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Abstract

Archeogenetics has been revolutionary, revealing insights into demographic history and recent positive selection. However, most studies
to date have ignored the nonrandom association of genetic variants at different loci (i.e. linkage disequilibrium). This may be in part be-
cause basic properties of linkage disequilibrium in samples from different times are still not well understood. Here, we derive several results
for summary statistics of haplotypic variation under a model with time-stratified sampling: (1) The correlation between the number of pair-
wise differences observed between time-staggered samples (pDt ) in models with and without strict population continuity; (2) The product
of the linkage disequilibrium coefficient, D, between ancient and modern samples, which is a measure of haplotypic similarity between
modern and ancient samples; and (3) The expected switch rate in the Li and Stephens haplotype copying model. The latter has implications
for genotype imputation and phasing in ancient samples with modern reference panels. Overall, these results provide a characterization of
how haplotype patterns are affected by sample age, recombination rates, and population sizes. We expect these results will help guide the
interpretation and analysis of haplotype data from ancient and modern samples.
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Introduction
Multilocus properties of genetic variation have been useful for
studying evolutionary processes and maximizing the information
extracted from population genetic data. Patterns of multilocus
variation are shaped by mutation and recombination events, gen-
erating novel combinations of alleles on chromosomes (i.e. hap-
lotypes). The nonrandom association of alleles between 2 (or
more) loci is known as linkage disequilibrium (LD; Lewontin and
Kojima 1960; Hill and Robertson 1968; Slatkin 2008). Common
measures of LD include the covariance and correlation in allelic
state at 2 loci on the same haplotype within a sample (D and r2,
respectively; Hill and Robertson 1968; Slatkin 2008). The decay of
LD as a function of the distance between genetic variants plays
an important role in dating evolutionary events (e.g. Moorjani
et al. 2016), determining the accuracy of complex trait prediction
(e.g. Vilhjálmsson et al. 2015), and moderating the power to map
trait-associated loci (e.g. Wray 2005; Spencer et al. 2009).

One approach for modeling variation at multiple loci has been
through the use of coalescent theory (Kingman 1982; Hudson
1985). The coalescent process at multiple loci can involve both re-
combination (splitting events) and coalescence (joining events) of
ancestral lineages, which means that there can be a different
number of lineages ancestral to a sample at each locus at a given
point in time (Hudson 1985; Simonsen and Churchill 1997;
Durrett 2008). Based on a 2-locus coalescent model, Hudson

(2001) developed a composite likelihood approach to estimate
fine-scale recombination rates in early sequencing datasets. This
initial approach paved the way for subsequent methods to esti-
mate fine-scale recombination rates in humans, accommodating
increasing model complexity (McVean et al. 2004; Auton and
McVean 2007; Kamm et al. 2016; Spence and Song 2019). Also us-
ing a 2-locus coalescent model, McVean (2002) was able to ex-
press metrics of LD in terms of properties of coalescent times. As
the impact of changing demographic history on coalescent times
is relatively straightforward, this advance enabled a more intui-
tive understanding of the impact of demographic history and
sampling design on expected patterns of LD in data (McVean
2002; Wakeley and Lessard 2003).

A second major modeling framework for LD has been via
“haplotype copying” models, such as the Li and Stephens’ model
(Li and Stephens 2003; Song 2016). Haplotype copying models
provide a computationally efficient approximation for the likeli-
hood of observed haplotype data generated with recombination
(Fearnhead and Donnelly 2001). As a result, they have become a
backbone of many analyses of population-genomic data, such as
genotype imputation (e.g. Howie et al. 2009), haplotype phasing
(e.g. Loh et al. 2016), and local ancestry inference (Price et al. 2009;
Lawson et al. 2012).

In an increasing number of settings, samples are not all from
the same time point. This is exemplified by the growing study of
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archeogenetics, also known as ancient DNA (aDNA) studies
(reviewed in Slatkin and Racimo 2016; Llamas et al. 2017;
Skoglund and Mathieson 2018). Archeogenetic studies of humans
have been able to reliably obtain genetic data from samples up to
45,000 years before present, although the majority of samples are
from the past �15,000 years (Skoglund and Mathieson 2018).

For single-locus data, genealogical models have been devel-
oped to quantify the impact of ancient samples on population ge-
netic statistics, such as the expected site-frequency spectrum,
the number of variants private to an ancient sample, and FST

(Rodrigo and Felsenstein 1999; Forsberg et al. 2005; Ortega-Del
Vecchyo and Slatkin 2018). In contrast, the impact of time-
separation on patterns of LD has not been fully explored.

Here, we characterize patterns of haplotype variation in tem-
porally stratified samples using a genealogical perspective.
Analogous approaches for time-stratified samples in a coalescent
framework have generally not been developed for the case of 2 or
more recombining loci. One exception is the approach of
Dialdestoro et al. (2016) that uses importance sampling over the
space of latent ancestral recombination graphs when calculating
the likelihood of observed sequence data for haplotypes at multi-
ple time-points. Our work here contrasts to that of Dialdestoro
et al. (2016) in that we obtain analytic solutions for 2-locus sce-
narios and for the haplotype copying model. The work presented
here is complementary to previous work by Terhorst et al. (2015)
who modeled how allele frequencies change for multiple loci us-
ing a Gaussian approximation to the Wright–Fisher model,
though here we approach the problem from a coalescent perspec-
tive.

We primarily consider statistics based on 2 haplotypes as a
starting point for representing the impact of time-stratified sam-
pling across multiple loci. However, we also explore the statistic
r2

t , whose properties can be understood as an expectation over 4
haplotypic states. We focus on these simplified scenarios as they
are analytically tractable, while still providing insight on
expected patterns in data (Hudson 1985; McVean 2002). We first
show how time-stratified sampling affects the joint properties of
genealogies at 2 loci, demonstrating that the time gap between a
pair of samples has an impact on the rate of decay in the correla-
tion of genealogical statistics and corresponding patterns of vari-
ation with recombination distance. We also analyze the behavior
of fitting the haplotype copying model with samples of different
ages, in particular when the test haplotype is from a time-point
in the past compared with a modern haplotype panel. Overall,
our results show the effect of time-stratified sampling on
expected patterns of haplotypic variation, and their implications
for the further development of population genetic methods.

Methods
Coalescent simulations and calculation of
pairwise-differences
We used msprime (Kelleher et al. 2016) to perform all coalescent
simulations used throughout the article. For simulations of 2 loci,
we used a customized recombination map to reflect 2 nonrecom-
bining loci of a given size separated by a specified absolute re-
combination rate. For the simulations of haplotypes, we use the
default simulation method and a uniform recombination map
(default r ¼ 10�8 per-basepair per-generation). To calculate a
pairwise-coalescent effective Ne to compare our constant-
population-size theory for 2 loci with simulations under varying
demographic history, we took a Monte-Carlo approach using 104

coalescent simulations to compute the mean marginal pairwise
coalescent time T2 from simulations and compute bNe as 2T2 .

Monte-Carlo simulation of correlation in
pairwise differences
To verify our comparisons of the theoretical prediction of
CorrðpA; pBÞ with data, we simulated 2 loci as described above
with a mutation rate h ¼ 0:4 (approximately equivalent to a 1-kb
window with human scale parameters) for 100 log-spaced points
from q 2 ½10�4; 102�. When estimating CorrðpA; pBÞ, we conducted
100,000 independent simulations and estimated the Pearson cor-
relation using the pearsonr function in the scipy package

(Virtanen et al. 2020). The standard error of the correlation was

calculated using the asymptotic formula: bsr ¼
ffiffiffiffiffiffiffiffi
1�br2

n�2

q� �
.

For estimating the correlation in pairwise differences, we sim-
ulated 20 replicates of 20 Mb haplotypes and calculated a Monte-
Carlo estimator of the mean correlation in segregating sites at
different recombination distances. The estimation proceeds as
follows: (1) we split the chromosome into nonoverlapping win-
dows of length L basepairs (default: 1 kb); (2) for each of 5,000
Monte-Carlo samples we choose a window SA and define a paired
window a recombination distance r from it (randomly choosing
the direction to search); (3) compute the empirical Pearson corre-
lation coefficient of the number of pairwise differences
CorrðpA; pBÞ across the 5,000 paired windows. Standard errors
were computed using the asymptotic formula above, using the 20
replicate chromosomes. For estimation with the real whole-
genome sequencing data, we use 30 log-spaced bins over the
range r ¼ ð10�5; 10�3Þ, where r is in Morgans to calculate Monte-
Carlo estimates of the correlation in pairwise differences. Unless
otherwise specified in the text, error bars reflect 2 standard errors
from the mean. When translating from years to generations for
comparison of models to our theoretical predictions, we use a
generation time of 30 years per generation from Fenner (2005).

Monte-Carlo estimation of joint LD
To estimate the product of LD across timepoints (Equation 7), we
used Monte-Carlo simulations of 500 modern and ancient haplo-
types in a model of constant population size of Ne ¼ 104. We con-
ducted 10 replicate simulations of 1 megabase haplotypes with
the mutation rate and recombination rate set to 10�8 per basepair
per generation. We applied a filter of the minor allele frequency
pooled across timepoints at > 5% when calculating the joint LD
coefficient. We additionally bin by genetic distance using the au-
tomatic histogram binning in scipy (Virtanen et al. 2020). For very
low values of q, there are too few mutations co-occurring at such
short distances in our simulations so we set a lower-bound of
q¼ 1 when plotting Fig. 5.

