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Abstract.—Population structure influences genealogical patterns, however, data pertaining to how populations are structured
are often unavailable or not directly observable. Inference of population structure is highly important in molecular
epidemiology where pathogen phylogenetics is increasingly used to infer transmission patterns and detect outbreaks.
Discrepancies between observed and idealized genealogies, such as those generated by the coalescent process, can be
quantified, and where significant differences occur, may reveal the action of natural selection, host population structure,
or other demographic and epidemiological heterogeneities. We have developed a fast non-parametric statistical test for
detection of cryptic population structure in time-scaled phylogenetic trees. The test is based on contrasting estimated
phylogenies with the theoretically expected phylodynamic ordering of common ancestors in two clades within a coalescent
framework. These statistical tests have also motivated the development of algorithms which can be used to quickly screen
a phylogenetic tree for clades which are likely to share a distinct demographic or epidemiological history. Epidemiological
applications include identification of outbreaks in vulnerable host populations or rapid expansion of genotypes with a
fitness advantage. To demonstrate the utility of these methods for outbreak detection, we applied the new methods to large
phylogenies reconstructed from thousands of HIV-1 partial pol sequences. This revealed the presence of clades which had
grown rapidly in the recent past and was significantly concentrated in young men, suggesting recent and rapid transmission
in that group. Furthermore, to demonstrate the utility of these methods for the study of antimicrobial resistance, we applied
the new methods to a large phylogeny reconstructed from whole genome Neisseria gonorrhoeae sequences. We find that
population structure detected using these methods closely overlaps with the appearance and expansion of mutations
conferring antimicrobial resistance. [Antimicrobial resistance; coalescent; HIV; population structure.]

Quantifying the role of population structure in
shaping genetic diversity is a longstanding problem
in population genetics. When information about how
lineages are sampled is available, primarily geographic
location, a variety of statistics are available for describing
the magnitude and role of population structure (Hartl
et al. 1997). In pathogen phylogenetics, such geographic
“meta-data” has been instrumental in enabling the
inference of transmission rates over space (Dudas et al.
2017), host species (Lam et al. 2015), and even individual
hosts (De Maio et al. 2018). Population structure shapes
genetic diversity but can the existence of structure be
inferred directly from genetic data in the absence of
structural covariates associated with each lineage, such
as if the geographic location or host species of a lineage
is unknown?

The problem of detecting and quantifying such
“cryptic” population structure has become a pressing
issue in several areas of microbial phylogenetics. For
example, in bacterial population genomics studies,
a wide diversity of methods have been recently
developed to classify taxonomic units based on
distributions of genetic relatedness (Mostowy et al.
2017; Beugin et al. 2018; Tonkin-Hill et al. 2019,
2018). In a different domain, pathogen sequence data
have been used for epidemiological surveillance, and
“clustering” patterns of closely related sequences have

been used to aid outbreak investigations and prioritize
public health interventions (Eyre et al. 2012; Dennis
et al. 2014; Miller et al. 2014; Ledda et al. 2017).
In both population genomics studies and outbreak
investigations, a common thread is the absence of
variables about sampled lineages that can be correlated
with phylogenetic patterns. For example, in outbreak
investigations, host risk behavior and transmission
patterns are not usually observed and must be inferred.
It is not known a priori which clades are more or less
likely to expand in the future, although there is active
research addressing this problem, such as to predict the
emergence of strains of influenza A virus (Klingen et al.
2018) or to forecast the effect of antibiotic usage policies
on the prevalence of resistant variants (Whittles et al.
2017).

In time-scaled phylogenies, the effects of population
structure often appear as a difference in the distribution
of branch lengths in clades circulating in different
populations (Dearlove and Frost 2015). Figure 1 shows
a simulated genealogy from a structured coalescent
process (Notohara 1990). In two clades, the effective
population size grows exponentially, and in the
remaining clade, the effective size remains constant.
Consequently, the number of lineages through time
show noticeably different patterns of relatedness.
For the clades with growing size, most coalescent
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FIGURE 1. A genealogy simulated from a structured coalescent process with two demes, one of which has constant effective population
size (clade highlighted in blue), and the other having effective population size growing exponentially (clades highlighted in red and yellow).
Migration of lineages occurs at a small constant rate in one direction from the constant size deme to the growing deme. The corresponding plots
at the right show a caricature of the effective population size and number of lineages through time in each clade.

events occur in the distant past when the size was
small.

Supposing that the deme from which lineages were
sampled was not observed, it is clear from visual
inspection of Figure 1 which lineages were sampled from
a growing population. Nevertheless, there is a paucity
of objective methods readily available to automate the
process of identifying temporally distinct clades. This
process cannot be done manually when the differences in
distributions are less obvious, and needs to be based on
a theoretically grounded statistical test. Furthermore, in
Figure 1, the red and yellow clades are distantly related.
Their most recent common ancestor (MRCA) is at the
root of the tree, but they have a very similar distribution
of coalescent times suggesting that they were generated
by similar demographic or epidemiological processes.
For example, this can happen in infectious disease
epidemics, when lineages independently colonise the
same host population with greater susceptibility or
higher risk behavior (Dearlove et al. 2017). It is
therefore also desirable to have an automated method
for identifying polyphyletic taxonomic groups defined
by shared inferred population histories as opposed to
genetic or phenotypic traits.

