,
TNFRSF11B may inactivate the RANK-RANKL pathway
and further protect the patients with gliomas. Conversely,
OPG was capable of binding the TNF-related apoptosis-
inducing ligand (TRAIL) and thus hinder TRAIL from
inducing apoptosis of tumour cells. This might attenuate
the efficacy of Apo2L/TRAIL-based therapy in gliomas
[31]. In our study, TNFRSF11B was found to be an indepen-
dent risk factor in TCGA cohorts, and further investigation
is needed.

TNFRSF14, more widely known as herpesvirus entry
mediator (HVEM), has been deemed as a molecular switch
showing both costimulatory and coinhibitory effects on T
cells in various malignancies [32]. Hokuto et al. reported
that overexpression of HVEM was frequently found in
patients with hepatocellular carcinoma. High expression of
HVEM was significantly linked to shortened OS and
recurrence-free survival because of the paucity of tumour-
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Figure 5: Distribution of Riskscore in all grades of gliomas according to IDH mutation status (a)–(c) and TCGA subtypes (d)–(g). (a)
Riskscore distribution status in the TCGA database. (b) Riskscore distribution in the CGGA database. (c) Riskscore distribution status in
the GSE16011 dataset. (d) Riskscore distribution status of the TCGA cohort. (e) Riskscore distribution status of the CGGA cohort. (f)
Riskscore distribution status of the GSE16011 cohort. (g) Riskscore distribution status of the REMBRANDT cohort (MT: mutated; WT:
wild type; CL: classical; ME: mesenchymal; NE: neural; PN: proneural; ∗: p < 0:05; ∗∗: p < 0:01; ∗∗∗: p < 0:001; ∗∗∗∗: p < 0:0001; ns: not
significant).
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Figure 6: Continued.
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infiltrating T cells and dysfunction of local immune
responses [33]. In another study, a similar result was
obtained from patients with glioblastoma, and the underly-
ing mechanisms were not specifically illuminated [18].

TNFRSF25, also known as death receptor 3 (DR3), was a
receptor primarily anchored on the surface of the T cell. It
could mediate the process of apoptosis and differenciation
[34–36]. Previous literature reported that TL1A (TNFSF15),
the exclusive ligand of DR3, can increase the number of CD4
+ effector T cells in inflammatory models and potentiate the

activity of CD8+ T cells, Treg, and NKT cells [37–40]. Based
on the murine model of plasmacytoma, Slebioda et al. dem-
onstrated that overexpression of TL1A intrigued antitumour
effect with the existence of CD8+ T cells. Moreover, they
found the TNFRSF25 was capable of facilitating the prolifer-
ation and CTL-oriented differentiation of CD8+ T cells [40].
In our univariate and multivariate Cox regression analysis,
TNFRSF25 was a protective factor, which preliminarily
showed the probability that TNFRSF25 might incur the
analogous antitumour effect in patients of diffuse gliomas.
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Figure 6: Distribution of tumour-infiltrating immune cells and immune checkpoint expression in high-risk and low-risk groups in LGGs.
(a) Distribution of tumour-infiltrating immune cells in the TCGA cohort. (b) Distribution of tumour-infiltrating immune cells in the CGGA
cohort. (c) Immune checkpoint molecule expression status in the TCGA database. (d) Immune checkpoint molecule expression status in the
CGGA database. The fraction in (a) and (b) refers to the proportion of this kind of immune cell in all 22 types of immune cells calculated by
CIBERSORT in one sample. Blue dots refer to immune cell fraction in the low-risk group and yellow dots the high-risk group. The
expression in (c) and (d) indicates that the mRNA expression level of the selected immune checkpoints in the form of a Z-score. Blue
dots refer to the expression of immune checkpoint molecules in the low-risk group and yellow dots in the high-risk group. ∗p < 0:05; ∗∗
p < 0:01; ∗∗∗ p < 0:001; ∗∗∗ ∗p < 0:0001.
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However, further investigation is needed to exemplify this
hypothesis.

TNFRSF12A is also known as fibroblast growth factor-
inducible 14 (Fn14). Hersh et al. identified that Fn14 was
overexpressed in patient-derived xenograft cell lines iso-
lated from recurrent glioblastoma and gliosarcomas in
comparison with nonneoplastic brain tissues and primary
glioblastomas. Of note, patients with high Fn14 mRNA
expression showed shortened OS. Moreover, they found
that specimens resected from patients who underwent
temozolomide (TMZ) treatment had higher FN14 levels
than those who did not. They further demonstrated that
TMZ-resistant GBM cells had a better performance in
terms of cellular migration than their TMZ-sensitive coun-
terparts [41]. Tan et al. identified that overexpression of
Fn14 is linked to poor glioma prognosis [42]. In our
study, TNFRSF12A was identified as an independent risk
factor in TCGA, CGGA, and GSE16011 cohorts by using
multivariate Cox regression analysis. By incorporating the
previous findings reported by Hersh et al., we hypothe-
sised that targeting Fn14 would achieve a promising ther-
apeutic effect in LGGs.