Analysis of ancient whole-genome sequencing
data
For our analysis of whole-genome aDNA data, we compared sin-
gle nucleotide variants observed in the LBK and Ust-Ishim samples
(Lazaridis et al. 2014; Fu et al. 2014). Variants were called using
samtools mpileup -C50 and were subsequently filtered using the
same criterion as in de Barros Damgaard et al. (2018).

To account for not having resolved haplotypes in the ancient
samples, we scale the observed differences by the probability
that they would be observed in a haplotype randomly sampled
from the diploid genome (e.g. 0.5 if heterozygote in ancient sam-
ple, 1 if opposing homozygote in the ancient sample). For modern
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samples, we used haplotypes from the 1000 Genomes Project
Phase 3 Dataset (Auton et al. 2015).

We computed the correlation in pairwise differences in nono-
verlapping 1-kb windows and applied a mappability mask to ac-
count for varying coverage in the modern sample by normalizing
(Auton et al. 2015). Standard errors were estimated using a non-
parametric bootstrap across 22 autosomes. To compare 2 empiri-
cal curves of dCorrðpA; pBÞ, we apply a 2-sided Binomial sign test to
test the proportion of recombination distance bins for which 1
ancient sample has a higher correlation and test against the null
hypothesis that the proportion is 0.5.

Parameter estimation in the haplotype copying
model
We implemented a version of the haplotype copying model pro-
posed by Lawson et al. (2012) that accounts for the genetic map
distances between subsequent single-nucleotide polymorphisms.
The Hidden Markov Model (HMM) is defined as follows. The tran-
sition probabilities between hidden states, Xl, where Xl represents
the haplotype in the panel that the test haplotype copies off of at
site l:

PðXl ¼ x0jXl�1 ¼ xÞ ¼
e�kgl þ 1

K
ð1� e�kgl Þ; x0 ¼ x

1
K

1� e�kgl Þ; else;
�

8>><>>: (1)

where gl is the genetic distance between markers l�1 and l (in
Morgan), K is the size of the haplotype reference panel, and k is
the “jump rate” or rate at which the model transitions between
the haplotype copying states.

The emission probabilities can be similarly characterized,
using a parameter � that represents the probability of a copying
error:

Pðhl ¼ a0jXl ¼ aÞ ¼ �; a0 6¼ a
ð1� �Þ; a0 ¼ a

;

�
(2)

where hl is the allelic state of the query haplotype at site l.
We use 2D numerical optimization from scipy.optimize

(Virtanen et al. 2020) to jointly estimate the maximum-likelihood
estimates bk and b�. Unless specifically stated, we use the joint pa-
rameter estimates in our results for both simulated and empirical
data. For profile maximum-likelihood estimates of bk, we use
Brent optimization within the range [0; . . . ; 106] with a fixed
� ¼ 10�2. We estimate standard errors for bk and b� using a finite-
difference approximation to the second derivative of the joint
log-likelihood surface.

All simulations under the haplotype copying model were con-
ducted using chromosomes of 40 megabases, and recombination
and mutation rates of 10�8 per basepair per generation. Every
modern panel consisted of K¼ 100 haplotypes (unless otherwise
specified). We also ascertained to variants with a minor allele
frequency > 5% in the modern panel.

Analysis of male X-chromosomes in 1,240K
human aDNA dataset
The human aDNA data that we used for our analysis of the
haplotype copying model (see Online Resources) are typed at a set
of 1,233,013 sites across the genome and downloaded from the
David Reich Laboratory’s website. Genotypes are drawn using
psuedohaploid sampling based on the available reads at these
sites. We filtered the data based on the following criteria for our

analysis while restricting to the X chromosome: (1) Must be a
male sample; (2) Samples must not have a significant amount of
modern DNA contamination (e.g. “PASS” contamination checks);
and (3) Samples must have �8,000 nonmissing variants across
the X chromosome. Following this filter, the median autosomal
coverage for the remaining samples is 2:303�, and an average of
1.29 sites per 25 kb on the X-chromosome.

Following these filters, we have a total set of 798 samples for
which we estimated the maximum-likelihood jump rate under
the haplotype copying model. To minimize confounding via spa-
tial variables, we chose a centroid location (48�N latitude, 6�E lon-
gitude) and only retained samples within 1,500 km of this
centroid. Following this filtering step, there are 344 samples that
are used for the main figures (Fig. 7).

We performed estimation of the haplotype copying jump rate
across all of the 798 originally filtered samples using 3 different
haplotype reference panels (49 CEU haplotypes [“CEU”]; 240 EUR
haplotypes [“EUR”]; 1,233 haplotypes [“FULLKG”]) for the X-
chromsome from the 1000 Genomes Phase 3 dataset (Auton et al.
2015). In all cases, we used the sex-averaged recombination map
for the X-chromosome from Kong et al. (2010). For linear modeling
of the jump-rate as a function of the sample age, we used the OLS
function of statsmodels package (Seabold and Perktold 2010).
When comparing the real data against simulations under the de-
mographic models inferred by Tennessen et al. (2012) and
Browning and Browning (2015), we use n¼ 49 modern day CEU
haplotypes and sampled haplotypes at ages corresponding to the
real data using a generation time of 30 years per generation
(Fenner 2005). We additionally scaled each demographic model
by 3/4 to reflect the reduced effective size of the X-chromosome.

Results
Two-locus genealogical properties
To model 2 haplotypes at 2 loci with time-stratified sampling, we
adapted a previously developed continuous time Markov process
for modeling ancestral lineages at 2 loci (Hudson 1983, 1990;
Simonsen and Churchill 1997). The states in the model are trip-
lets [e.g. (2, 0, 0)] that depict the number of lineages ancestral to
both loci, locus 1, or locus 2, respectively. Coalescence and
recombination events eventually lead to an absorbing state
where both haplotypes have coalesced at both loci [the state (1, 0,
0), Fig. A1]. Analytical results for joint moments in the coalescent
times in this model have been previously obtained for the case
where samples are taken at the present (Hudson 1983; Simonsen
and Churchill 1997; Durrett 2008, Chapter 3).

Here, to analyze the case of time-stratified sampling, we
assume that one of the haplotypes has been sampled at time ta in
the past (in coalescent units) and the other at the present. With
this time gap in sampling, there are 2 natural phases in the an-
cestral process: (1) the time between the present and when the
ancient haplotype is sampled (t < ta), and thus only the lineage
of the modern haplotype can evolve at each locus, and (2) the
time when the lineages of both haplotypes (modern and ancient)
are evolving through the full state space of the ancestral process
(t � ta).

For this 2-phase ancestral process, we derived expressions for
the covariance between the TMRCA’s at 2 loci (A and B), as well as
the total branch lengths (LA, LB) separated by a population-scaled
recombination distance, q ¼ 4Ner, where r is the per-generation
probability of recombination.

The derivation proceeds by recognizing that a key aspect of
the 2-phase process is the effect of recombination during the first
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phase, when only the modern lineage is evolving backwards in
time (t < ta, see Appendix A). During this phase the process has
only 2 states, “uncoupled” and “coupled.” By “uncoupled,” we
mean that the ancestral lineages are evolving independently at
each locus, whereas “coupled” means that they are evolving as a
joint ancestral lineage. The starting state for the second phase of
the ancestral process (when t � ta) is either that the modern hap-
lotype’s ancestral lineages are coupled at both loci or uncoupled
from one another. We obtain the time-dependent probability of
being in the uncoupled state by exponentiating the 2� 2 rate ma-
trix Q for the reduced state-space of the ancestral process during
t < ta; ðeQta Þ0;1, where Q ¼ ½� q

2 ;
q
2

� �
; ½1;�1��. By doing so and taking

different limits, we find:

Pta ðuncoupledÞ ¼ qð1� e�taðq2þ1ÞÞ
qþ 2

�

taq
2

; taq	 1;
q

qþ 2
; ta !1;

1� e�ta=2 ; q!1:

8>>>><>>>>:
(3)

Figure 1b shows for either large time-separation (ta) or large
population-scaled-recombination rates (q), it becomes more
likely that the modern haplotype is in the uncoupled state by the
time the process encounters the ancient haplotype. Since the
remaining dynamics are the same as the 2-locus ancestral pro-
cess with 2 contemporaneously sampled haplotypes, we thereaf-
ter leverage known results for the 2-locus ancestral process
(Simonsen and Churchill 1997; McVean 2002; Durrett 2008,
Chapter 3). In the next 2 sections, we take this modeling ap-
proach to derive the expectations of observable quantities from
time-staggered haplotype data.

Correlation in pairwise differences
The number of pairwise differences between 2 haplotypes at
each of 2 loci is an observable summary of genetic variation at
linked loci in time-sampled sequence data. To investigate the
properties of the joint distribution on pairwise differences at 2
loci (locus A and B), we continue to assume a model with recom-
bination occurring at a rate q between them and no recombina-
tion occurring within each. For each locus, as is typical in

coalescent models, we assume an infinite-sites model with muta-
tions arising on each lineage as a Poisson process with rate h

2,
where h ¼ 4NelL, l is the per-basepair per-generation mutation
rate, L is the size of the locus (in basepairs), and Ne is the effective
population size.