Here, we develop a statistical test for detecting if
clades within a time-scaled genealogy have evidence for
unobserved population structure. Our approach is to
develop a statistic based on an unstructured coalescent
process. This allows us to test a null hypothesis that
two clades are both generated by the same coalescent

process. In this case, the coalescent model provides a
theoretical prediction of the order of the coalescent times
between the two clades in the absence of population
structure. On the basis of this statistical test, we
also develop algorithms for systematically exploring
possible partitions of a genealogy into distinct sets
representing evolution within latent populations with
different demographic or epidemic histories. Notably,
these algorithms not only allow us to detect outlying
clades with very different genealogical patterns but
also to find and classify distantly related clades
which likely have similar demographic or epidemic
histories.

MATERIALS AND METHODS

As a starting point for our methodology, we assume a
time-scaled phylogeny has been estimated from genetic
data, for example, using one of the recently developed
fast methods (To et al. 2016; Volz and Frost 2017; Didelot
et al. 2018; Sagulenko et al. 2018; Tamura et al. 2018;
Miura et al. 2020). Alternatively, summary trees obtained
from full Bayesian approaches as implemented in BEAST
(Bouckaert et al. 2014; Suchard et al. 2018) or RevBayes
(Höhna et al. 2016) can be used, although these typically
incorporate population genetic models which presume
a particular form of population structure or a lack of
population structure. Some precise terminology and
notation is required related to the structure of these time-
scaled trees since the basis of our approach concerns
comparisons between different subsets of the tree.
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Notation
The tree has n terminal nodes (nodes with no

descendants), is rooted, and is bifurcating (there are
n−1 internal nodes each with exactly two descendants).
Being rooted implies there is one node with no ancestor.
Mathematically, we describe this tree as a node-labeled
directed acyclic graph:

G = (N ,E,�)

where N is a set of 2n−1 nodes, E ⊆{(u,v)|u,v∈N 2} is
the set of 2n−2 edges or “lineages”, and � : N →R≥0
defines the time of each node. With reference to an edge
(u,v)∈E we say that u is the “direct ancestor” and v is the
“direct descendant” and we require �(u)<�(v). Nodes
are further classified into two sets: “tips” (terminal
nodes) denoted T with no descendants and internal
nodes denoted I with exactly two direct descendants.
The trees may be heterochronous, meaning that tips of
the tree can represent samples taken at different time
points.

For a node u∈N we define the clade Cu to be the set
of nodes descending from u, that is, the node u and all
v∈N such that there is a directed path of edges from u to
v. We say that nodes v in Cu are “descended from” u. We
will also have occasion to define clades “top down” in
terms of a subset of tips in the tree. For this, we define the
most recent common ancestor MRCA(X) of a set X ⊆T
to be the most recent node u such that X ⊆Cu, that is, all
other nodes v with X ⊆Cv have �(v)<�(u). Then we let
the top-down clade BX be defined as

BX ={u∈N |Cu ∩X �=∅}.
Note that BX includes the tips X as well as some nodes
ancestral to MRCA(X).

In general BX �=CMRCA(X) since X does not necessarily
include all tips descending from MRCA(X). We will also
need to refer to the nodes corresponding to coalescent
events among lineages of the set X only, excluding those
between lineages of X and lineages of the complement
of X,

DX =X∪{u∈BX|∃(u,v),(u,w)∈E,v �=w,Cv ∩X

�=∅,Cw ∩X �=∅},
Figure 2a illustrates a tree and the sets BX,DX, and
CMRCA(X).

Since each node has a time, we can define the set of
“extant” lineages A(t) at a particular time t to be the set of
nodes occurring after time t with a direct ancestor before
time t,

A(t)={v∈N |∃(u,v)∈E,�(u)< t≤�(v)}.
We might also refer to the number of extant lineages
at time t, a(t)=|A(t)|, and if considering the number of
extant lineages within a particular clade ancestral to (and
including) X we write

aX(t)=|A(t)∩BX|.

Non-Parametric Test For a Given Pair of Clades
With the above notation, the rank-sum statistic can

now be defined which will form the basis for subsequent
statistical tests and can be used to compare any pair of
clades in the tree.

Let X and Y represent disjoint sets of tips as
represented in Figure 2b–d. Having sorted the nodes
according to time and assigned a corresponding rank
to each internal node, this statistic computes the sum of
ranks in a given clade in comparison to a different clade:

�(X|Y)=
K∑

i=1

i1DX (wi), (1)

where wi is an element of SX,Y = (w1,w2,...,wK) which
is the sequence of internal nodes in DX ∪DY sorted by
time (present to past). And, 1A(u) is an indicator that
takes the value 1 if u∈A and is zero otherwise. Note
that �(X|Y) is asymmetric in X and Y. Also note that
�(X|Y) makes use of DX and DY , not BX and BY , because
we are interested in the relative ordering of coalescent
events among lineages of X and Y. Although the statistic
is defined for all sets disjoint sets X and Y the examples
we consider below apply to the case that the intersection
of DX and DY is empty. Only the ordering of the events
matter, the absolute times are immaterial to the test.

Under a neutral coalescent process, the distribution of
coalescent times in two clades ancestral to X and Y will
depend on the number of extant lineages through time
in both clades and on the effective population size Ne(t)
(Wakeley 2009). However, the distribution of the relative
ordering of coalescent times only depends on the sizes of
the clades. This distribution can be computed rapidly by
Monte-Carlo simulation as shown below, provided that
we know the probability that the next coalescent will be
in X or Y as a function of the number of lineages ancestral
to X and Y, given by aX(t) and aY(t). We here provide
new theoretical results on the distribution of the relative
ordering of coalescence times under the null hypothesis
that both BX and BY are clades within a single tree
generated by a neutral unstructured coalescent process.
In the following, we consider three different scenarios.