Our signature was robustly established in TCGA dataset
and validated in three other public databases, namely,
CGGA, GSE16011, and REMBRANDT. The Riskscore of
each patient in these databases was calculated using the
aforementioned LASSO model and confirmed as an inde-
pendent risk factor in one training cohort and three valida-
tion cohorts with the aid of univariate and multivariate
Cox regression analyses. Moreover, Kaplan–Meier survival
analysis revealed that the OS of the high-risk group was sig-
nificantly shorter than that of the low-risk group in these
four databases. It is widely acknowledged that the IDH
mutation status of gliomas could indicate the prognosis of
a patient extensively according to the 2016 WHO guidelines
[43]. In diffuse gliomas of all grades, patients with higher
Riskscore were primarily distributed in the group without
IDH mutation, which indicated that our signature had an
analogous predictive accuracy of prognosis to that of IDH.
Previous studies have indicated that the proneural tran-
scriptome subtype has a more favourable prognosis than
the mesenchymal subtype [44]. High-risk patients with
LGGs were scattered across the mesenchymal subgroup,
whereas a low Riskscore was more likely indicative of the
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Figure 7: (a) Top 10 mutated genes with the highest frequency in the low-risk group in the TCGA database. (b) Top 10 mutated genes with
the highest frequency in the high-risk group in the TCGA database. (c) These 10 genes are picked out which are either important or have a
significant difference between the high-risk and low-risk group according to (a) and (b). (d) Bar plot intuitionally reflected the differences of
these aforementioned 10 genes in (c) between the high-risk and low-risk group. Mutated genes were also demonstrated in (a)–(d). (e) Total
genes mutated in the corresponding pathway composed of a settled gene list (left) and numbers of samples harbouring this specific altered
pathway (right), in the low-risk group. (f) Similar to (e), it reflected the gene-mutated and pathway-altered pattern in the high-risk group
(NFR2 pathway change was found exclusively in the high-risk group).
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proneural counterpart. Combined with the results of the
ROC curves, we conclude that our signature precisely
reflects the prognosis of patients with LGGs.

Regarding the results of the CIBERSORT, we found that
the proportion of M0, M1, and M2 macrophages were sig-
nificantly higher in the high-risk group, while the naïve B
cells and naïve CD4+ T cells were significantly higher in
the low-risk group in both TCGA and CGGA cohorts. It is
considered that M2 macrophages are correlated with the
suppressive tumour microenvironment while the M1 macro-
phages are opposite to that of the M2 macrophages [45–49].
Considering that the proportion of M0 and M1 macro-
phages is extremely scarce compared to that of M2 macro-
phages, we could reasonably infer that M2 macrophages
play a major role in the tumour microenvironment. Naïve
B cells could become plasma cells, germinal center (GC) B
cells, and memory B cells. CD20(+) B cells are associated
with enhanced tumour immunity and prolong the survival
of patients with melanoma [50]. However, in another study,
when a B cell stimulus αCD40 is implemented in a murine
glioma model, suppressive CD11b+B cells are induced and
downregulate the cytotoxic T cell responses [51]. In our
study, the proportion of naïve B cells is higher in the low-
risk group than that of the high-risk group in both data-
bases. We hypothesise that a higher proportion of naïve B
cells could probably lead to more functional B cell produc-
tion. Another explanation is that more naïve B cells differen-
tiate towards immunosuppressive phenotype in the high-
risk group. However, the specific function of naïve B cells
in gliomas is unclear. Su et al. found that the circulating
naïve CD4(+) T cells can differentiate to Treg in breast can-
cer [52]. Likewise, the correlation between naïve CD4(+) T
cells and gliomas is unclear and further investigation is
needed. Concurrently, we found that the Riskscore had pos-
itive linear correlations with the expression of immune
checkpoint molecules. These results indicate that our signa-
ture might somehow be linked with the exhausting pheno-
type of various cells. In addition, we found that the
mutated genes and pathways differed in the high-risk and
low-risk groups, especially IDH1, FUBP1, CIC, and EGFR.
The biological pathways involved were the RTK-RAS,
PI3K, and TP53 pathways. This showed that our signature
might be correlated with specific genes and pathways that
regulate the growth and proliferation of tumour cells.

Hersh et al. reported that overexpression of the IDH1
R132H protein (a common form of mutant IDH1) reduced
the expression of Fn14 (TNFRSF12A) in gliomas [53]. How-
ever, the underlying mechanism has not been explained. In
our analysis, patients with higher Riskscore had worse life
expectancy and were less likely to harbour the IDH1 muta-
tion. The homolog of the Drosophila capicua (CIC) and its
far upstream binding protein 1 (FUBP1) are located on the
19q and 1p chromosomal arms, respectively. CIC and
FUBP1 mutations occur probably because of the unbalanced
translocation and often emerge after IDH mutation and 1p/
19q codeletion in gliomas [54]. It is widely acknowledged
that IDH mutated status and 1p/19q codeletion status are
vital prognostic factors of diffuse gliomas; therefore, the
appearance of these two mutated genes along with IDH

mutation and 1p/19q codeletion might similarly infer a good
prognosis of gliomas. This is in line with our result that the
occurrence of CIC and FUBP1 mutation in the low-risk
group is much higher than that in the high-risk group.
CIC is located on the upstream of RTK-RAS pathway and
might downregulate this critical oncogenesis pathway [55].
No reports have elucidated the function of FUBP1 mutation
in gliomas. These genetic changes have been discovered with
the recent popularity of genome sequencing; therefore, the
specific function of the two mutated genes in gliomas
remains unclear and more investigations are needed.