Following the approach described in the preceding section, we
derive the correlation of pairwise differences for the case with
time-stratified sampling (see Appendix A). In particular, we use
the fact that the correlation in the number of pairwise differences
at locus A and B can be expressed in terms of the correlation in
the total branch length between the loci (Wakeley and Lessard
2003; Hobolth et al. 2019). We find the correlation in pairwise dif-
ferences between 2 loci to be:

CorrðpA; pBÞ ¼
1

1þ 2þta
2h

CorrðLA; LBÞ; (4)

where CorrðLA; LBÞ is the correlation in total branch length at locus
A and locus B. In Appendix A (building on previous results from
Hudson 1983; Simonsen and Churchill 1997; Durrett 2008,
Chapter 3), we derive its exact form and several limiting values to
be:

CorrðLA; LBÞ ¼
qþ 18

q2 þ 13qþ 18

�ð1� e�taðq2þ1ÞÞ q
qþ 2

� �
qþ 12

q2 þ 13qþ 18

�

qþ 18
q2 þ 13qþ 18

; ta ! 0;

qþ 18
q2 þ 13qþ 18

� taq
2

qþ 12
q2 þ 13qþ 18

; taq	 1;

8qþ 36
q3 þ 15q2 þ 44qþ 36

; ta !1;

8>>>>>>><>>>>>>>:

(5)

As the equations show, the correlation in pairwise differences
is affected by the age of the ancient sample ta in 2 ways. The first
effect is due to the factor in Equation (4) that decreases as ta

increases and is not dependent on q, which can be seen in Fig. 2
by the decrease for ta ¼ 10,000 against ta ¼ 0 for very small q. We
note that the difference between ta ¼ 10,000 and ta ¼ 0 in Fig. 2 is
more pronounced than between 1,000 and 0, because ta in
Equation (4) is on the coalescent scale. The second effect occurs
in how ta affects CorrðLA; LBÞ (Fig. 2). For values of taq	 1, the cor-
relation decays linearly with ta and with Oðq�1Þ for q. The decay

(a) (b)

Fig. 1. a) Schematic of genealogies at 2 loci separated by a population-
scaled recombination distance q (q ¼ 4Ner). The parameter ta represents
the sampling time of the haplotype (measured in coalescent units, i.e.
scaled by 2Ne). The random variables TA and TB are the additional time to
coalescence at locus A & B, after ta. b) The probability of the modern
haplotype being “uncoupled” at the time of ancient sampling as a
function of ta and q. In this setting, “uncoupled” means that the
ancestral lineages at locus A and B are not on the same haplotype,
enhancing the probability of different TA and TB occurring at each locus.

Fig. 2. Theoretical (solid lines) and simulated correlation between
pairwise differences in a constant-size demography (Ne ¼ 104) at
different sample ages (in generations). Comparison of theoretical
prediction of CorrðpA; pBÞ with data from 2-locus coalescent simulations
with h ¼ 0:4 (see Methods). Solid blue and orange lines are the theoretical
predictions for CorrðpA; pBÞ from Equation (4).
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decreases more rapidly as Oðq�2Þ when taq
 1 and as ta gets
large (the third case in Equation 5). This is because of the addi-
tional time (ta) that the recombination process has to break apart
the shared genealogical history at each locus.

The impact of nonequilibrium demographic history on the
correlation in pairwise differences
To explore the effects of varying population size through time,
we simulated haplotype data under models of constant size, in-
stantaneous growth, and trajectories inferred from previous
studies of human populations that include both bottlenecks and
growth (Tennessen et al. 2012; Browning and Browning 2015;
Fig. 3). Motivated by how most human aDNA data are from ap-
proximately the last 15,000 years, we investigated the correla-
tions on a timescale of 500 generations.

In models with constant population size, larger population
sizes lead to smaller inter-locus correlations (lower LD). In all our
simulations qta 	 1, so on the time-scale of 500 generations, the
correlation in branch length decreases linearly as expected with
sampling age (Equation 4, Supplementary Fig. 2A). Across all pop-
ulation sizes, we observe significantly negative relationships be-
tween sample age (on the coalescent scale) and the correlation in
branch length akin to what we predict in Equation (4) (for linear
regression of CorrðLA; LBÞ � bta, we find for Ne ¼ 5� 103; bb ¼
�0:43; Ne ¼ 104; bb ¼ �0:52; Ne ¼ 2� 104; bb ¼ �0:53). The negative
effect of ta on the correlation in total branch length in turn
decreases the correlation in pairwise differences (Fig. 3a).

When simulating under the population size trajectories from
Tennessen et al. (2012) or from the Browning and Browning
(2015), “UK10K IBDNe model” in reference to the original dataset,
the correlations are smaller than the UK10K IBDNe model, which
includes a larger population size in the last few generations but
an overall Ne (estimated using Watterson’s estimator, see
Methods) that is smaller than the Tennessen model
(NTennessen � 6922:91; NUK10K�IBDNe � 2670:19; Fig. 3b). In a linear
model, the correlation in pairwise differences decreases with age
under the UK10K IBDNe model [bbage ¼ �0:41, 95% CI ¼ (�0.51,
�0.31)] and not in the Tennessen et al. (2012) model [bbage ¼ 0:04,
95% CI: (�0.03, 0.12)].

For the case of step-wise population growth (Fig. 3c), we make
3 observations. First, the decrease in the correlation in pairwise
differences is no longer approximately linear with time but
decays nonlinearly, with the rate of decay decreasing with sam-
ple age. Second, the correlation in pairwise differences is highest
at short time-scales for the most recent growth event, and at
long-timescales for the most ancient growth event. This can be
interpreted again as a result of the very low Ne in this setting
such that the factor scaling the correlation in pairwise differen-
ces (Equation 4) dominates the behavior after ta � 150 genera-
tions (when the correlation in branch length is similar across all
settings). Third, the correlation in the branch length is substan-
tially higher (> 0:8) when compared with the previously inferred
demographies (Supplementary Fig. 2).

The step-wise growth scenario is interesting in that due to the
large, recent increase in population size, we expect roughly star-
like genealogies with coalescent times concentrated around the
start of the growth event (Slatkin 1996; Rosenberg and Hirsh
2003). In this scenario, we find the correlation between loci in the
branch lengths is increased greatly (Supplementary Figs. 2C and
8) which contributes to elevating the CorrðpA; pBÞ. At the same
time, as h is decreased relative to other scenarios (due to lower
Ne), we do not see as drastic an increase in the correlation be-
tween pairwise differences as in the branch length (Equation 4).
Intuitively, as Ne decreases, the correlation in total branch length
between loci increases as the coalescent rate increases if the re-
combination rate is held fixed; lowering Ne also decreases h,
which increases the correlation in pairwise differences between
loci.

Finally, we also investigated the correlation in pairwise differ-
ences in a 2-population model of divergence without gene flow.
We assume the modern and ancient haplotype are each sampled
from different populations. In this scenario, both the ancient and
modern haplotypes can become uncoupled prior to any possibil-
ity of inter-haplotype coalescence lowering the expected correla-
tion in pairwise diversity (Appendix A). In this model, we find the
correlation in number of pairwise differences decreases as a
function of the sum of the divergence time and the sampling
time (tdiv þ ta; Supplementary Fig. 1).

(a) (b) (c)

Fig. 3. The impact of varying demographic history on the correlation in pairwise differences at 2 loci. For all simulations, the recombination rate
between the loci was set to 10�4 per generation (�10 kb, assuming 1 cM per 1 Mb). Simulated scenarios include: a) constant population size, b) inferred
models of population growth, and c) models of instantaneous population growth. Each timepoint had 50,000 replicate simulations.
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Correlation of pairwise differences in
time-staggered whole-genome sequencing data
Next, we explored the correlation of pairwise differences in mod-
ern and ancient human whole-genome sequencing data with 2
high-coverage samples from 2 different ages. We restricted to an-
alyzing high-quality whole-genome sequencing data to avoid as-
certainment biases and to more accurately estimate pairwise
differences (see Methods; Fig. 4).

The first sample we chose is an �7,000-year-old sample from
modern-day Germany associated with the Linear Ban Keramic
(LBK) culture and labeled variously in previous studies as the
Stuttgart LBK sample or simply the LBK sample (Lazaridis et al.
2014). The second sample is �45,000 years old and from Western
Siberia, labeled Ust-Ishim (Fu et al. 2014). These samples have an
order of magnitude difference in the sampling time-scale (thou-
sands vs tens-of-thousands years).

To investigate the correspondence of our theory with empiri-
cal data, we compared the correlation in pairwise differences
across our 2 empirical samples to the theoretical predictions
from Equation (4). We find that for recombination rates < 10�4

Morgans, the scale and rate of decay of the empirical curves are
consistent with the theoretical predictions (Fig. 4). However, there
is a larger deviation between the empirical results and theoretical
predictions at longer recombination distances (> 10�4), where in
observed data there is an excess of correlation in pairwise differ-
ences (Fig. 4). The extended decay of CorrðpA; pBÞ that we see in
real data is not present in data simulated under the model of
(Tennessen et al. 2012; Supplementary Fig. 4A) or under a
constant-sized demography (Supplementary Fig. 4B), suggesting
that the extended decay is not attributable to demographic his-
tory alone and warrants further study.