Event E1. Suppose that a clade BX has an MRCA before
any tip of X shares a common ancestor with the clade of
another set of tips Y, disjoint to X. After lineages in X
have found a common ancestor, the MRCA of X may or
may not coalesce with lineages in BY before Y has found
a common ancestor. Figure 2b and c illustrates trees that
satisfy this condition. Note that in Figure 2b, a lineage
in Y coalesces with the MRCA of X before lineages in
Y find an MRCA and in Figure 2c, both X and Y have
a common ancestor before they find a common ancestor
with one another.

Observing a taxonomic pattern such as shown in
Figure 2b and c is a random event in a stochastic
unstructured coalescent process, and we denote this
event by E1 (suppressing X and Y for convenience).
Wiuf and Donnelly (1999) showed that the probability
of observing E1, given the state of the tree at a particular



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[12:26 25/7/2020 Sysbio-OP-SYSB200009.tex] Page: 887 884–896

2020 VOLZ ET AL.—IDENTIFICATION OF HIDDEN STRUCTURE 887

a) b)

c) d)

FIGURE 2. Coalescent trees for illustrating taxonomic relationships and notation used throughout the text. In panel a, the shape and color
of nodes correspond to variables BX,DX, and CMRCA(X) in relation to the set of tips X ={x1,x2,x3}. All circles regardless of color correspond
to CMRCA(X). All filled shapes (red or black, square, or circle) correspond to BX . Note that this includes nodes ancestral to the MRCA of X. All
red filled circles correspond to DX . Two coalescent events occur among nodes in DX at times t1 and t2. Panels b–d show a coalescent tree and
examples of potential taxonomic relationships between two clades. Prior knowledge of taxonomic relationships between X and Y influences the
probability that the next coalescent event will be observed in clade X.

time t, only depends on the number of lineages z=aX(t)
and w=aY(t),

Q1(z,w)= 2(z−1)!w!
(z+w−1)!(z+1)

, z,w≥1. (2)

The numbers of extant lineages in BX (or its
complement) following each coalescent event
conditional on E1 is a Markov chain. The transition
probabilities of this chain are exactly those needed to
simulate the null distribution of the test statistic �(X|Y).
The probability that the next coalescent event is among
lineages in the clade BX given E1 (starting at a particular
time t) was found by Wiuf and Donnelly (1999):

(z,w) → (z−1,w) with probability
z+1
z+w

, (3)

where the ancestral number of lineages of X and Y at
time t are respectively z and w.

Event E2. We further derive analogous probabilities
under slightly different conditions. Suppose we have
disjoint sets of tips, X and Y. Let all lineages in X share

a common ancestor before any share a common ancestor
with Y and vice versa, all lineages in Y share a common
ancestor before any share a common ancestor with tips in
X. Figure 2c illustrates a tree and two clades that satisfy
this condition, which we denote by E2. As before, the
number of ancestors in BX and BY will form a Markov
chain, conditional on E2.

The probability that the next coalescent event is among
lineages in the clade BX given E2 at a particular time t and
the current ancestral number of lineages of X, z=aX(t),
and Y, w=aY(t), can be given as:

(z,w) → (z−1,w) with probability
z−1

z+w−2
, z,w≥1.

(4)
To see this, note that without conditioning on E2, the

probability that the next coalescent is among ancestral
nodes in BX is

z(z−1)
(z+w)(z+w−1)

.

This is simply the ratio of the coalescent rate in BX , which
is

(z
2
)
/Ne(t), to the rate in BX ∪BY , which is

(z+w
2

)
/Ne(t).
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The effective population size is homogenous through the
tree by hypothesis of the statistical test, and it cancels out
in this ratio. The probability that the coalescent event
would be between the clades ancestral to X and Y would
be

2zw
(z+w)(z+w−1)

.

Event E2 has probability Q2(z,w), which must fulfill the
recursion

(z+w)(z+w−1)Q2(z,w)

= z(z−1)Q2(z−1,w)+w(w−1)Q2(z,w−1), (5)

where z,w≥1. If there is exactly one lineage in both BX
and BY , then Q2(1,1)=1. If there is one lineage remaining
in BX and w>1 in BY , then Q2(1,w) is the probability
that the next w−1 coalescent events only occur between
lineages in BY and do not include the single lineage
ancestral to X. The probability of the next coalescent
event being in BY is the probability of not selecting the
BX lineage when sampling two extant lineages without
replacement:

Q2(1,w)=
w∏

j=2

(
j

j+1

)(
j−1

j

)

= 2
w(w+1)

, w≥1. (6)

Similarly, Q2(z,1)= 2
z(z+1) ,z≥1. This recursion can be

solved explicitly to give

Q2(z,w)= 2z!w!
(z+w)!(z+w−1)

, z,w≥1. (7)

Now the transition probability (Equation 4) can be
defined in terms of the rate of coalescence in BX and
BY and the probability of E2 being satisfied following
the coalescent event:

(z,w) → (z−1,w) with probability

z(z−1)Q2(z−1,w)
z(z−1)Q2(z−1,w)+w(w−1)Q2(z,w−1)

= z−1
z+w−2

.

(8)

Event E3. Finally, we consider an event that is the union

of events E1 and E2. We denote E3 to be the event that
all X have an MRCA before sharing a common ancestor
with lineages of Y and/or all lineages in Y have an MRCA
before sharing an ancestor with lineages of X. All trees
in Figure 2b–d satisfy this condition.