Previous studies have identified that augmentation and
mutations of EGFR play a critical role in tumorigenesis, and
patients suffering from lung cancer harbouring this mutation
or amplification benefited most from EGFR tyrosine kinase
inhibitors (TKIs) [56, 57]. In general, 40–50% of patients with
glioblastomas also show overexpression and augmentation of
EGFR. Nevertheless, the therapeutic effect of EGFR TKIs has
not yet been reported [58–60], and Guo et al. found that
TNF and EGFR inhibitors had a synergistic effect in TMZ-
resistant glioblastoma. The obstruction of EGFR signalling
stimulated the secretion of TNF and subsequently activated
the surviving pathways. Therefore, blocking the TNF-related
surviving pathways could sensitise glioblastomas to TMZ [5,
6]. In our study, patients with higher Riskscore tended to har-
bour EGFR mutations. We hypothesised that TNF-related
survival pathways might be an alternative approach for glio-
mas to escape the lethality of various types of treatments, but
more evidence is needed.

It is widely acknowledged that activation of receptor-
linked tyrosine kinases (RTKs) and the downstream RAS
pathway can lead to uncontrolled proliferation of all malig-
nancies [61]. TP53 is one of the most critical tumour-
suppressive genes in humans. If TP53 expression is compro-
mised, cell division will go haywire, and nearly half of all
human malignancies harbour TP53 alterations [62]. PI3K/
AKT/mTOR pathway activation has been observed in vari-
ous cancers because of its capacity to inhibit apoptosis and
promote cellular proliferation.

The aforementioned findings could be further evidenced
by GSEA and GO analysis. In TCGA and CGGA cohorts,
KRAS signalling, TP53 pathway, and PI3K/AKT/mTOR sig-
nalling were enriched in the high-risk group. In addition, epi-
thelial to mesenchymal transition and positive regulation of I-
κB kinase/NF-κB signalling were identified using GSEA and
GO analysis. Numerous documents have recorded that epithe-
lial to mesenchymal transition (EMT) is linked to the invasive
features of gliomas which enable it to penetrate the adjacent
stroma cells. In addition, EMT contributes to the immunosup-
pressive microenvironment conducive to the progression and
metastasis of gliomas [63, 64]. Abnormal activation of the NF-
κB signalling pathway usually promotes the malignant cell
proliferation and invasion, suppresses the tumour immune
response, and leads to chemotherapy resistance [29, 65, 66].
In summary, we hypothesise that the enrichment of NF-κB
signalling and EMT pathways in TNF-based high-risk group
leads to cell proliferation and invasion and the formation of
immunosuppressive microenvironment, which shortens the
patients OS, causing recurrence and therapy resistance.

17BioMed Research International



In this study, we first established a robust prognostic
model in LGGs based on the TNF superfamily and prelimi-
narily confirm the predicting value of these immune-related
cytokines. Meanwhile, we have found that high-risk subjects
of our prognostic model are correlated with higher expres-
sion levels of immune checkpoint genes, higher proportion
of M2 macrophages, and the hyperactive RTK-RAS pathway
and innovatively propose that TNF is involved with the for-
mation of immunosuppressive microenvironment, and the
malignant proliferation process of LGGs. In the future, it
may provide new drug targets for inhibiting the tumour
growth, attenuating the immune checkpoint therapy resis-
tance, and reversing the immunosuppressive microenviron-
ment. However, this is a retrospective study, and more
evidence is needed to further support these analyses.

Abbreviation

CGGA: Chinese Glioma Genome Atlas
CTLA-4: Cytotoxic T-lymphocyte-associated pro-

tein 4
CTLs: Cytotoxic T-lymphocytes
EGFR: Epidermal growth factor receptor
GO: Gene Ontology
HR: Hazard ratio
IDH: Isocitrate dehydrogenase
LAG-3: Lymphocyte-activation gene 3
LASSO: Least absolute shrinkage and selection

operator
LGG: Lower-grade gliomas
MGMT: Methylguanine methyltransferase
OS: Overall survival
PD-1: Programmed death receptor 1
PD-L1: Programmed death receptor 1 ligand
TCGA: The Cancer Genome Atlas
TGF-β: Transforming growth factor-beta
TIM-3: T cell immunoglobulin and mucin

domain 3
TMB: Tumour mutation burden
TNF: Tumour necrosis factor
TNFSF/TNFRSF: TNF and TNF receptor (TNFR)

superfamilies
95% CI: 95% confidence interval
PFS: Progression-free survival
RFS: Recurrence-free survival
RTK: Receptor-linked tyrosine kinase
TAA: Tumour-associated antigen
TKI: Tyrosine kinase inhibitor
TMZ: Temozolomide
WHO: World Health Organization.
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