LD with time-stratified sampling
To directly relate the joint genealogical properties described
above to patterns of LD, we investigated the normalized expected
product of LD (D) between the ancient and modern samples:

r2
t ¼

Dð0ÞDðtÞ

pð0ÞA ð1� pðtÞA Þp
ð0Þ
B ð1� pðtÞB Þ

; (6)

where pðtÞA is the frequency of the derived allele at the first locus
at time t and DðtÞ ¼ pðtÞAB � pðtÞA pðtÞB is a classic measure of LD in the
sample of individuals from time t (Lewontin and Kojima 1960).
Using the genealogical identity coefficients from McVean (2002),

we derive the ratio of the expectations of the product of LD be-
tween time-points. Motivated by arguments put forth by McVean
(2002) and Ragsdale and Gravel (2019) that express statistics of
LD by taking the ratio of expectations (i.e. r2

d), we take the ratio of
expectations of r2

t in Equation (6) to derive a time-stratified ana-
log of r2

d. Similar to r2
d, we stress that our statistic r2

t is not di-
rectly equivalent to r2

t —is an approximation that can become
poor for loci at low-frequencies McVean (2002). In Appendix B, we
derive an expression for the joint product of LD across both time-
points (r2

t ):

r2
t :¼ E½Dð0ÞDðtÞ�

E½pð0ÞA ð1� pðtÞA Þp
ð0Þ
B ð1� pðtÞB Þ�

¼ qþ 2ð Þ qþ 10ð Þ
q3 þ 15q2 þ 48qþ 48ð Þet qþ2ð Þ

2 � 4
;

(7)

when t¼ 0, Equation (7) reduces to the expression for r2
d, as

shown in McVean (2002). Both simulations and our theoretical
predictions show that larger time-separation between samples
qualitatively decreases the joint product of LD (Fig. 5).

The impact of time-stratified sampling in
haplotype copying models
We next consider the scenario where one would be interested in
modeling an ancient haplotype as a mosaic of modern haplo-
types, as might arise when trying to phase or impute aDNA geno-
types using a reference panel of modern haplotypes and the
popular Li and Stephens haplotype copying model (Li and
Stephens 2003; Song 2016). We specifically use a modified model
where the recombination map positions are known a priori (see
Methods; Lawson et al. 2012). We focus on the maximum-
likelihood estimate of the haplotype copying jump rate (bk) for a
given test haplotype as it copies off the reference panel. We viewbk partly as a summary statistic reflecting the length scale of
copying tracts and as an indicator of the expected accuracy of im-
putation (Stephens and Scheet 2005; Jewett et al. 2012).

Fig. 4. Comparison of the correlation in pairwise differences between
LBK, Ust-Ishim, and a modern CEU control individual. Points represent
the estimate of the pairwise correlation between randomly chosen pairs
of loci (see Methods). When computing the theoretical curves, we used
Ne ¼ 104 and a mutation rate l ¼ 1:2� 10�8 per basepair-per-generation.

Fig. 5. Joint product of LD between samples separated by ta generations
across different population-scaled recombination rates q (see Methods).
Dots represent results from simulation and solid lines are theoretical
predictions from Equation (7).
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The time-separation between the ancient haplotype and mod-
ern sample provides an opportunity for recombination events to
occur among the modern reference haplotypes before the ancient
lineage is able to coalesce with any individuals from the modern
panel (Equation 3; Fig. 1). Thus, we expect higher jump rates as
the sample age ta increases. We also expect coalescence within
the modern panel will contribute to higher jump rates with in-
creasing ta by effectively reducing the panel size moving farther
back in time.

Using the first time coalescence between the ancient target
and a member of the modern panel, we observe a saturation ef-
fect when increasing the modern panel size (Appendix C and
Supplementary Fig. 5). The time until the first coalescent event
involving the ancient sample is equal to the length of the external
branch in the local genealogy that leads to the ancient sample,
and affects the rate of recombination events that can induce
switch events in the copying model. The time to the first coales-
cent involving the ancient sample and the modern panel
decreases as a function of the reference panel size, K. However,
as the age of the sample increases, the number of lineages extant
to the reference sample becomes smaller, making the time to
first coalescent event more similar across modern reference
panel sizes.

Using simulations with populations of constant size, we find
that the realized copying jump rate indeed increases with age,
and does so monotonically as a function of the age of the test
haplotype under a model of constant population size (Fig. 6a).
The simple monotonic relationship can break down in nonequili-
brium demographic models. For instance, in demographic mod-
els including recent population growth for European populations,
we find that there is an initial decrease in bk from the present to
�150 generations ago before a more rapid increase moving back
into the past (Fig. 6b; Tennessen et al. 2012; Browning and

Browning 2015). A similar result is observed more dramatically in
simulations of instantaneous growth, with a common feature be-
ing a decreasing relationship between bk and sample age up to the
time of onset of instantaneous growth, reflective of the effect of a
strong conditioning on the coalescent time (Fig. 6c and
Supplementary Fig. 8).

Haplotype copying jump-rates in human aDNA data
To compare our simulation experiments on the dependence of
the jump-rate with sampling time to empirical data, we applied
our jump rate estimation to a collection of 1,159 ancient human
samples (see Methods). To avoid potential errors introduced by
statistical phasing, we analyzed only haploid carriers of the X
chromosome by taking samples labeled as male in both the an-
cient data and the modern reference panel (1000 Genomes
Project data; Auton et al. 2015). Thus, the analysis used 47,094 bi-
allelic SNPs observed on the X chromosome. To avoid the poten-
tial effects of population structure confounding the impact of
time-stratified sampling and to maximize the sample size, we fo-
cus primarily on Europe as it is the region with the highest den-
sity of aDNA samples, and we used n¼ 49 CEU male X
chromosomes to define the modern reference panel (see
Supplementary Fig. 6 for experiments with alternate panels).

Based on copying jump rates estimated across 344 ancient male
X-chromosome samples from across Europe (see Methods for a de-
scription of the dataset), we find that the estimated jump rate
decreases as a function of sample age (Fig. 7a). Accounting for spatial
variables (Latitude, Longitude, and Latitude � Longitude) in a linear
model (see Methods and Supplementary Fig. 6), we find the effect of
sample age on the estimated copying jump rate is negative
(bb ¼ �0:54; 95% CI ¼ (�0.63, �0.46)]. Filtering for the highest 25%
coverage individuals did not change the result (Supplementary Fig.
9). The inferred haplotype copying error rate (�) also decreases with

(a) (b) (c)

Fig. 6. Estimation of haplotype copying jump-rate against sample age for different models of population demographic history (top row). a) constant
population size, b) previously inferred models of recent population growth, and c) models of instantaneous population growth. The inferred parameters
should be interpreted in terms of the average jumps per Morgan.
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age, suggesting the observed decrease in k is not an artifact of the
inference procedure (Supplementary Fig. 10).

This decrease is contrary to our idealized simulations with
constant population size (Fig. 6a) and in agreement with the sim-
ulations involving some aspect of recent growth (Fig. 6, b and c).
To make the comparison more exact, we replicate simulations of
Tennessen et al. (2012) and Browning and Browning (2015) with
the exact temporal sampling structure of the real 344 samples
and using a sex-averaged recombination map for the X chromo-
some (Kong et al. 2010). With these simulations, we are able to
replicate an initial decrease in the jump-rate as a function of
sampling time (Fig. 7, b and c). However, the simulations do not
capture the duration of the decrease in jump-rate with sample
age, which we find to be �400 generations in the real data.

Discussion
In this article, we have developed theory to understand the
effects of serial sampling on patterns of haplotype variation in
the context of 2 models, the 2-locus coalescent model and the
haplotype copying model. Both of these models are used to de-
scribe patterns of LD in population genetic data, and share sev-
eral features with one another. Both models capture the
relationship between recombination distance and the breakdown
of LD, but the 2-locus genealogies consider patterns only at 2-loci
whereas the haplotype copying model considers a multilocus per-
spective. It should also be noted that the 2-locus genealogical
model explicitly considers the time of coalescent and recombina-
tion events, whereas the haplotype copying model, in the form
used here, does not consider the timing of particular events.
However, in spite of their differences, they both have wide rele-
vance in that they provide theoretical results for the expected
patterns of linked variation, underlying standard approaches to
analyze modern haplotype data.

In the 2-locus coalecenscent, we find that with larger time-
separation between samples, the correlation in branch length at
2 loci decreases by an amount proportional to the probability of
uncoupling of a sampled modern haplotype over ta units of time
(Equation 4). In constant-size populations and small values of
taq, the decrease is linear in time. As ta increases the decay of cor-
relation in branch lengths to occur with order Oðq�2) vs Oðq�1).
Intuitively, the additional marginal branch length on which a re-
combination event can occur (2þ ta vs 2 in expectation) is

disrupting between-locus correlation. Demographic history also
shapes the correlation in branch length between loci, with
CorrðLA; LBÞ increasing as Ne decreases due to a decrease in the
variance in coalescent times (Supplementary Fig. 2). For larger
values of ta there is an additional decrease in the correlation of
pairwise differences between loci, CorrðpA; pBÞ, that arises from
the impact of mutations (the denominator of Equation 4). For
small values of ta (ta 	 2 coalescent units) the correlation of
branch length essentially determines the behavior of the correla-
tion in observable number of differences between 2 loci.

The expected joint LD coefficient between data sampled at dif-
ferent times decreases across all recombination scales in the sim-
ulations and the theoretical derivations (Fig. 5). However, it is
important to note that our simulations here represent an ideal-
ized scenario with a large number of ancient haplotypes (n¼ 500)
and no genotyping error. Therefore, it will be of further interest
to determine if statistics such as the joint LD coefficient may be
informative for demographic inference, while accounting for po-
tential error modes from realistic data sources.