The probability of the event E3 can be defined in terms
of Q1 and Q2 given previously:

Q3(z,w)=Q1(z,w)+Q1(w,z)−Q2(z,w)

= 2z!w!
(z+w−1)!

(
1

z(z+1)
+ 1

w(w+1)
− 1

(z+w)(z+w−1)

)
,

(9)

with z=aX(t) and w=aY(t) being sample sizes at a
particular time t, as before. The function Q3 satisfies
the same recursion as above (Equation 5) with slightly
different boundary conditions:

Q3(1,w)=Q3(z,1)=1, z,w≥1.

Transition probabilities can be derived as above by
substituting Q3 for Q2 in Equation 8. The probability
that the next coalescent event is among lineages in DX
conditional on E3 is

(z,w) → (z−1,w) with probability

(z−1)Rz−1,w

(z−1)Rz−1,w +(w−1)Rz,w−1
, (10)

where

Rz,w = 1
z(z+1)

+ 1
w(w+1)

− 1
(z+w)(z+w−1)

, z,w≥1.

(11)

Algorithms for Detecting Population Structure
The null distribution of the test statistic �(X,Y) can be

computed by Monte-Carlo simulation using Equations
3, 4, or 10 depending on the taxonomic constraints
to be conditioned on. This can be computed given
any pair of disjoint clades X and Y. Algorithm 1
in the supplementary material available on Dryad at
http://dx.doi.org/10.5061/dryad.w6m905qkx provides
the simulation procedure for computing the two-sided
P-values of an empirical measurement R̂=�(X,Y), and
we denote these P-values �(X,Y,R). The algorithm
works by simulating many replicates of the rank-sum
statistic conditional on the sets X, Y, and the taxonomic
relationship between these clades. Furthermore, the
order of sampling events and coalescent events is part
of the data within a time-scaled phylogeny. Thus, the
simulation procedure does not simulate coalescent trees
per se, but rather the number of lineages through time
aX(t) and aY(t) by proceeding from the most recent
sample back to the MRCA of clades X and Y. Upon
visiting a node in the ordered sequence of coalescent
events, the algorithm selects at random a clade DX or
DY for this event using the transition probabilities from
Equations 3, 4, or 10. Upon visiting a coalescent event,
aX(t) or aY(t) is incremented using the observed clade
membership of the sample at that time. The end result
of this simulation procedure is a large set of replicate
rank-sum statistics which serves as a null distribution
for comparison with the value computed from the
time-scaled phylogeny.

While in principle this test allows comparison of
any pair of disjoint clades, the number of possible
comparisons is vast, and deriving a useful summary
of taxonomic structure requires additional heuristic

http://dx.doi.org/10.5061/dryad.w6m905qkx
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algorithms. These algorithms are designed to stratify
clades into self-similar sets and to do so in a
computationally efficient manner. Algorithm 2 in the
supplementary material available on Dryad identifies
“cladistic outliers”, which are clades that have a
coalescent pattern that is different from the remainder
of the tree. It performs a single pre-order traversal of the
tree and greedily adds clades to the partition with the
most outlying values of the test statistic. At each node u
visited in pre-order traversal, Supplementary Algorithm
2 available on Dryad examines all descendants v in
Cu and compares Cv with to Cu \Cv. If no outliers are
found, the algorithm will desist from searching Cu and
the set of tips Cu ∩T will be added to the partition.
If at least one outlier is found in Cu, a search will
begin on the biggest outlier (smallest P-value computed
using Supplementary Algorithm 1 available on Dryad).
The final result of this algorithm is a partition of m
non-overlapping clades M={X1,··· ,Xm}.

In practice, it is often desirable to not compare very
small clades against one another or much larger clades,
so additional parameters are available to desist the
pre-order traversal upon reaching a clade with few
descendants. It is also often of practical interest to only
compare clades that overlap in time to a significant
extent, so yet another parameter is available to desist
from comparing a pair of clades if few lineages in the
pair ever coexist at any time.

Additional algorithms are required to detect
polyphyletic relationships as depicted in Figure 1 which
arise if, for example, distantly related lineages colonise
the same area and have similar population dynamics
or if near-identical fitness-enhancing mutations occur
independently on different lineages. Figure 1 depicts
two distantly related clades (yellow and red) with similar
population dynamics, and it is desirable to classify these
as a single deme based on shared population dynamic
history. Supplementary Algorithm 2 available on Dryad
will partition tips of the tree into distinct clades with
monophyletic or paraphyletic relationships, however,
an approach based on pre-order traversal of the tree
cannot on its own arrive at a polyphyletic partition of the
tree. Therefore, we can implement a final hierarchical
clustering step in order to group similar clades as
follows:

1. For each distinct pair of clades X and Y in partition
M, compute qXY =�(X,Y,R̂XY).

2. Convert the P-value into a measure of distance
between all clades: dXY =|F−1(qXY)|, where F−1

is the inverse Gaussian cumulative distribution
function (quantile function). Set dXX =0 for all X.

3. Perform a conventional hierarchical clustering
using a threshold distance F−1(1−�/2) for
confidence level �. Various clustering algorithms
can be used at this point, and our software has
implemented the “complete linkage” algorithm
(Everitt et al. 2001).

Supplementary Algorithms 1 and 2 available on
Dryad as well as the final hierarchical clustering step
are implemented as an open source R package
called treestructure available at https://github.
com/emvolz-phylodynamics/treestructure. The R
package supports parallelization and includes facilities
for tree visualization using the ggtree package (Yu et al.
2017). The package provides convenience functions to
output cluster and partition assignment for downstream
statistical analysis in R.