Our analysis of the haplotype copying rate bk revealed interest-
ing impacts of demographic history. In constant-size models, the
inferred copying rate increased with the sample age as one might
expect due to recombination events; however, in cases of strong
recent population growth (Tennessen et al. 2012; Reppell et al.
2014; Browning and Browning 2015) the inferred copying rate
decreases initially with age and then increases. To understand
this, consider how the haplotype copying jump-rate, bk, is in-
versely related to the expected branch-length shared between an
ancient haplotype and a member of the modern panel, because
recombination events that occur on these branches can initiate
copying-switch events (Li and Stephens 2003; Paul et al. 2011;
Steinrücken et al. 2013). In cases with rapid population growth,
there are initially limited numbers of coalescent events, followed
by a high rate when the population is small, looking backwards
in time. Samples that are sampled sequentially closer to the on-
set of growth have shorter branch length on which potential
switch events occur, producing the initial negative relationship.
For samples that are sampled more ancestrally than the onset of
population growth, we find that the jump rate increases as the
coalescent time are no longer affected by the onset of growth
(Fig. 6c).

Our empirical analysis of aDNA data from western Eurasia
supported a negative relationship between the haplotype copying

(a) (b) (c)

Fig. 7. Comparison of estimated haplotype copying jump rates between real data and simulations. a) Estimate of the jump rate in ancient male
X-chromosomes within 1,500 km of central Europe. b) Maximum likelihood estimates of the haplotype copying jump rate using simulated
X-chromosomes under the model of Tennessen et al. (2012). c) Estimated jump rates using simulated data under the model of Browning and Browning
(2015).
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rate and sample age. In contrast with the demographic models
simulated, the empirical data show an extended decrease in the
jump rate, reaching over �400 generations. Similar discrepancies
arise when comparing the correlation in pairwise differences in
empirical data (Fig. 4). We consider 2 potential explanations for
the discrepancy between simulations and observations: unmod-
eled aspects of population demographic history not captured by
existing models used for simulation or aDNA data artifacts.
Throughout our experiments for both the haplotype copying rate
and correlation in pairwise differences, we found that demo-
graphic models capturing more detail of recent Eurasian history
did not adequately predict either statistic. However, there may
still be potential unmodeled aspects of relevance to our statistics
here. For example, the duration of the decrease in the estimated
copying rate could be due to smaller local population sizes in the
more distant past than is reflected in the models. This is particu-
larly relevant given the time-scale of �400 generations (�12,000
years) as this extends into the Mesolithic and Paleolithic eras dur-
ing which populations were likely small in overall size and deeply
structured (Premo and Hublin 2009; Haak et al. 2015; Skoglund
and Mathieson 2018). If ancestral population structure existed in
this period, it may have biased inferred effective population size
upwards in models that were fit under the assumption of a single
panmictic population (Li and Durbin 2011, Supplementary
Section 1.6). We also recognize that due to population turnover,
the proportion of ancestry directly ancestral to the modern refer-
ence panel may fluctuate as a function of time due to population
turnover, leading to temporal patterns in the jump rate.
Regarding the aDNA data, in our empirical analysis, we do not
find any significant effects of coverage on the qualitative result
that the jump-rate decreases as a function of time
(Supplementary Fig. 9B). If error rates increase with sample age it
would seem to run counter to the observed result, causing ele-
vated jump rate estimates as one goes further back in time; how-
ever, this is not what we observe in our joint estimation
(Supplementary Fig. 10). Some complex form of reference bias in-
creasing with age and interacting with the haplotype copying
model may be plausible. Overall, the result suggests there may
be interesting insights to be gained by more detailed empirical
analyses of haplotypic patterns in aDNA.

Many methods have been developed in the context of haplo-
type copying models, from imputation and phasing (e.g. Howie
2009), estimation of recombination rates (e.g. Li and Stephens
2003), to fine-scale ancestry estimation (e.g. Lawson et al. 2012).
Our theoretical results leave important considerations for each of
these application domains with serially sampled data. For impu-
tation and phasing, the increase in the copying jump rate as a
function of time under constant population sizes implies that LD
will be lower in relation to the first coalescent time with a mem-
ber of the modern panel, and will lower the copying accuracy at
longer genetic distances (Appendix C; Jewett et al. 2012). For sam-
ples that are sufficiently old, there is a diminishing benefit for
generating larger modern reference panels (Appendix C), which
primarily results in improvements in imputation and phasing for
modern samples due to recent relatedness (Jewett et al. 2012;
McCarthy et al. 2016).

Our exploration of the impact of population demography (par-
ticularly population growth) and our empirical analysis of the
male X chromosome paints a more optimistic picture for the
analysis of human aDNA using the haplotype copying model. We
find that there is a substantial attenuation of the increase in the
haplotype copying jump-rate (bk) under scenarios of recent
growth, and even potential decreases in the case of instant

population growth (Fig. 6). Together with our empirical result of
the jump rate decreasing as a function of time across male X
chromosomes in ancient European samples (Fig. 7), the results
support the idea that we may be able to impute common variants
relatively accurately in human populations that have undergone
recent rapid growth. Indeed, the empirical accuracy of imputa-
tion is relatively high for samples within the past �6,000 years
(Gamba et al. 2014; Martiniano et al. 2017). In addition to the
“reference-based” phasing we have explored in this work, meth-
ods that iteratively sample haplotypes from the input genotypes
have advantages for phasing aDNA when modern reference pan-
els lack the haplotype and allelic diversity present in ancient
samples (e.g. Rubinacci et al. 2020). We leave this comparison of
phasing and imputation accuracy from exclusively reference-
based models with the addition of iterative haplotype sampling
for future work, though we expect some of the insights gained
here will help this exploration.

As caveats, our theoretical results here do not account for
some important features of aDNA data. Specifically, we have not
attempted to model genotyping error and low-coverage data,
both common in the analysis of aDNA (e.g. Dabney et al. 2013).
Our results on pair-wise loci could be extended to directly model
the effects of errors at one or both loci. Methods using haplotype
copying HMMs with emission probabilities directly modeling low-
coverage sequencing data (e.g. Rubinacci et al. 2020) are more ap-
plicable to account for this sparsity in aDNA analysis. Another
caveat is that due to the wide temporal range and the absolute
number of samples available (Olalde and Posth 2020), our empiri-
cal analyses focused on samples from western Eurasia. As aDNA
technology improves and sampling becomes less centered on
western Eurasia, it will be interesting to reanalyze the relation-
ship between the jump-rate and sample age across multiple
regions with varied demographic histories.

With the abundance of aDNA data being generated across a
wide array of organisms, statistical and theoretical advances will
need to similarly account for this new dimension in the data.
Here, we have highlighted the impact of time-stratified sampling
for 2 related models, the 2-locus coalescent with recombination
and the haplotype copying model. We expect that our theoretical
treatment of these models will serve to inform advances in statis-
tical population genetic methods that account for serially sam-
pled data to maximize their utility for inference.
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Supplemental material is available at GENETICS online.
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model for genotype imputation. Genetics. 2012;191(4):1239–1255.

Kamm JA, Spence JP, Chan J, Song YS. Two-locus likelihoods under

variable population size and fine-scale recombination rate esti-

mation. Genetics. 2016;203(3):1381–1399.

Kelleher J, Etheridge AM, McVean G. Efficient coalescent simulation

and genealogical analysis for large sample sizes. PLoS Comput

Biol. 2016;12(5):e1004842.

Kingman JFC. On the genealogy of large populations. J Appl Prob.

1982;19(A):27–43.

Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A,

Jonasdottir A, Walters GB, Jonasdottir A, Gylfason A, Kristinsson

KT, et al. Fine-scale recombination rate differences between

sexes, populations and individuals. Nature. 2010;467(7319):

1099–1103.

Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population

structure using dense haplotype data. PLoS Genet. 2012;8(1):

e1002453.

Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S, Kirsanow K,

Sudmant PH, Schraiber JG, Castellano S, Lipson M, et al. Ancient

10 | GENETICS, 2022, Vol. 221, No. 1

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac038#supplementary-data
https://github.com/aabiddanda/aDNA_LD_public
https://github.com/aabiddanda/aDNA_LD_public
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable/-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable/-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable/-genotypes-present-day-and-ancient-dna-data
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://www.well.ox.ac.uk/~anjali/AAmap/maps_b37.tar.gz
https://www.well.ox.ac.uk/~anjali/AAmap/maps_b37.tar.gz


human genomes suggest three ancestral populations for

present-day Europeans. Nature. 2014;513(7518):409–413.

Lewontin RC, Kojima K. The evolutionary dynamics of complex poly-

morphisms. Evolution. 1960;14(4):458–472.

Li H, Durbin R. Inference of human population history from individ-

ual whole-genome sequences. Nature. 2011;475(7357):493–496.

Li N, Stephens M. Modeling linkage disequilibrium and identifying

recombination hotspots using single-nucleotide polymorphism

data. Genetics. 2003;165(4):2213–2233.

Llamas B, Willerslev E, Orlando L. Human evolution: a tale from an-

cient genomes. Philos Trans R Soc Lond B Biol Sci. 2017;372(1713):

20150484.

Loh PR, Palamara PF, Price AL. Fast and accurate long-range phasing

in a UK biobank cohort. Nat Genet. 2016;48(7):811–816.
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Appendix A: The 2-locus ancestral process
with population continuity and ancient
sampling

We first begin with a model of constant population size and where
we sample 1 haplotype from the present and 1 haplotype at time ta

ago (in coalescent units). The population is assumed to be constant
in size with population scaled recombination rate q ¼ 4Ner. Since
we have 2-samples from different time-points, we have 2 phases of
the process: (1) where only the modern lineage can evolve at 2 loci
(0 � t < ta) and when both haplotypes are available to coalesce
and recombine with one another (t � ta). The states and possible
transitions (with their corresponding rates) are shown in Fig. A1.