Simulation Studies
To evaluate the potential for treestructure to detect

outbreaks, we applied the new method to phylogenies
estimated from newly simulated data using a structured
coalescent model as well as previously published
simulation data based on a discrete-event branching
process (McCloskey and Poon 2017). We also simulated
trees and sequence data under a Kingman coalescent
process to examine the distribution of the test statistic
under the null hypothesis and to assess how statistical
power of the test depends on sample size and the
differences between clades.

The structured coalescent simulation was based
on a model with two demes: a large deme with
constant effective population size and a smaller
deme which grows exponentially up to the time
of sampling. Migration occurs at a constant rate
in both directions between the growing and
constant-size demes, and equal proportions of these
two demes are sampled. Coalescent simulations
were implemented using the phydynR package
http://github.com/emvolz-phylodynamics/phydynR.
All genealogies simulated from this model were
comprised of 1000 tips with 200 of these sampled from
the growing deme. Each of 100 simulations were based
on different parameters such that there was a spectrum
of difficulty identifying population structure from the
trees. The sample proportion was chosen uniformly
between 5% and 75% and, the growth rate in the
growing deme was chosen uniformly between 5% and
100% per year. Bidirectional migration between demes
was fixed at 5% per year. While most tips were sampled
at a single time point, 50 tips from the constant-size
deme were distributed uniformly through time in order
to facilitate molecular clock dating. Multiple sequence
alignments were simulated based on trees using seq-gen
(Rambaut and Grass 1997). Each sequence comprised
1000 nucleotides from a HKY model with a substitution
rate of 10−3 per site per year, which is a typical value
for RNA viruses. A neighbor joining tree was estimated
from each alignment and dated phylogenies estimated
using the treedater R package (Volz and Frost 2017) with
a strict molecular clock. The treestructure algorithm was
applied to each phylogeny using the default �=1%
threshold.

In order to test the specificity of our method, we also
simulated 1000 trees under an unstructured Kingman

https://github.com/emvolz-phylodynamics/treestructure
https://github.com/emvolz-phylodynamics/treestructure
http://github.com/emvolz-phylodynamics/phydynR
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FIGURE 3. The normalized mutual information (NMI) and adjusted Rand index (ARI) as a function of classifications from several tree
partitioning algorithms and membership of lineages in outbreaks or a constant-size reservoir. Each point corresponds to a structured coalescent
simulation where 20% of tips are sampled from an exponentially growing outbreak.

coalescent process using the rcoal function in the ape
R package version 5.2. These trees each had 50 tips
and an effective population size of 0.025. Sequence data
and neighbor joining trees were generated as described
above. The estimate.dates command (Jones and Poon
2016) in the ape R package version 5.2 was used to
estimate time-scaled trees. The treestructure algorithm
was applied to both the coalescent trees and to the trees
estimated based on the simulated sequences. The test
statistic was tabulated for each clade size from 5 to 45
leading to approximately 10,000 observations of the test
statistic in total, and about 250 observations for each
clade size.

A further set of Kingman coalescent simulations was
carried out to assess the statistical power of our method.
We simulated paired coalescent trees of different sizes
and with different effective population sizes, and each
pair of coalescent trees was then joined at a common
root. Branch lengths at the root node were adjusted to
ensure the trees were ultrametric. One tree in each pair
was small with 10, 20, or 40 tips, whereas the other
had 200 tips. The treestructure algorithm was used to
compute the normalized test statistic at the MRCA of
the minority clade. The effective population size in the
minority clade was varied to provide differing levels
of contrast. Note that even if the effective population
size is the same in the majority and minority clades, the
topology of the combined tree may differ substantially
from the Kingman model, so that the minority clade may
be detected by the treestructure algorithm. To effectively
“hide” the structure caused by the construction of the
combined trees, we can set the effective population size
of the minority clade to be zNe/w where z is the number
of tips in the minority tree, w is the number of tips in the
majority tree, and Ne is the effective size of the majority
tree. By doing so, the initial coalescent rate in both trees
will be as expected under the Kingman model for the
combined tree. This can be deduced by equating the
transition probability in Equation 4 with the probability
that the next coalescent will be in the minority clade,
which is the ratio of the coalescent rate in the minority
tree over the sum of coalescent rates in both the minority
and majority trees.

Simulation of 100 genealogies from a discrete-event
birth–death process has been previously described
(Vaughan and Drummond 2013; McCloskey and Poon
2017). These simulations were based on a process with
heterogeneous classes of individuals with different birth
rates. With some probability, lineages migrate to a class
with higher birth rates. This could represent a generic
outbreak scenario such as a set of individuals with
higher risk behavior or other exposures. In a separate
set of simulations, the outbreak population differs from
the main population along multiple dimensions: the
birth rate and the sampling rate are both increased by
a common factor (5×). 100 genealogies were simulated
under both scenarios and the treestructure algorithm was
applied to each. To create more challenging conditions
for the method and to evaluate the sensitivity of the
method to sample coverage, we also applied the method
to genealogies based on subsampled lineages with a
frequency of 25%. Complete descriptions of parameters
and simulation methods can be found in McCloskey and
Poon (2017).

The performance of treestructure was evaluated using
the normalized mutual information (NMI) statistic and
adjusted Rand index (ARI) computed using the aricode
R package (Vinh et al. 2010). Both statistics quantify the
strength of association between the estimated and actual
structure of the tree, with larger values corresponding to
higher quality reconstructions.

RESULTS

Simulation Studies
The treestructure algorithm achieves relatively high

fidelity of classifications in comparison to other methods
in the structured coalescent simulations which included
20% of samples from a rapidly growing outbreak.
Figure 3 compares the values of NMI and ARI for
three methods of structure analysis. In these statistics,
the partition of the tree computed by each method is
compared to the true membership of each sampled
lineage in outbreak or in the constant-size reservoir
population. Across 100 simulations, treestructure has
mean ARI of 41% (inter-quartile range [IQR] 20–57%).
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FIGURE 4. Entropy (H) of classification from several tree partitioning
algorithms applied to the structured coalescent simulations but only
counting lineages sampled from the exponentially growing outbreak.

The FastBAPS method (Tonkin-Hill et al. 2019) has mean
ARI of 2.3% (IQR 1.2–3.3%) and the CLMP method
(McCloskey and Poon 2017) has mean ARI 5.2% (IQR
−1% to 7.5%). The NMI statistic gives similar differences
between the methods to ARI (Fig. 3).

The lower performance of CLMP and FastBAPS in
these comparisons is largely a consequence of false
positive partitioning of samples from the reservoir
population, but CLMP and FastBAPS usually correctly
identify a clade that closely corresponds to the outbreak.
In contrast, the treestructure method seldom sub-divides
clades from the reservoir. Figure 4 compares the entropy
of partition assignments only within lineages sampled
from the outbreak. This shows that all methods are
assigning outbreak lineages to a small number of
partitions and no method is clearly superior by this
metric. The CLMP method has the lowest entropy (mean
0.40) but also several large outliers. treestructure has
higher entropy (mean 0.57) but few outliers. FastBAPS
has even higher entropy (mean 0.68) with a long tail of
high values (Fig. 4).

The performance of all methods depended on the
sample density and growth rate of the outbreak. Fast
growing outbreaks are easier to detect by all methods
but the role of sample density is more ambiguous. The
Pearson correlation of ARI with growth rate is 53%,
71%, and 27%, for treestructure, FastBAPS, and CLMP,
respectively. Not all methods are equally sensitive to
these parameters however and FastBAPS is especially
sensitive to growth and sample density. The growth rate
and sample density collectively explain 41%, 60%, and
28% of variance of ARI in treestructure, FastBAPS, and
CLMP, respectively.

We also performed analyses with Phydelity, a recently
proposed method for transmission cluster identification
(Han et al. 2019). This tended to generate a very
large number of clusters, both within and outside of
the outbreak demes, reflecting a different emphasis of
this method on finding closely related clusters rather
than addressing differences in macro-level population
structure. Thus, results with Phydelity and other
clustering methods were not easily comparable to
treestructure.

Figure 5 shows performance of treestructure on
previously published tree simulations (McCloskey and
Poon 2017). These simulations differ from the structured
coalescent simulations presented above because both the
reservoir and outbreak demes are growing exponentially
at different rates. The birth rate in the outbreak deme
is 5-fold the birth rate in the reservoir, but in one set
of simulations, both the birth rate and sampling rate
in the outbreak was also increased 5-fold. In these
simulations, the performance of treestructure (mean
ARI 53%) is slightly lower than the CLMP method
(McCloskey and Poon 2017) (mean ARI 72%) when only
the birth rate differs in the outbreak deme. However,
treestructure maintains good performance when death
and sampling rates also differ. In that case, treestructure
has mean ARI 42% and CLMP has mean ARI 0%.
The results are similar when using NMI instead of
ARI (Supplementary Fig. S1 available on Dryad). The
difficulty of detecting outbreaks with different sampling
patterns was previously highlighted as a challenge for
CLMP (McCloskey and Poon 2017).

Simulations of unstructured Kingman coalescent
trees shows that the distribution of the standardized
test statistic is approximately normal (Supplementary
Fig. S2 available on Dryad). The quality of the normal
approximation depends on the extent of phylogenetic
error. In estimated phylogenies based on simulated
sequence data, there is substantial skew in the test
statistic which is most pronounced for larger clades
that have a more distant MRCA (Supplementary Fig.
S3 available on Dryad). The extent of error due to
phylogeny estimation will depend on many variables as
well as on the choice of methodology when estimating
time-scaled trees; in this case, effective population size
and substitution rates were chosen to yield a data set
with comparable diversity to a real HIV sequence data
set, and there is considerable error in the estimated
date of the time of most recent common ancestor and
tree topology which was estimated using the neighbor
joining method. In the absence of phylogenetic error, the
false positive rate based on a 95% confidence threshold
was 5.1%. With phylogenetic error, the false positive rate
increased to 12.2%.

Analysis of trees simulated with predefined structure
showed that statistical power increases as expected
with sampling density and effective population size
contrast between the two clades. Supplementary Figure
S4 available on Dryad shows the normalized test statistic
for various sample sizes and contrasts of effective
population size in two clades descended from the root of
a tree. The statistic significantly deviates from zero with
increasing sample sizes and with increasing differences
in effective population sizes. For example, using a 95%
confidence level, we find a significant difference between
clades in 85% of simulations sampling 40 tips from
the minority clade and with a 2-fold difference in the
rescaled effective population sizes. This decreases to 40%
of simulations if sampling only 10 tips, but increases to
100% if there is a 5-fold difference in the scaled effective
population sizes.
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FIGURE 5. The adjusted Rand index for 100 previously published simulations (McCloskey and Poon 2017). This describes accuracy of
classification of tips into outbreaks using the treestructure method and CLMP. Results on the left were based on simulations where both
transmission and sampling rates varied in the outbreak cluster, whereas simulations on the right only allowed transmission rates to vary.