Before calculating joint moments of the genealogical properties
across 2 loci, we calculate marginal moments at individual loci:
(1) E½T�, the time to coalesce between the 2 sequences after both
are able to coalesce, (2) E½H�, the height of the genealogy at a sin-
gle locus, and (3) E½L�, the expected total branch length at a single
locus. All of these quantities are scaled by twice the population
size (2Ne), which we refer to as the “coalescent scale” (see Fig. A2
for a schematic of these marginal quantities). The variable T �
Exponentialð1Þ when both haplotypes are sampled from the
same population. These marginal quantities can then be
obtained in the model with time-stratified sampling as:

E½T� ¼ Var½T� ¼ 1;

for the expectation and variance of T,

E½H� ¼ E½T þ ta�

¼ 1þ ta;

Var½H� ¼ Var½T þ ta� ¼ 1;

for the expectation and variance of H, and

L ¼ 2H� ta

E½L� ¼ E½2H� ta�

¼ 2þ ta;

Var½L� ¼ Var½2H� ta�

¼ 4Var½H� ¼ 4;

for the expectation and variance of L. Following the definition of
these marginal moments, we calculate the covariance in the
branch lengths at each locus, CovðLA; LBÞ, as:

CovðLA; LBÞ ¼ E½LALB� � E½LA�E½LB�

E½LALB� ¼ E½ð2HA � taÞð2HB � taÞ�

¼ E½4HAHB � 2taHA � 2taHB þ t2
a�

¼ 4E½HAHB� � 4taE½HA� þ t2
a

¼ 4ðE½TATB� þ 2ta þ t2
aÞ � 4tað1þ taÞ þ t2

a:

These derivations show that we can compute CovðLA; LBÞ under
the time-staggered sampling model by computing E½TATB�.

We approach this using a “staggered” version of the Simonsen–
Churchill Model as described in the main text (Simonsen and
Churchill 1997; Hobolth and Jensen 2014; Fig. A1). In the phase
where t < ta, with a single modern haplotype, we consider this as
a 2-state continuous-time Markov process with the rate matrix:

Q ¼
� q

2
q
2

1 �1

264
375;

which we use to solve for the probability that the ancestral pro-
cess is in state x at time ta as:

Pta ðx ¼ ð1; 1; 1ÞÞ ¼ eQtað Þ0;1

¼ qð1� e�taðq2þ1ÞÞ
qþ 2

Pta ðx ¼ ð2; 0; 0ÞÞ ¼ 1� Pta ðx ¼ ð1; 1; 1ÞÞ;

where the state x ¼ ð2; 0; 0Þ represents 2 lineages that are ances-
tral to both locus A and locus B and the state x ¼ ð1; 1; 1Þ repre-
sents 1 lineage ancestral to both locus A and B, 1 lineage
ancestral to locus A, and 1 lineage ancestral to locus B (Hobolth
and Jensen 2014; Simonsen and Churchill 1997). This corresponds
to our “uncoupled state” in the main text. The 2 states in the

Fig. A1. Markov chain model for the ancestral process at 2 loci from
Simonsen and Churchill (1997). In all settings for 2 modern haplotypes,
we assume that we start from the state in the middle (state “0”) in all
applications, which means that all sampled haplotypes are coupled. The
parameter g represents the coalescent rate and the parameter q
represents the recombination rate (measured in coalescent units). Figure
adapted from Hobolth and Jensen (2014).

Fig. A2. Description of variables in the 2-locus case. H is the total tree
height, T is the coalescent time of the ancient and modern lineage, and ta

is the sampling time of the ancient lineage (in coalescent units). Here
subscripts A, B denote the 2 loci separated by scaled recombination
distance q.
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Markov process with a single present haplotype can only be
“coupled” [(2, 0, 0)] or “uncoupled” [(1, 1, 1)].

Returning to our computation of E½TATB� in the second phase of
the ancestral process (t > ta), we obtain:

Eð2;0;0Þ½TATB� ¼
q2 þ 14qþ 36
q2 þ 13qþ 18

;

Eð1;1;1Þ½TATB� ¼
q2 þ 13qþ 24
q2 þ 13qþ 18

;

E½TATB� ¼ Pta ðx ¼ ð2; 0; 0ÞÞEð2;0;0Þ½TATB�

þPta ðx ¼ ð1; 1; 1ÞÞEð1;1;1Þ½TATB�

¼ 1� qð1� e�tðq2þ1ÞÞ
qþ 2

 !
q2 þ 14qþ 36
q2 þ 13qþ 18

þ qð1� e�tðq2þ1ÞÞ
qþ 2

q2 þ 13qþ 24
q2 þ 13qþ 18

;

(8)

where Ex indicates the expectation conditional on starting in
state x of the ancestral process. The first 2 expressions above are
derived in Durrett (2008, Chapter 3), where both haplotypes are
sampled at present. The last expression is a weighting of the
expectations from different starting states in the 2-locus ances-
tral process, where the weight corresponds to the probabilities
that the modern haplotype is uncoupled at the time the ancient
haplotype is sampled, ta. From this we can compute the covari-
ance in the branch length, CovðLA; LBÞ and CorrðLA; LBÞ: by
substituting the Equation (8) into the relevant expressions previ-
ously defined, leading to the expression:

CorrðLA; LBÞ ¼
CovðLA; LBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðLAÞVarðLBÞ
p
¼ E½TATB� � 1;

(9)

which simplifies to Equation (4) in the main text. The lower and
upper limits of ta are 0 and 1, and we show the asymptotic be-
havior of CorrðLA; LBÞ in terms of q:

2
qþ 2

< Pðx ¼ ð2; 0; 0ÞÞ � 1; 8ta 2 ½0;1Þ

CorrðLA; LBÞ ¼ E½TATB� � 1

CorrðLA; LBÞjta ! 0 ¼ q2 þ 14qþ 36
q2 þ 13qþ 18

� 1

¼ qþ 18
q2 þ 13qþ 18

CorrðLA; LBÞjta !1 ¼
2

qþ 2
q2 þ 14qþ 36
q2 þ 13qþ 18

þ q
qþ 2

q2 þ 13qþ 24
q2 þ 13qþ 18

� 1

¼ 8qþ 36
q3 þ 15q2 þ 44qþ 36

:

This derivation highlights the change in the rate of decay in
the correlation of the branch length as a function of the sampling
time from Oðq�1Þ to Oðq�2Þ.

To relate the correlation in total branch length to the correla-
tion in the number of pairwise differences between 2 sequences,
we use the following identities for the case where mutations oc-
cur as a Poisson process with rate h=2 along branches, where h is
the population-scaled mutation rate ðh ¼ 4NelÞ (Hobolth et al.
2019):

pAjLA � Pois
h
2

LA

� �
;

pBjLB � Pois
h
2

LB

� �
;

E½pA� ¼ E½pB� ¼ E½E½pAjLA�� ¼
h
2
E½LA�;

VarðpAÞ ¼ E½VarðpAjLAÞ� þ VarðE½pAjLA�Þ;

¼ h
2
E½LA� þ

h
2

� �2

VarðLAÞ

E½pApB� ¼ E½E½pApBjLALB�� ¼
h2

4
E½LALB�;

CovðpA; pBÞ ¼ E½pApB� � E½pA�E½pB� ¼
h2

4
CovðLA; LBÞ;

CorrðpA; pBÞ ¼
CovðpA; pBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðpAÞVarðpBÞ
p ;

¼
h2

4
CovðLA; LBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
2 E½LA� þ h2

4 VarðLAÞ
	 
2

r

¼ CovðLA; LBÞ
2
h
E½LA� þ VarðLAÞ

¼ 1

1þ 2þ ta

2h

E½TATB� � 1Þ;ð

leading to a relationship with the correlation in the branch length

at each locus, CorrðLA; LBÞ:

CorrðpA; pBÞ ¼
1

1þ 2þta
2h

CorrðLA; LBÞ; (10)

which is Equation (4) in the main text.

The 2-locus ancestral process with population
divergence and time-stratified sampling
In this section, we assume a model with divergence between the

populations containing the ancient lineage and the modern line-

age at the coalescent scaled time, tdiv. We can partition the ances-

tral process into 3 phases: (1) when the modern lineage is the

only 1 evolving, (2) when the ancient lineage and the modern lin-

eage are both evolving but are not able to coalescent with one an-

other, and (3) when both lineages are in the ancestral population

and can coalesce with each other. These 3 phases can be seen

Fig. A3.
The model with population divergence has an additional pa-

rameter, tdiv, the divergence time of the 2 populations. We first

show the properties of the marginal tree under the divergence

model (see Fig. A3, for a definition of the quantities):

Fig. A3. Description of variables in the single-locus case. H is the total
tree height, T is the coalescent time of the ancient and modern
lineage, and ta is the sampling time of the ancient lineage (in
coalescent units).
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E½T� ¼ Var½T� ¼ 1;

E½H� ¼ E½T þ ta þ tdiv�

¼ 1þ ta þ tdiv;

Var½H� ¼ Var½T þ ta þ tdiv�

¼ 1;

E½L� ¼ E½2H� ta�

¼ 2E½H� � ta

¼ 2ð1þ ta þ tdivÞ � ta

¼ 2þ ta þ 2tdiv;

Var½L� ¼ Var½2H� ta�

¼ 4Var½H� ¼ 4;

where tdiv is the population divergence times in coalescent units,

ta is the sampling time of the ancient lineage, T is the exponen-

tially distributed time after both lineages are able to coalesce

that they coalesce with one another. Using these results, we can

calculate moments of the joint distribution of genealogical prop-

erties like the tree height (H), and total branch length (L).

Specifically, the 2-locus ancestral process behaves independently

within each population for time ta and tdiv and each population is

assumed to have the same population size. We begin by deriving

the joint expectation of tree-height HAHB:

E½HAHB� ¼ E½ðTA þ ta þ tdivÞðTB þ ta þ tdivÞ�

¼ E½TATB� þ 2tdiv þ 2ta þ ðta þ tdivÞ2;

and joint tree length LALB:

E½LALB� ¼ E½ð2HA � taÞð2HB � taÞ�

¼ 4E½HAHB� � 4ta þ t2
a;

where we must solve for the joint expectation of E½TATB�, but with

the additional complication of population divergence. In order to

do this we must calculate the probability of being in 1 of 3 start-

ing states at time ta þ tdiv: (1) the state x ¼ ð2; 0; 0Þ where both the

ancient and modern haplotypes are “coupled,” (2) the state x ¼
ð0; 2; 2Þ where both the ancient and modern haplotype are

“uncoupled,” which is possible due to the independent evolution

of both lineages during ta < t < ta þ tdiv, and (3) state x ¼ ð1; 1; 1Þ
where one haplotype is uncoupled, whereas the other is coupled.

We consider the 2 independent processes within each population

until the divergence time and calculate the probabilities of being

in each starting state as follows:

Pðx ¼ ð2; 0; 0Þjta; tdivÞ ¼ Pðx1 ¼ ð1; 0; 0Þjta þ tdivÞPðx2 ¼ ð1; 0; 0ÞjtdivÞ

¼ qe�ðtaþtdivÞðq=2þ1Þ þ 2
qþ 2

qe�tdivðq=2þ1Þ þ 2
qþ 2

;

Pðx ¼ ð0; 2; 2Þjta; tdivÞ ¼ Pðx1 ¼ ð0; 1; 1Þjta þ tdivÞPðx2 ¼ ð0; 1; 1ÞjtdivÞ

¼ qð1� e�ðtaþtdivÞðq=2þ1ÞÞ
qþ 2

qð1� e�tdivðq=2þ1ÞÞ
qþ 2

;

and

Pðx ¼ ð1; 1; 1Þjta; tdivÞ ¼ Pðx1 ¼ ð1; 0; 0Þjta þ tdivÞPðx2 ¼ ð0; 1; 1ÞjtdivÞ

þPðx1 ¼ ð0; 1; 1Þjta þ tdivÞPðx2 ¼ ð1; 0; 0ÞjtdivÞ

¼ qe�ðtaþtdivÞðq=2þ1Þ þ 2
qþ 2

qð1� e�tdivðq=2þ1ÞÞ
qþ 2

 !

þ qð1� e�ðtaþtdivÞðq=2þ1ÞÞ
qþ 2

qe�tdivðq=2þ1Þ þ 2
qþ 2

 !
:

From these probabilities, we calculate the expectation of the
joint coalescent times conditional on being in a specified state at
time ta þ tdiv is obtained as:

E½TATB� ¼
P

x2fð1;1;1Þ;ð2;0;0Þ;ð0;2;2Þg Pðx ¼ xjta; tdivÞEx½TATB�;

where each of Ex½TATB� is defined using previously derived results
under the 2-locus ancestral process conditional on being in a
starting state x (Simonsen and Churchill 1997; Durrett 2008;
Chapter 3). This is different from the model under population
continuity (where the x ¼ ð0; 2; 2Þ state was not possible). If we set
tdiv ¼ 0, then this corresponds exactly to the model without popu-
lation divergence. While the underlying mathematical results are
more involved, they provide insights on how population diver-
gence affects joint coalescent times.

We can now compute joint statistics (e.g. correlation) of the
tree properties at each of the loci following common formulas,
for example for the correlation in total branch length at each lo-
cus:

CorrðLA; LBÞ ¼ E½TATB� � 1:

Expectations of joint coalescent times under the
time-stratified model
We assume that the following results on the joint coalescent
times for 2 contemporary haplotypes starting in the same state
in the 2-locus ancestral process as defined in Durrett (2008,
Chapter 3) are known:

E0½TATBjx ¼ ð2; 0; 0Þ� ¼
q2 þ 14qþ 36
q2 þ 13qþ 18

E0½TATBjx ¼ ð1; 1; 1Þ� ¼
q2 þ 13qþ 24
q2 þ 13qþ 18

E0½TATBjx ¼ ð0; 2; 2Þ� ¼
q2 þ 13qþ 22
q2 þ 13qþ 18

;

and now, we will go through the individual cases for the time-
stratified case: (1) both modern and ancient haplotypes start cou-
pled, (2) both modern and ancient haplotypes are “uncoupled,”
and finally (3) where only one of the modern and ancient haplo-
types are coupled (the other is uncoupled).

We first define 2 quantities, called c and g. The variable c refers
to the probability of starting in the coupled [(1, 0, 0)] state and
ending in the uncoupled state [(0, 1, 1)] at time ta for a single hap-
lotype (which is Equation 3 in the main text). The variable g is the
converse, the probability of starting in the uncoupled state and
ending in the coupled state at time ta. Using the matrix
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exponential e�Qta of the following rate matrix for the process with
a single haplotype:

Q ¼
� q

2
q
2

1 �1

264
375;

we arrive at the following expressions for c and g:

c ¼ qð1� e�taðq2þ1ÞÞ
qþ 2

;

g ¼ 2ð1� e�taðq2þ1ÞÞ
qþ 2

:

With these in hand we can start tackling our first case (1) from
above:

Eta ½TATBjxta ¼ ð1; 0; 0Þ; x0 ¼ ð1; 0; 0Þ� ¼ ð1� cÞE0½TATBjx ¼ ð2; 0; 0Þ�

þcE0½TATBjx ¼ ð1; 1; 1Þ�;
(11)

where, x0 ¼ ð1; 0; 0Þ indicates that the modern haplotype is cou-
pled, and xta ¼ ð1; 0; 0Þ indicates that the ancient haplotype is
coupled as well. This holds because the modern haplotype can be
coupled with probability 1� c leading to state x ¼ ð2; 0; 0Þ for the
joint ancestral process, or it can be uncoupled with probability c

resulting in state x ¼ ð1; 1; 1Þ. For case (2) (both haplotypes
uncoupled), we obtain:

Eta ½TATBjxta ¼ ð0; 1; 1Þ; x0 ¼ ð0; 1; 1Þ� ¼ ð1� gÞE0½TATBjx ¼ ð0; 2; 2Þ�

þgE0½TATBjx ¼ ð1; 1; 1Þ�:
(12)

The final case (3) is the most complicated and we break this
into a further 2 subcases below:

Eta ½TATBjxta ¼ ð1; 0; 0Þ; x0 ¼ ð0; 1; 1Þ� ¼ ð1� gÞE0½TATBjx ¼ ð1; 1; 1Þ�

þgE0½TATBjx ¼ ð2; 0; 0Þ�;

Eta ½TATBjxta ¼ ð0; 1; 1Þ; x0 ¼ ð1; 0; 0Þ� ¼ ð1� cÞE0½TATBjx ¼ ð1; 1; 1Þ�

þcE0½TATBjx ¼ ð0; 2; 2Þ�;
(13)

where the first case corresponds to the modern haplotype start-
ing in the “uncoupled” state (denoted by the x0 in the expectation)
and the second case corresponds to the modern haplotype start-
ing in the “coupled” state.

Appendix B: The expected product of LD
between time-stratified samples
Here, we derive the scaled product of LD between time-stratified
samples normalized by the heterozygosity across both sites and
time points. We first start from the definition of the statistic in
terms of haplotype and allele frequencies in the ancient and
modern samples:

r2
d ¼

E½Dð0ÞDðtÞ�

E p0
Að1� pðtÞA Þp

ð0Þ
B ð1� pðtÞB Þ

h i

¼
E ðpð0ÞAB � pð0ÞA pð0ÞB Þðp

ðtÞ
AB � pðtÞA pðtÞB Þ

h i
E pð0ÞA ð1� pðtÞA Þp

ð0Þ
B ð1� pðtÞB Þ

h i ;

(14)

where pðtÞAB is the frequency of the haplotype with the derived
alleles at both loci at time t, pðtÞA is the frequency of the derived al-
lele at the first locus, and pðtÞB is the frequency of the derived allele
at the second locus. Using the approach of McVean (2002) we de-
fine this ratio using branch lengths in the genealogy relating
modern and ancient samples, where a mutation would result in a
observed pattern of identity by state (Fig. A4). We first expand the
numerator as follows:

E½Dð0ÞDðtÞ� ¼ E½ðp0
AB � p0

Ap0
BÞðpt

AB � pt
Apt

BÞ�

¼ E½pð0ÞABpðtÞAB� � E½pð0ÞABpðtÞA pðtÞB � � E½pð0ÞA pð0ÞB pðtÞAB� þ E½pð0ÞA pð0ÞB pðtÞA pðtÞB �;