Clonal Expansion of Drug-Resistant Neisseria gonorrhoeae
We examined the role of evolution of antimicrobial

resistance in shaping the phylogenetic structure of
Neisseria gonorrhoeae using 1102 previously described
whole genome sequences (Grad et al. 2016). These
isolates were collected from multiple sites in the United
States between 2000 and 2013 and featured clonal
expansion of lineages resistant to different classes of
antibiotics. We estimated a maximum likelihood tree
using PhyML (Guindon et al. 2010) and corrected for the
distorting effect of recombination using ClonalFrameML
(Didelot and Wilson 2015). We estimated a rooted time-
scaled phylogeny using treedater (Volz and Frost 2017).
A relaxed clock model was inferred, with a mean rate
of 4.6×10−6 substitutions per site per year. BactDating
(Didelot et al. 2018) was also applied for the same
purpose and found to give very similar estimates for the
clock rate and dating of clades.

We focus on the origin and expansion of two clades
which independently developed resistance to cefixime
(CFX) by acquiring the mosaic penA XXXIV allele (Grad
et al. 2016). Note, however, that the level of susceptibility
to CFX varies, particularly in the largest of these two
clades. In one lineage within this clade, the mosaic
penA XXXIV allele was replaced by recombination with
an allele associated with susceptibility. Other isolates
within this clade gained mutations that further modified
the extent of resistance. The largest of the two clades
emerged on a genomic background that was already
resistant to ciprofloxacin (CIP), so that it has reduced
susceptibility to both CIP and CFX. The smallest of
the two clades is resistant to CFX but not CIP. To
further analyze the relationship between CFX resistance
and N. gonorrhoeae population structure, we focused our
analysis on a tree with just 576 tips, representing the
genomes from these two CFX resistant clades as well
as genomes from the two clades that are most closely
related to the two CFX resistant clades. The output of
treestructure is shown in Figure 6, using unique colors to
highlight each of the 11 clusters that were identified with
�=1%. The clusters reported by treestructure are highly
correlated with CFX resistance. Among all distinct pairs
of sampled isolates, 84% share the same resistance profile
and cluster membership.

We compared treestructure with a different method
for detecting community structure, FastBAPS (Tonkin-
Hill et al. 2019), since BAPS models are often applied
to bacterial pathogens. We applied FastBAPS using
the same time-scaled phylogeny described previously
and using a trimmed sequence alignment consisting
of 38,830 polymorphic sites and removing sites with
many gaps. This produced a similar partition of the
tree (Supplementary Fig. S5 available on Dryad) with
a few differences. The FastBAPS clusters overlap exactly
with the clade featuring dual resistance (CIP and CFX),
whereas treestructure classified a small number of deep-
splitting lineages into a different cluster. Note, however,
that this behavior is not necessarily problematic and
may represent a progressive increase in fitness following
the acquisition of resistance through the evolution of
compensatory mutations (Didelot et al. 2016). Indeed, we
found a significant difference in the resistance profile of
the two treestructure clusters within the clade resistant
to both CIP and CFX: the smallest cluster had a greater
frequency of high resistance to CIP compared to the
largest cluster (100% and 81%, respectively).

FastBAPS did not identify the smaller clade with
resistance to CFX and not CIP and instead grouped
that clade with its sensitive sister clade. In general,
treestructure found many more clusters within the
two sister clades and FastBAPS tended to group
these together. We also applied the much more
computationally intensive RhierBAPS method (Tonkin-
Hill et al. 2018), and obtained almost identical results to
FastBAPS. Overall, BAPS methods appear to give more
weight than treestructure to long internal branches when
identifying clusters.

Epidemiological Transmission Patterns of HIV-1
We reanalyzed a time-scaled phylogeny reconstructed

from 2068 partial pol HIV-1 subtype B sequences
collected from Tennessee between 2001 and 2015
(Dennis et al. 2018). Each lineage within this phylogeny
corresponds to a single HIV patient sampled at a
single time point, and various clinical and demographic
covariate data concerning these patients can be
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FIGURE 6. A time-scaled phylogeny based on 576 whole
genomes of Neisseria gonorrhoeae, comprising two clades with reduced
susceptibility to cefixime (CFX) and their two sister clades. The top
clade also has resistance to ciprofloxacin (CIP). Different colors on the
tree represent the partition detected using the treestructure algorithm.

associated with each lineage. In the original study,
these sequence data were used to show high rates of
transmission among young (age <26.4 years old) men
who have sex with men (MSM) (Dennis et al. 2018).
Clustering by threshold genetic distance is often used in
HIV epidemiology (Dennis et al. 2014) and indicated that
young white MSM had the highest odds of clustering.

We applied the treestructure algorithm with default
settings to the time-scaled tree which yielded ten
partitions with sizes ranging from 58 to 398. The
tree and partitions are shown in Figure 7 where
partitions are labeled according to the median year
of birth among patients in each partition. Many of
these partitions were polyphyletic, suggesting possible
multiple importations of lineages to specific risk groups.
We then compared the estimated partition of the tree
with patient covariates. A particular partition stands out
along multiple dimensions: it is the smallest (size 58),
polyphyletic, arose in the recent past and is characterized
by very young MSM. The median year of birth in this
partition is 1987, in stark contrast to the rest of the sample
with year of birth in the 1970s. Clades within this young
partition are also nested paraphyletically under other
relatively young partitions (Fig. 7).