�
E½IA

ið0Þ jðtÞ I
B
ið0Þ jðtÞ � � E½IA

ið0Þ jðtÞ I
B
ið0ÞkðtÞ � � E½IA

ið0Þ jðtÞ I
B
kð0Þ jðtÞ � þ E½IA

ið0Þ jðtÞ I
B
kð0Þ lðtÞ �

E½LALB� ;

where i; j; k; l denote sampled haplotypes. Furthermore,Ix
ðið0Þ jðtÞÞ is

the branch length leading from the Tmrca of the samples ið0Þ at
time 0 and jðtÞ at time t to the Tmrca of the total population (includ-
ing the ancient individuals) at locus x. E½LALB� is the joint expecta-
tion of the total genealogical branch length for the complete
population at both loci. The approximation in the final step above
follows from assuming a small mutation rate (McVean 2002). We
use the definition IA

ið0Þ jðtÞ ¼ TA � tA
ið0Þ jðtÞ , where TA is the Tmrca for the

total population (modern and ancient) at locus A and tA
ið0Þ jðtÞ is the

pairwise coalescent time for samples ið0Þ; jðtÞ at locus A. Using this
relationship between coalescent times and identity coefficients,
we arrive at:

E½Dð0ÞDðtÞ� ¼ E½ðTA � tA
ið0Þ jðtÞ ÞðT

B � tB
ið0Þ jðtÞ Þ� � E½ðTA � tA

ið0Þ jðtÞ ÞðT
B � tB

ið0ÞkðtÞ Þ�

�E½ðTA � tA
ið0Þ jðtÞÞÞðT

B � tB
ðkð0Þ jðtÞÞÞ� þ E½ðTA � tA

ið0Þ jðtÞ ÞðT
B � tB

kð0Þ lðtÞ Þ�

¼
E½tA

ið0Þ jðtÞ t
B
ið0Þ jðtÞ � � E½tA

ið0Þ jðtÞ t
B
ið0ÞkðtÞ � � E½tA

ið0ÞkðtÞ t
B
ið0Þ jðtÞ � þ E½tA

ið0Þ jðtÞ t
B
kð0Þ lðtÞ �

E½LALB� ;

Fig. A4. Schematic describing properties of lineages required for
estimation of E½tA

ið0Þ jðtÞ t
B
ið0ÞkðtÞ � in the case with time-stratification. Figure

adapted from McVean (2002) for our case of time-stratification.
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where the product of pairwise coalescent times at one locus and
the total Tmrca at the other locus (e.g. E½T1t2

ðið0Þ jð0ÞÞ�) do not depend
on the indices i, j (Durrett 2008; Chapter 3). This means that the
numerator of the expression above can be computed using the
expectations of pairwise coalescent times in the time-stratified
model.

The denominator of our expression (E½pð0ÞA ð1� pðtÞA Þp
ð0Þ
B ð1� pðtÞB Þ�)

is the probability of drawing 2 haplotypes at the first locus that
are at different time points and differ in their allelic identity, and
drawing 2 haplotypes at the second locus from different time-
points that also differ in their allelic identity. This is a measure of
the time-stratified joint heterozygosity at both sites. We note that
this is different from the interpretation of E½pð1� pÞqð1� qÞ�
which is the probability of a difference at the first locus and a dif-
ference at the second locus under a random draw from of a sam-
ple from a contemporary population and is the denominator of r2

d

(McVean 2002). We define the denominator similarly using pair-
wise coalescent times as:

E½pð0ÞA ð1� pðtÞA Þp
ð0Þ
B ð1� pðtÞB Þ� �

E½tA
ið0Þ jðtÞ t

B
kð0Þ lðtÞÞ�

E½LALB� ;

where we see that joint total branch length term E½LALB� will can-
cel out when evaluating the ratio. We can now turn to actually
computing this expression using the joint expectations for coa-
lescent times calculated in our time-stratified model (see
Appendix A for the derivation of these joint coalescent times):

E½Dð0ÞDðtÞ�
E½pð0ÞA ð1� pðtÞA Þp

ð0Þ
B ð1� pðtÞB Þ�

¼ 1
E½TATBjxta ¼ ð0; 1; 1Þ; x0 ¼ ð0;1; 1Þ�

½E½TATBjxta ¼ ð1; 0; 0Þ; x0 ¼ ð1; 0; 0Þ�

�E½TATBjxta ¼ ð0; 1; 1Þ; x0 ¼ ð1;0;0Þ�

�E½TATBjxta ¼ ð1; 0; 0Þ; x0 ¼ ð0;1;1Þ�

þE½TATBjxta ¼ ð0; 1; 1Þ; x0 ¼ ð0;1;1Þ��;

which can be simplified to the following expression after
substituting the proper expressions for the joint coalescent times
derived in Appendix A:

qþ 2ð Þ qþ 10ð Þ
q3e

t qþ2ð Þ
2 þ 15q2e

t qþ2ð Þ
2 þ 48qe

t qþ2ð Þ
2 þ 48e

t qþ2ð Þ
2 � 4

;

which is the expression reported in the main text (Equation 7).
Importantly, we find that when t¼ 0, the expression simplifies to

qþ10
q2þ13qþ22 which is the expression for r2

d in the case with 2 contem-
porary samples (McVean 2002).

Appendix C: Expected-time to first
coalescent for an ancient sample
Here, we consider a single ancient haplotype sampled at a time ta

in the past and how it coalesces into the ancestral lineages of a
reference panel of size K haplotypes sampled at the present. We
define the random variable T� as the additional time of a coales-
cent event involving the ancient haplotype and a lineage ances-
tral to the modern reference panel after the time that the ancient
haplotype is sampled (ta). The expectation of this quantity can be
written as:

Eta ;K½T�� ¼ E½E½T�jAKðtaÞ��

¼ E E

XAKðtaÞþ1

j¼2

PðIjÞ
Xj

i¼AKðtaÞþ1

Ti

24 35jAKðtaÞ

24 35;
where AKðtaÞ is the number of lineages ancestral to the modern

reference panel at time ta, PðIjÞ is the probability that the jth coa-

lescent event involves the ancient lineage, and Ti is the ith inter-

coalescent time.
Starting at time ta with nt lineages, we calculate the probability

that the jth coalescent event involves the ancient lineage as:

PðIjÞ ¼ 1�

j� 1
2

� �
j
2

� �
0BBB@

1CCCA Yjþ1

k¼AnðtaÞ

k� 1
2

� �
k
2

� �

¼ 2
j

Yjþ1

k¼AnðtaÞ
1� 2

k

� �
:

In a constant population size model, we have E½Tj� ¼ 2
jðj�1Þ.

Using this fact, the expected time until the first coalescence in-

volving the ancient lineage (T�) is:

E½T�jAKðtaÞ� ¼ E

XAKðtaÞþ1

j¼2

PðIjÞ
Xj

i¼AKðtaÞþ1

Ti

24 35

¼
X2

j¼AKðtaÞþ1

2
j

Yjþ1

k¼AKðtaÞþ1

1� 2
k

� � Xj

i¼AKðtaÞþ1

2
iði� 1Þ

24 35;
and considering the summation over AKðtaÞ, we arrive at our final

expression:

Eta ;K½T�� ¼ E½E½T�jAKðtaÞ��

¼
X1

a¼K

PðAKðtaÞ ¼ aÞ
X2

j¼aþ1

2
j

Yjþ1

k¼aþ1

1� 2
k

� �Xj

i¼aþ1

2
iði� 1Þ

24 3524 35:
(15)

The probability distribution PðAKðtÞ ¼ aÞ involves a number of

alternating sums and leads rapidly to numerical error as the

sample size gets large (see Equation 15 in Chen and Chen 2013).

To alleviate this issue, following Jewett and Rosenberg (2014) we

approximate PðAKðtÞ ¼ aÞ as dðAKðtÞ ¼ E½AKðtÞ�Þ. That is, rather

than calculate the probability distribution of AKðtÞ across states

1 . . .K, we will approximate it with its expectation E½AKðtÞ�. One

approximation for E½AKðtÞ� is found in Griffiths (1984):

E½AKðtÞ� �
K

Kþ ð1� KÞe�t :

Further approximations for this expectation exist and are ex-

plored in greater detail in Jewett and Rosenberg (2014). We chose

the above approximation largely for computational convenience

as it does not involve any summation, has a simple form, and is

comparably accurate when compared with other approximations

(Jewett and Rosenberg 2014).
The additional time to coalescence for the ancient sample

(E½T��) is proportional to the number of recombination events
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that can affect the genealogical closest haplotype to the an-
cient sample that is in the modern panel. For example, for a
sample with ta ¼ 2� 10�4 there is E½T�� � 2� 10�3 and 2� 10�4

with a panel size of K¼ 1,000 and 10,000, respectively
(Supplementary Fig. 5). This guides the intuition that for large
panel sizes and recent sampling times, the time for the ancient
haplotype to coalesce with the panel is quite small, and there-
fore we expect the haplotype copying rate to be fairly small
(leading to longer shared blocks). This is the key intuition

behind long-range phasing methods that take advantage of re-
cent relatedness (e.g. Loh et al. 2016). For samples on the order
of �10�2 coalescent units, the relative ratio is 1.17 for E½T�� with
modern panel sizes of K¼ 1,000 and K¼ 10,000 (as opposed to
6.99 when ta ¼ 10�4). This highlights a saturation effect of
within-panel coalescence at deeper times, limiting the
expected utility of large modern panels for the setting with
substantially ancient samples (Supplementary Fig. 5).
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