We did not find a significant association between
the tree partition and residential postal codes (Tukey
analysis of variance, P=0.097). This is in agreement
with the original study which found minimal impact of
geography on genetic clustering in this sample; however,

FIGURE 7. A time-scaled phylogeny estimated from HIV-1 pol
sequences in Tennessee (Dennis et al. 2018). The colors correspond
to the 10 partitions identified using the treestructure algorithm. Several
partitions are annotated with the median year of birth of HIV patients
from whom sequences were sampled. Unannotated partitions had
years of birth 1969–1972.

this is largely a consequence of the highly concentrated
nature of the sample around Nashville. The ethnicity of
patients (black, white, and other) was strongly associated
with the estimated partition. Black MSM were strongly
concentrated in the 1987 partition in particular (83% in
contrast to 26–38% in all other partitions). The odds ratio
of black ethnicity given membership in the 1987 partition
was 9.7 (95% confidence interval 5.2–19.8).

Finally, we performed a phylodynamic analysis to
investigate if the partition structure supported the
previously published findings that young MSM were
transmitting at a higher rate (Dennis et al. 2018).
To estimate the temporal variations in the effective
population size, we used the nonparametric skygrowth
R package (Volz and Didelot 2018). We estimated Ne(t)
for each partition individually using a range of precision
parameters which control the smoothness (�) of the
estimated trajectories since we lack a priori information
about volatility of these trajectories. Figure 8 shows
Ne(t) for each partition with �=10 and Supplementary
Figures S6 and S7 available on Dryad show results using
different values of �. The 1987 partition again stands
out as the only group which shows evidence of recent
and rapid population growth. Less dramatic recent
periods of growth are also noticeable for other partitions
with young patients. The current exponential growth in
the 1987 partition is not consistent across all analyses,
but when �<10 we find Ne(t) drops precipitously in
2014–2015 (Supplementary Fig. S6 available on Dryad).
However, this could also be an artifact of nonrandom
sampling and inclusion of transmission pairs within the
sample.

This analysis supports the hypothesis that there has
been a recent and rapid increase in HIV transmissions
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FIGURE 8. Estimated effective population size through time for each partition in the Tennessee HIV-1 phylogeny. Each panel is annotated
with the median year of birth among HIV patients in each partition. Ne(t) was estimated using the skygrowth method (Volz and Didelot 2018)
with precision parameter �=10.

among young MSM in Tennessee and in particular
among young black MSM. This interpretation is mostly
in agreement with the original study (Dennis et al. 2018),
but we find that black MSM are a group at greater risk
than young white MSM.

DISCUSSION

Contrasting the distribution of ordering of nodes
provides a natural criterion for distinguishing clades
within a time-scaled phylogeny which are shaped

by different evolutionary or demographic processes.
The nonparametric nature of this classification method
imposes minimal assumptions on the mechanisms that
generate phylogenetic patterns. Thus, we have found
this method maintains good performance over a diverse
range of situations where phylogenetic structure is
produced, including differential transmission rates,
epidemiological outbreaks, evolution of beneficial
mutations, and differential sampling patterns. Our work
is related to the research on species delimitation methods
(see for example Zhang et al. 2013) although targeted
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at within-species variation and is also related to recent
work on methods for detecting codiversification of
species (Oaks et al. 2019). This method appears relatively
robust compared to other methods against false positive
identification of phylogenetic structure but nevertheless
has good sensitivity for detecting structure in most
situations.

There are many immediate applications of this method
in the area of pathogen evolution where time-scaled
phylogenetics is increasingly used in epidemiological
investigations (Biek et al. 2015). We have demonstrated
the role of selection in shaping phylogenetic structure of
N. gonorrhoeae, and our method clearly identifies clades
which expanded in the recent past due to acquisition
of antimicrobial resistance. We have demonstrated the
role of human demography and transmission patterns
in shaping the evolution of HIV-1, and our method has
shown distinct outbreaks of HIV-1 in specific groups
defined by age, race, and behavior. Furthermore, we
have shown how clades detected by this method can
be analyzed using phylodynamic methods that can
yield additional insights into recent outbreaks or the
mechanisms which generated phylogenetic structure.
For example, we have applied nonparametric methods
to estimate the effective population size through time
in HIV outbreaks detected using treestructure which
highlighted particular groups that appear to be at
higher risk of transmission. Such analyses would be
more problematic using other partitioning or clustering
algorithms because phylogenetic clusters can appear
by chance in homogeneous populations of neutrally
evolving pathogens, and this can give the false
appearance of recent growth (Dearlove et al. 2017).
This application of phylodynamics analysis methods is
possible because the statistical test used in treestructure
provides theoretical justification for treating each
partition as a separate unstructured population.

Applications of the treestructure algorithms are
scalable to relatively large phylogenies. The main
algorithms require only a single pre-order traversal of the
tree and all of the computations presented here required
less than one minute to run. The method is based
on a time-scaled phylogeny, and the computational
burden of this preliminary step is typically higher than
that of running treestructure, even though significant
progress has been made recently in this area (Volz
and Frost 2017; Didelot et al. 2018; Sagulenko et al.
2018; Tamura et al. 2018; Miura et al. 2020). Future
developments of treestructure and other methods post-
processing time-scaled phylogenies (Didelot et al. 2017;
Volz and Didelot 2018) should address the uncertainty
in the input phylogeny, for example, by accounting for
bootstrap or Bayesian support values for phylogenetic
splits, or by summarizing results from multiple trees.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.w6m905qkx.
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